WO2018026066A1 - Molten metal treatment apparatus and treatment method - Google Patents

Molten metal treatment apparatus and treatment method Download PDF

Info

Publication number
WO2018026066A1
WO2018026066A1 PCT/KR2016/014021 KR2016014021W WO2018026066A1 WO 2018026066 A1 WO2018026066 A1 WO 2018026066A1 KR 2016014021 W KR2016014021 W KR 2016014021W WO 2018026066 A1 WO2018026066 A1 WO 2018026066A1
Authority
WO
WIPO (PCT)
Prior art keywords
molten metal
gas
lance
injecting
molten
Prior art date
Application number
PCT/KR2016/014021
Other languages
French (fr)
Korean (ko)
Inventor
하창수
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Publication of WO2018026066A1 publication Critical patent/WO2018026066A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C1/00Refining of pig-iron; Cast iron
    • C21C1/02Dephosphorising or desulfurising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C1/00Refining of pig-iron; Cast iron
    • C21C1/06Constructional features of mixers for pig-iron

Definitions

  • the present invention relates to a molten metal processing apparatus and a processing method thereof, and more particularly, to a molten metal processing apparatus and a processing method capable of easily mixing the molten metal and the processing agent.
  • the steelmaking industry consists of preliminary treatment of the molten iron from the blast furnace and charging it into the converter, followed by the converter refining and the secondary refining process to manufacture the cast through a continuous casting process.
  • sulfur (S) is present in a large amount in steel, it may adversely affect steel properties such as causing cracks, lowering brittleness, and causing red shortness.
  • the molten iron preliminary treatment is a process performed before supplying the molten iron from the blast furnace to the converter.
  • a dephosphorization process for removing phosphorus from carbon (C), silicon (Si), manganese (Mn), phosphorus (P), and sulfur (S), which are five impurities included in the molten iron, and a desulfurization process for removing sulfur This can be done mainly.
  • the desulfurization process may be performed in a state in which molten iron is contained in the ladle which is a transport container.
  • the desulfurizing agent may be introduced into the molten iron in the ladle, and the stirrer may be immersed in the molten iron to rotate.
  • sulfur contained in the molten iron may be removed while reacting with the sulfur desulfurization agent.
  • a structure was installed on the sidewall or the bottom of the ladle to adjust the flow of molten iron. That is, the molten iron rotated by the stirrer hit the structure and moved downward, or induced an asymmetric flow on the molten iron surface, thereby promoting the introduction of the desulfurization agent into the molten iron.
  • the structure collides with the molten iron and can be easily broken, there is a problem that the productivity of the ladle is reduced to reduce the volume.
  • Patent Document 1 JP1976-112416 A
  • Patent Document 2 JP5691207 B
  • the present invention provides a molten metal processing apparatus and a method for treating the same, which can generate an asymmetrical vortex in the molten metal being stirred.
  • the present invention provides a molten metal processing apparatus and a processing method thereof that can easily mix the molten metal and the treatment agent.
  • the present invention provides a container for forming a space accommodated in the molten metal therein;
  • a stirrer movably installed in a vertical direction to an upper portion of the vessel to agitate molten metal contained in the vessel;
  • a treatment agent feeder installed on an upper portion of the vessel to supply a treatment agent for treating molten metal;
  • an injector located at an upper portion of the container, capable of injecting gas into at least a portion of the molten metal so that the height of the at least one region of the molten metal is different from the height of the surface of the other region.
  • the injector a lance for injecting gas in the downward direction; And a gas supply unit connected to the lance to supply gas to the lance.
  • the lance is disposed between one-fifth and four-fifths between the periphery at the center of the vessel.
  • the lance injects gas toward the rotation direction of the stirrer.
  • the plurality of lances are provided, a plurality of lances are arranged only on one side of the stirrer.
  • the gas includes an inert gas
  • the gas supply unit forms a first storage unit for storing the inert gas and a path through which the gas moves, one end of which is connected to the lance and the other end of which is connected to the first storage unit.
  • a heating unit installed in at least one of the first storage unit and the supply line to heat a supply line and a gas; Include.
  • the gas supply unit further includes a second storage unit storing a reducing gas, wherein the supply line includes: a first pipe connected to the first storage unit, a second pipe connected to the second storage unit, and one end And a third pipe connected to the lance and the other end connected to the first pipe and the second pipe.
  • the present invention relates to a method for treating molten metal contained in a container, the stirring of the molten metal with a stirrer, the treatment agent is introduced into the molten metal, and the molten metal is melted so that the hot water level of at least a portion of the molten metal is different from the hot water level of another region. Injecting gas into at least a portion of the metal.
  • the process of injecting the gas may include forming a downflow on the molten metal, and at least a portion of the region where the gas and the molten metal are in contact with each other and the region into which the molten metal treatment agent is injected are overlapped.
  • the spraying of the gas may include spraying an inert gas in a direction in which the molten metal is stirred.
  • the supplying of the gas includes heating and spraying the gas.
  • Injecting the gas includes mixing the inert gas with the reducing gas and then injecting the gas.
  • the energy density delivered by the gas to the surface of the molten metal in the process of injecting the gas is 0.2W / ton or more.
  • the container includes a ladle for receiving the molten iron and the treatment agent includes a desulfurizing agent.
  • the treatment agent introduced into the molten metal and the molten metal can be quickly and easily mixed to promote the reaction.
  • an asymmetrical vortex may be generated in the molten iron to promote the reaction of the molten iron and the desulfurizing agent. Therefore, it is possible to shorten the time of the desulfurization process to improve the efficiency of the process.
  • it is possible to generate an asymmetrical vortex without installing a separate structure inside the ladle it is possible to prevent the problem that the volume of the ladle decreases productivity is reduced.
  • since the structure is not installed maintenance work due to the breakage of the structure may not be performed, and thus maintenance of the facility may be facilitated.
  • FIG. 1 is a view showing the structure of a molten metal processing apparatus according to an embodiment of the present invention.
  • FIG. 2 is a view showing the position of the lance according to an embodiment of the present invention.
  • FIG. 3 is a view showing an injector according to another embodiment of the present invention.
  • FIG. 4 is a view showing an injector according to another embodiment of the present invention.
  • FIG. 5 is a view showing a gas supply unit according to another embodiment of the present invention.
  • FIG. 6 is a view showing the operation of the molten metal processing apparatus according to an embodiment of the present invention.
  • Figure 7 is a graph showing the desulfurization behavior over time of Examples and Comparative Examples of the present invention.
  • Figure 8 is a graph comparing the desulfurization rate constant of the present invention and the comparative example according to the flow rate of the gas.
  • FIG 10 is a graph showing the relationship between the stirring energy density per ton of molten iron and the CaO utilization efficiency of the inert gas according to an embodiment of the present invention.
  • FIG. 1 is a view showing the structure of a molten metal processing apparatus according to an embodiment of the present invention.
  • the molten metal processing apparatus 1000 according to an embodiment of the present invention, the container 100 to form a space accommodated in the molten metal therein, the molten metal accommodated in the interior of the container 100 Stirrer 200 is installed to be movable in the vertical direction to the top of the vessel 100 to agitate, a treatment agent supply (not shown) installed on the top of the vessel 100 to supply a treatment agent for processing molten metal, and molten metal It is possible to inject a gas to at least a portion of the molten metal so that the height of the water surface of at least a portion of the surface is different from the height of the surface of the other area, and includes an injector 400 located on the top of the container (100).
  • the molten metal may be molten iron
  • the container 100 may be a ladle to accommodate the molten iron therein
  • the treatment agent may be a desulfurization agent. Therefore, the molten metal processing apparatus 1000 may perform a process of removing sulfur in the molten iron.
  • the container 100 is formed in a cylindrical shape and has an inner space, and an upper portion thereof can be opened.
  • the outer shape of the container 100 may be formed of a shell, and a plurality of refractory layers may be provided inside the shell.
  • the container 100 may accommodate molten metal and the like manufactured in a melting furnace such as a blast furnace or an electric furnace therein.
  • a melting furnace such as a blast furnace or an electric furnace therein.
  • the shape and structure of the container 100 may vary without being limited thereto.
  • the stirrer 200 serves to mix the molten metal and the treating agent by stirring the molten metal inside the vessel 100.
  • the vertical center axis of the stirrer 200 may be disposed on the same line as the vertical center axis of the vessel 100 or may be disposed at a position similar to the vertical axis. Therefore, the stirrer 200 may agitate the molten metal at the center of the vessel 100 to stir the molten metal as a whole.
  • the stirrer 200 may include a rotating shaft 210 installed on the upper portion of the vessel 100, and a plurality of blades 220 connected to the rotating shaft 210.
  • the rotating shaft 210 may extend in the vertical direction.
  • the rotation shaft 210 may be connected to the rotation driver 230 to rotate in one direction. Accordingly, when the rotating shaft is rotated while the blades 220 are immersed in the molten metal, the molten metal may be stirred while the blades 220 rotate.
  • the rotation shaft 210 may be connected to a vertical driver (not shown) to move in the vertical direction. Thus, by moving the rotary shaft 210 up and down, the blade 220 connected to the rotary shaft 210 can be immersed in the molten metal or moved to the upper side of the molten metal.
  • the blade 220 may extend in a direction crossing the extending direction of the rotation shaft 210.
  • the blade 220 may be provided in plural and may be radially connected to the lower end of the rotation shaft 210.
  • the blade 220 may be immersed in the molten metal to be in direct contact with the molten metal, and rotate to stir the molten metal.
  • a vortex Vortex
  • the structure and shape of the blade 220 is not limited thereto and may vary.
  • Treatment agent feeder serves to supply the treatment agent to the molten metal.
  • the treatment agent feeder is installed above the vessel 100.
  • the treating agent supplier may supply the treating agent between the central portion and the inner wall of the container 100. Since the stirrer 200 is positioned at the center of the vessel 100, the treatment agent supply may not be located at the center of the vessel 100. In addition, when the treatment agent supplier supplies the treatment agent to the inner wall of the container 100, it may be difficult to mix the treatment agent with the entire molten metal.
  • the treatment agent supply may be disposed between the central portion and the wall of the container 100 to supply the treatment agent.
  • the treatment agent feeder may be located at about a half point between the central portion of the vessel 100 and the wall in the transverse direction.
  • the location of the treatment agent feeder may vary but is not limited thereto.
  • the treatment agent supply device may be provided with a chute that can form a moving path of the treatment agent and the length can be adjusted. Therefore, when supplying a treating agent, the length of the chute can be increased so that the outlet of the chute can be brought close to the center of the container 100 in a range that does not disturb the shanghai of the stirrer 200. Conversely, the length of the chute can be reduced once the treatment agent supply is complete. Thus, the treatment agent is wound into the center of the vortex generated in the molten metal by the stirrer 200, and the treatment agent can be rapidly mixed with the molten metal to react.
  • the treating agent may contain quicklime (CaO).
  • a fluorite, an aluminum material (Al-ash), etc. may be mixed as a solvent.
  • the structure of the treatment agent feeder and the components contained in the treatment agent may vary but are not limited thereto.
  • FIG. 2 is a view showing the position of the lance according to an embodiment of the present invention
  • Figure 3 is a view showing an injector according to another embodiment of the present invention
  • Figure 4 is a view showing an injector according to another embodiment of the present invention Drawing.
  • the injector 400 supplies gas to a portion of the molten metal to change the height of the hot water surface of the portion of the molten metal from other regions.
  • one side and the other side may not be symmetrical with respect to the center of the molten metal.
  • an asymmetrical vortex is formed in the molten metal so that the downflow develops on the surface of the molten metal, and the amount of the treatment agent wound on the molten metal can be increased.
  • the injector 400 includes a lance 410 for injecting gas in a downward direction, and a gas supply unit 420 connected to the lance 410 to supply gas to the lance 410.
  • the lance 410 serves to inject gas into a portion of the molten metal.
  • the lance 410 may be disposed on the right side of the stirrer 200 and may inject gas into the upper portion of the right side of the molten metal.
  • the right region of the molten metal is pressed downward by the gas, the height of the right region is lowered, the height of the left region can be increased.
  • the location where the lance 410 is disposed and the area in which the gas is injected may be various.
  • the lance 410 injects an inert gas to only a portion of the molten metal in the container 100, waves are generated in the molten metal. Accordingly, the downflow occurs on the surface of the molten metal, and the downflow can be suppressed or prevented from rising to the surface of the molten metal. Therefore, while the treatment agent stays in the molten metal continuously, the reaction time with the molten metal increases, and the desulfurization efficiency may be improved.
  • the lance 410 may be located above the container 100.
  • the lance 410 may extend in the vertical direction, and may form a path through which the gas moves.
  • One lance 410 may be provided, and a lower end of the lance 410 may be provided with an injection hole for injecting gas.
  • the gas supplied into the lance 410 may be injected downward through the injection hole.
  • the lance 410 may be disposed between one-fifth and four-fifths between the periphery at the center of the vessel 100 in the transverse direction.
  • the stirrer 200 may be positioned at the center of the vessel 100, and an inner wall of the vessel 100 may be positioned at an outer portion of the vessel 100. That is, the lance 410 may inject gas between the stirrer 200 and the inner wall of the vessel 100.
  • the lance 410 may be far from the treatment agent supply and may be close to the stirrer 200. .
  • the gas injected from the lance 410 may not press down the region supplied with the molten metal treatment agent.
  • the treating agent may easily float to the surface of the molten metal, and the treating agent may not be easily wound into the molten metal.
  • the lance 410 is positioned after 4/5 between the center and the periphery of the vessel 100, the lance 410 is far from the treatment agent supply and is close to the inner wall of the vessel 100. Can lose. As a result, the gas injected from the lance 410 may not press down the region supplied with the molten metal treatment agent. Thus, the treating agent may easily float to the surface of the molten metal, and the treating agent may not be easily wound into the molten metal.
  • the lance 410 is one-fifth between the periphery of the center of the vessel 100 so that at least a portion of the region where the gas injected from the lance 410 contacts with the molten metal and the region where the molten metal is supplied are superimposed. Can be placed between 4/5 points. That is, the lance 410 may be disposed closer to the treatment agent supply than to the stirrer 200 or the wall of the vessel 100. Thus, the gas injected from the lance 410 can easily suppress or prevent the injury of the treatment agent. That is, the lance 410 may be disposed to be close to the treatment agent supply.
  • the inclination of the lance 410 may be adjusted to allow the gas to be injected toward the rotation direction of the stirrer 200.
  • the gas injected from the lance 410 does not interfere with the stirring operation of the stirrer 200, rather it may induce a flow of molten metal so that the stirring is well.
  • the gas injected from the lance 410 provides the stirring force so that the molten metal can be stirred more easily.
  • the method of directing the gas in the direction of rotation of the stirrer may be various.
  • a plurality of lances 410 may be provided.
  • the number of lances 410 is increased, the number of areas in which the gas injected from the lances 410 and the molten metal contact or the area of the areas in contact with each other may increase.
  • a first lance 410, a second lance 410, and a third lance 410 may be provided in an outward direction from the center of the container 100.
  • the height difference between the region pressed downward by the gas and the region not pressed down may increase, and downward flow may be more actively generated so that the treating agent may be more rapidly charged into the molten metal.
  • the plurality of lances 410 may be disposed only on one side of the stirrer 200.
  • the plurality of lances 410 may be disposed only on the right side of the stirrer 200. Therefore, when gas is injected into the lance 410, a height difference may occur between the left region and the right region of the molten metal.
  • the molten metal may be divided into a left region and a right region based on the stirrer 200, and the lances 410 may be disposed only in the right region or the left region. Therefore, the gas is supplied only to the left side or the right side of the molten metal, so that a height difference may occur between the left side and the right side. As a result, an asymmetric flow may be induced on the hot water surface to increase the amount of the treatment agent wound into the molten metal.
  • the number and location of the lance 410 is provided is not limited to this may vary.
  • the gas supply unit 420 serves to supply gas to the lance 410.
  • the gas may be an inert gas.
  • the gas supply unit 420 may include a first storage unit 421 storing an inert gas and a path through which the gas moves, one end of which is connected to the lance 410 and the other end of which is connected to the first storage unit 421.
  • a supply line 423 and a heating unit (not shown) installed in at least one of the first storage unit 421 and the supply line 423 to heat the gas.
  • the first storage unit 421 may be a tank for storing an inert gas therein.
  • the inert gas may include at least one of nitrogen and argon gas.
  • the present invention is not limited thereto, and various inert gases that do not oxidize the molten metal may be used. That is, since the gas which oxidizes molten iron is disadvantageous to desulfurization and can generate dust, an inert gas which does not oxidize molten iron can be used.
  • the supply line 423 may form a path through which gas moves, one end may be connected to the lance 410, and the other end may be connected to the first storage unit 421.
  • the inert gas stored in the first storage unit 421 may be delivered to the lance 410 through the supply line 423.
  • Supply line 423 may be provided with a flow meter for measuring the flow rate of the gas, and a valve for opening and closing the movement path of the gas formed by the supply line 423.
  • the structure of the supply line 423 may be various but not limited thereto.
  • the heating unit serves to heat the gas supplied to the lance 410.
  • the heating unit may be a hot wire, and may be disposed to surround a circumference of at least one of the first storage unit 421 and the supply line 423. Accordingly, the heating unit may increase the temperature of the gas supplied to the lance 410 by heating at least one of a space in which the gas is stored and a path through which the gas moves. Therefore, it is possible to suppress or prevent the molten metal from being cooled by the gas injected through the lance 410.
  • the method of heating the gas by the heating unit is not limited thereto and may vary.
  • FIG. 5 is a view showing a gas supply unit according to another embodiment of the present invention.
  • the gas supply unit 420 may further include a second storage unit 422 for storing the reducing gas.
  • the second storage unit 422 may be a tank for storing a reducing gas therein.
  • the reducing gas may be a hydrocarbon gas.
  • methane may be used as the hydrocarbon gas.
  • Methane can increase the desulfurization rate.
  • the present invention is not limited thereto, and various reducing gases may be used.
  • the supply line 423 serves to deliver the gas of the first storage unit 421 and the second storage unit 422 to the lance 410.
  • the supply line 423 includes a first pipe 423a connected to the first storage unit, a second pipe 423b connected to the second storage unit 422, and one end connected to the lance 410, and the other end thereof.
  • the third pipe 423c may be connected to the first pipe 423a and the second pipe 423b.
  • the first pipe 423a is connected to the first storage unit 421 and forms a path through which gas moves.
  • the first pipe 423a may be provided with a first control valve 423d for opening and closing a gas movement path or adjusting a flow rate. Accordingly, the operation of the first control valve 423d may be controlled to select a time point at which the inert gas is supplied to the lance 410 or the supply is stopped, and the amount of the inert gas supplied to the lance 410 may be adjusted.
  • first pipe 423a may be provided with a first flow meter (not shown) for measuring the flow rate of the gas inside the first pipe 423a and a first pressure gauge (not shown) for measuring the pressure. Therefore, the amount of inert gas supplied to the lance 410 can be confirmed, and the inert gas of the desired amount or desired pressure can be accurately supplied to the lance 410.
  • the second pipe 423b is connected to the second storage unit 422 and forms a path through which gas moves.
  • the second pipe 423b may be provided with a second control valve 423e for opening and closing the gas movement path or adjusting the flow rate. Accordingly, the operation of the second control valve 423e may be controlled to select a time point at which the reducing gas is supplied to the lance 410 or the supply is stopped, and the amount of the reducing gas supplied to the lance 410 may be adjusted.
  • the second control valve () blocks the movement path of the gas, it is possible to block the heat of the molten metal or the flame from flowing into the second storage unit 422. Therefore, it is possible to prevent backfire and explosion of the reducing gas of the second storage unit 422.
  • a second flow meter (not shown) for measuring the flow rate of the gas inside the second pipe 423b and a pressure gauge (not shown) for measuring the pressure may be installed in the second pipe 423b. Therefore, the amount of reducing gas supplied to the lance 410 can be confirmed, and the reducing gas of the desired amount or the desired pressure can be accurately supplied to the lance 410.
  • the third pipe 423c may include: a mixing member forming a space in which an inert gas and a reducing gas are mixed therein; and a path member forming a path through which the gas moves to deliver the gas mixed in the mixing member to the lance 410. It may include.
  • the mixing member may be formed in a box shape having an inner space.
  • the other end of the first pipe 423a and the other end of the second pipe 423b may be connected to the mixing member.
  • the inert gas and the reducing gas may meet and mix inside the mixing member.
  • the path member forms a path through which the gas moves, one end of which is connected to the lance 410, and the other end of which is connected to the mixing member.
  • the gas mixed inside the mixing member may be supplied to the lance 410 through the path member.
  • the path member may be made of a flexible material.
  • the path member can be at least partially refracted and can suppress or prevent the movement of the lance 410 from being disturbed by the path member.
  • the lance 410 may be installed and supported by the up and down driver of the stirrer 200, and may move up and down by the up and down driver.
  • the path member connected to the lance 410 can be made of a flexible material so that the lance 410 can be easily moved up and down.
  • the structure of the third pipe 423c may not be limited thereto and may vary.
  • the heating unit may be installed in the second storage unit 422.
  • the heating unit can heat both the inert gas and the reducing gas supplied to the lance 410.
  • cooling of the molten metal due to the gas injected from the lance 410 can be suppressed or prevented.
  • the location where the heating unit is installed may be various but not limited thereto.
  • the inert gas may be supplied only to a portion of the molten metal that is stirred in this way to form different heights of the surface of the molten metal and a surface of the other of the molten metal.
  • an asymmetrical vortex may occur in the molten metal. Therefore, the treatment agent introduced into the molten metal and the molten metal can be quickly and easily mixed to promote the reaction.
  • FIG. 6 is a view showing the operation of the molten metal processing apparatus according to an embodiment of the present invention.
  • a molten metal treating method is a method of treating molten metal contained in a container, agitating the molten metal with a stirrer, injecting a treating agent into the molten metal, and applying at least the molten metal. Injecting a gas into at least a portion of the molten metal so that the height of the water surface in some areas is different from the height of the water surface in other areas. At this time, the order of the operation of stirring the molten metal, the operation of injecting the treatment agent into the molten metal, and the operation of spraying the gas to at least a portion of the molten metal may be variously selected.
  • the molten metal may be molten iron
  • the container 100 may be a ladle to accommodate the molten iron therein
  • the treatment agent may be a desulfurization agent. Therefore, the molten metal treatment method may be a method of removing sulfur in the molten iron.
  • the container 100 loaded with molten metal is seated on a support (not shown).
  • the stirrer 200 is moved downward to immerse the blade 220 in the molten metal.
  • the stirrer 200 is disposed in the center of the vessel 100, the upper surface of the blade 220 may be moved to a position lower than the molten metal of the molten metal to agitate the molten metal.
  • the stirrer 200 is operated to stir the molten metal. Vortex flow may occur in the molten metal by the rotation of the blade 220. Therefore, the height of the center portion of the molten metal can be decreased, and the height of the outer portion can be increased. At this time, the treatment agent may be added to the molten metal.
  • the gas may be injected into a portion of the molten metal (eg, upper right) through the lance 410.
  • the lance 410 injects gas only to a portion of the molten metal in the container 100, an asymmetrical vortex occurs, causing waves to rise and fall on the molten metal's hot water surface.
  • the height h2 of some regions (eg, upper right) of the molten metal may be lowered by the inert gas, and the height h1 of other regions (eg, upper left) may be higher. Accordingly, the downflow occurs on the surface of the molten metal, and the downflow can be suppressed or prevented from rising to the surface of the molten metal. Therefore, while the treatment agent stays in the molten metal continuously, the reaction time with the molten metal increases, and the desulfurization efficiency may be improved.
  • the gas injected from the lance 410 may form a downflow to the molten metal.
  • the downflow caused by the gas can more effectively suppress or prevent the injury of the treatment agent.
  • the gas may be injected between 1/5 to 4/5 points between the inner wall and the center of the container 100 in the transverse direction.
  • the gas is supplied before the 1/5 point or after the 4/5 point between the center and the inner wall of the container 100, the area where the gas and the molten metal contact and the area where the treatment agent and the molten metal contact each other do not overlap each other. Or overlapping portions may have a small size.
  • the treating agent may easily float to the surface of the molten metal, and the treating agent may not be easily wound into the molten metal.
  • Gas may be supplied between 1/5 to 4/5 of the inner wall at the center of the vessel 100 to increase the overlapping portion of the region where the gas and molten metal are in contact, and the region where the molten metal is supplied with the treatment agent. have. That is, the part which supplies a gas and the part which supplies a processing agent can approach each other. Thus, the gas injected from the lance 410 can easily suppress or prevent the injury of the treatment agent.
  • the gas may be injected toward the direction in which the molten metal is stirred. Accordingly, the gas may apply a force downward to a portion of the molten metal without disturbing the stirring of the molten metal by the stirrer 200. Therefore, by providing the stirrer 200 can easily stir the molten steel.
  • the gas may be heated and then injected into the molten metal.
  • the low temperature of the gas allows the molten metal to cool when in contact with the molten metal. Therefore, the molten metal can be heated to raise the temperature, and the gas whose temperature is raised can be injected into the molten metal to suppress or prevent cooling of the molten metal.
  • the gas may be an inert gas.
  • the reducing gas when the gas is supplied to the molten metal, the reducing gas may be mixed with the inert gas and then injected into the molten metal. Reducible gases can increase the desulfurization rate. Thus, when gas is injected into the molten metal, a reducing gas can be mixed into the gas.
  • the inert gas may include at least one of nitrogen and argon gas, and the reducing gas may include a hydrocarbon gas.
  • the type of inert gas and the reducing gas may vary, without being limited thereto.
  • the energy density delivered by the gas injected from the lance 410 to the surface of the molten metal may be 0.2W / to 4W / ton. If the energy density of the injected gas is less than 0.2W / ton, the gas may not press the molten metal's hot surface, so the height difference may not occur on the hot water surface. If the energy density of the injected gas exceeds 4W / ton, the molten metal in other areas The height of the too high may overflow to the outside of the container 100. Therefore, the lance 410 must inject gas so that the molten metal can be stably received in the container 100 while generating a height difference between some regions of the molten metal and other regions.
  • the vessel 100 can be separated from the support, and moved to the place where the subsequent process is performed.
  • an asymmetrical vortex may be generated in the molten iron to promote the reaction between the molten iron and the desulfurizing agent. Therefore, the productivity of the desulfurization process can be shortened.
  • an asymmetrical vortex can be generated without installing a separate structure inside the container, maintenance work due to the breakage of the structure can not be performed, and the volume of the container can be reduced to prevent the problem of reduced productivity. have.
  • FIG 7 is a graph showing the desulfurization behavior according to the time of Examples and Comparative Examples of the present invention
  • Figure 8 is a graph comparing the desulfurization rate constant of the Examples and Comparative Examples of the present invention according to the flow rate of the gas.
  • a 200kg class reactor was used as a container for molten metal, and 150kg of electrolytic iron was dissolved.
  • the molten metal was added with a carbonization agent and sulfur to adjust the components so that the molten metal contained 4.5% of carbon (C) and 0.035% of sulfur (S).
  • Experimental temperature of the molten metal was about 1350 °C. Since the experimental furnace was small, the rotation speed of the stirrer was set to 500 rpm to secure the mixing strength similar to that of the large furnace. The lance was positioned at the half point between the stirrer and the wall of the furnace so that an inert gas was injected at the midpoint of the wall of the stirrer and the furnace.
  • the lance may be a SUS pipe having an internal diameter of 4.57 mm.
  • a lance was installed about 100 mm above the molten metal.
  • Comparative Example is a desulfurization process without spraying the inert gas to the molten metal
  • Example 1 is a mixture of inert gas nitrogen and reducing gas methane (CH 4 ) 8
  • the desulfurization process was performed while spraying at liter / min
  • Example 2 was a desulfurization process while spraying nitrogen, which is an inert gas, to the molten metal at 10 liter / min.
  • Desulfurization process was performed while spraying at 15 liters / min. Samples of molten metal were taken while the experiments were carried out according to each condition, and sulfur desulfurization was analyzed over time to compare the desulfurization rates. In general, the desulfurization rate per unit time is expressed by Equation 1 below.
  • K t is the apparent rate constant
  • [% S] is the sulfur concentration of the sample
  • [% S] e is the sulfur concentration at equilibrium
  • Equation 2 Equation 2 below appears.
  • K t is the apparent rate constant
  • [% S] is the sulfur concentration of the sample
  • [% S] o is the initial sulfur concentration
  • t is the time
  • Example 7 is a graph showing desulfurization behavior according to time of Comparative Example, Example 1, Example 2, and Example 3, and the slope of the graph is a desulfurization rate constant. Referring to FIG. 7, the slope of the graph is steeper than that of the comparative example. That is, the embodiments have a faster desulfurization rate than the comparative example. Thus, by supplying an inert gas to one side of the stirred molten metal to generate an asymmetrical vortex, it can be seen that the desulfurization rate is increased.
  • Example 1 the desulfurization rates of Examples 1 and 2 are faster than those of Example 2.
  • the desulfurization rate is increased by injecting a reducing gas into the inert gas as in Example 1 or by increasing the amount of inert gas injected per hour as in Example 3.
  • FIG. 8 is a graph comparing the desulfurization rate constant according to the flow rate of the gas when only inert gas is supplied to the molten metal and when the inert gas and the reducing gas are mixed and supplied to the molten metal.
  • nitrogen was used as the inert gas
  • methane was used as the reducing gas.
  • the flow rate of the supplied gas is small, the inert gas and the reducing gas are mixed and sprayed faster than the inert gas only.
  • the difference in the desulfurization rate in the case of supplying only the inert gas and in the case of supplying the inert gas and the reducing gas mixed with the molten metal decreases to almost eliminate the difference.
  • the downflow occurs due to the melt surface wave of the molten metal, and the downflow promotes desulfurization by increasing the amount of treatment agent wound into the molten metal and the residence time in the molten metal.
  • desulfurization may be promoted by injecting various gases in addition to nitrogen or methane.
  • an inert gas can be used to generate the downflow to the molten metal.
  • Figure 9 is a graph comparing the CaO utilization efficiency of the Examples and Comparative Examples of the present invention
  • Figure 10 is a graph showing the relationship between the agitation energy density, and CaO utilization efficiency of the molten iron ton of the inert gas according to an embodiment of the present invention to be.
  • the present invention will be described in more detail with reference to other experimental examples.
  • a 300 ton ladle was used as a container for the molten metal, and a lance for injecting a stirrer and an inert gas was placed above the ladle loaded with molten metal, molten metal.
  • the lance was placed at least 1 m above the molten iron surface of the molten iron. For example, if the distance from the center of the ladle to the outer shell is R, the lance is positioned at about 0.4R. Nitrogen was used as an inert gas, and the raw material which mixed condensed lime, Al-ash, and fluorspar was used as a processing agent. Using this facility, desulfurization was carried out by varying the inner diameter of the lance, the separation distance between the lance and the hot water surface, and the flow rate of the inert gas, and a sample of molten metal was taken under each condition.
  • CaO utilization efficiency was calculated and compared to compare how CaO in the treatment reacted with sulfur in the molten metal.
  • CaO utilization efficiency can be calculated by Equation 3 below.
  • [% S] i is the initial sulfur concentration
  • [% S] f is the sulfur concentration after desulfurization
  • W CaO is the unit of CaO per ton of molten iron.
  • CaO utilization efficiency is high, even if the same amount of CaO is injected into the molten metal, CaO reacts with more sulfur than if CaO utilization efficiency is low. In other words, high CaO utilization efficiency means high reaction efficiency.
  • Ev is the stirring energy (W / m 3 )
  • is the angle of lance
  • Q is the gas flow rate (Nm 3 / min)
  • M is the gas injection rate
  • V is the volume of molten metal (m 3 )
  • D is the nozzle diameter of the lance (m)
  • h is the separation distance (m) between the lance and the molten metal)
  • Equation 4 shows that the energy density supplied to the molten iron surface increases as the amount of gas injection increases, the smaller the nozzle diameter of the lance, and the smaller the separation distance between the lance and the molten metal.
  • the distance between the lance and the molten metal and the diameter of the nozzle of the lance should be selected in consideration of workability and serviceability.
  • FIG. 9 is a graph comparing CaO utilization efficiency when not supplying inert gas (comparative example) and supplying inert gas (example) according to sulfur concentration of molten iron before desulfurization treatment.
  • the higher the concentration of sulfur the higher the CaO utilization efficiency tends to appear.
  • the inert gas is injected into the molten iron (Example)
  • it is confirmed that CaO utilization efficiency is increased by about 1.5 times compared with the case of not injecting the inert gas (Comparative Example). Therefore, it can be seen that when the inert gas is supplied to one side of the inert gas, the desulfurization treatment rate is improved.
  • FIG. 10 is a graph showing a relationship between the average CaO utilization efficiency and calculating the agitation energy density per ton of molten inert gas injected according to the condition of the inner diameter of the lance, the separation distance between the lance and the hot water surface, and the flow rate of the inert gas. to be.
  • the CaO utilization efficiency also increases as the stirring energy density increases. That is, it can be seen that the stirring energy density and the CaO utilization efficiency are in proportion.
  • the injection amount of the inert gas increases, the smaller the nozzle diameter of the lance, the smaller the separation distance between the lance and the molten metal increases.
  • At least one of the injection amount of the gas, the nozzle diameter of the lance, and the separation distance between the lance and the molten metal may be adjusted to supply a stirring energy density of 0.2 W / ton or more.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Abstract

The present invention comprises: a container having a space formed therein for accommodating molten metal; an agitator installed over the container so as to be movable upward and downward; a treatment agent feeder installed over the container so as to feed a treatment agent for treating the molten metal; and an injector enabling gas injection to at least a partial region of the molten metal so that at least the partial region of the molten metal has a molten surface height different from the molten surface height of other regions thereof. The molten metal can be easily mixed with the treatment agent.

Description

용융금속 처리장치 및 그 처리방법Molten metal processing device and processing method
본 발명은 용융금속 처리장치 및 그 처리방법에 관한 것으로, 더욱 상세하게는 용융금속과 처리제를 용이하게 혼합할 수 있는 용융금속 처리장치 및 그 처리방법에 관한 것이다.The present invention relates to a molten metal processing apparatus and a processing method thereof, and more particularly, to a molten metal processing apparatus and a processing method capable of easily mixing the molten metal and the processing agent.
제강조업은 고로에서 출선된 용선을 예비 처리하여 전로에 장입하고, 전로 정련과 2차 정련을 공정을 거친 후 연속 주조공정을 통해 주편을 제조하는 것으로 이루어진다. 황(S)이 강 중에 다량으로 존재하는 경우 크랙(Crack)을 유발하고, 취성을 저하시키며, 적열취성(Red shortness)의 원인이 되는 등 강재 특성에 나쁜 영향을 미칠 수 있다.The steelmaking industry consists of preliminary treatment of the molten iron from the blast furnace and charging it into the converter, followed by the converter refining and the secondary refining process to manufacture the cast through a continuous casting process. When sulfur (S) is present in a large amount in steel, it may adversely affect steel properties such as causing cracks, lowering brittleness, and causing red shortness.
용선 예비 처리는 고로에서 출선된 용선을 전로에 공급하기 이전에 수행되는 공정이다. 용선 예비 처리에서는 용선에 함유된 5대 불순물인 탄소(C), 규소(Si), 망간(Mn), 인(P), 황(S) 중 인을 제거하는 탈인 공정과 황을 제거하는 탈황 공정을 주로 수행할 수 있다. 이때, 운반 용기인 래들에 용선을 담은 상태에서 탈황 공정을 수행할 수 있다. 예를 들어, 래들 내의 용선으로 탈황제를 투입하고, 교반기를 용선에 침지시켜 회전시킬 수 있다. 따라서, 용선에 함유된 황과 탈황제가 혼합되고 반응하면서 황이 제거될 수 있다.The molten iron preliminary treatment is a process performed before supplying the molten iron from the blast furnace to the converter. In the molten iron pretreatment, a dephosphorization process for removing phosphorus from carbon (C), silicon (Si), manganese (Mn), phosphorus (P), and sulfur (S), which are five impurities included in the molten iron, and a desulfurization process for removing sulfur This can be done mainly. At this time, the desulfurization process may be performed in a state in which molten iron is contained in the ladle which is a transport container. For example, the desulfurizing agent may be introduced into the molten iron in the ladle, and the stirrer may be immersed in the molten iron to rotate. Thus, sulfur contained in the molten iron may be removed while reacting with the sulfur desulfurization agent.
종래에는 황과 탈황제의 반응성을 향상시키기 위해 래들의 측벽이나 바닥면에 구조물을 설치하여 용선의 흐름을 조절하였다. 즉, 교반기에 의해 회전하는 용선이 구조물에 부딪혀 하측으로 이동하도록 유도하거나, 용선 탕면에 비대칭 흐름을 유도하여 용선으로 탈황제가 권입하는 것을 촉진시켰다. 그러나 구조물이 용선과 충돌하여 쉽게 파손될 수 있고, 래들의 용적이 감소하여 생산성이 저하되는 문제가 있다.Conventionally, in order to improve the reactivity of sulfur and the desulfurizing agent, a structure was installed on the sidewall or the bottom of the ladle to adjust the flow of molten iron. That is, the molten iron rotated by the stirrer hit the structure and moved downward, or induced an asymmetric flow on the molten iron surface, thereby promoting the introduction of the desulfurization agent into the molten iron. However, the structure collides with the molten iron and can be easily broken, there is a problem that the productivity of the ladle is reduced to reduce the volume.
(특허문헌 1) JP1976-112416 A (Patent Document 1) JP1976-112416 A
(특허문헌 2) JP5691207 B (Patent Document 2) JP5691207 B
본 발명은 교반되는 용융금속에 비대칭 와류(Vortex)를 발생시킬 수 있는 용융금속 처리장치 및 그 처리방법을 제공한다.The present invention provides a molten metal processing apparatus and a method for treating the same, which can generate an asymmetrical vortex in the molten metal being stirred.
본 발명은 용융금속과 처리제를 용이하게 혼합시킬 수 있는 용융금속 처리장치 및 그 처리방법을 제공한다.The present invention provides a molten metal processing apparatus and a processing method thereof that can easily mix the molten metal and the treatment agent.
본 발명은 내부에 용융금속에 수용되는 공간을 형성하는 용기; 상기 용기의 내부에 수용되는 용융금속을 교반하도록 상기 용기의 상부에 상하방향으로 이동 가능하게 설치되는 교반기; 용융금속을 처리하는 처리제를 공급하도록 상기 용기의 상부에 설치되는 처리제 공급기; 및 용융금속의 적어도 일부 영역의 탕면 높이가 다른 영역의 탕면 높이와 달라지도록 상기 용융금속의 적어도 일부 영역으로 가스를 분사 가능하며, 상기 용기의 상부에 위치하는 분사기를; 포함한다.The present invention provides a container for forming a space accommodated in the molten metal therein; A stirrer movably installed in a vertical direction to an upper portion of the vessel to agitate molten metal contained in the vessel; A treatment agent feeder installed on an upper portion of the vessel to supply a treatment agent for treating molten metal; And an injector located at an upper portion of the container, capable of injecting gas into at least a portion of the molten metal so that the height of the at least one region of the molten metal is different from the height of the surface of the other region. Include.
상기 분사기는, 하부방향으로 가스를 분사하는 랜스; 및 상기 랜스에 가스를 공급하도록 상기 랜스와 연결되는 가스공급부를; 포함한다.The injector, a lance for injecting gas in the downward direction; And a gas supply unit connected to the lance to supply gas to the lance. Include.
상기 랜스는 상기 용기의 중심부에서 외곽부 사이의 1/5 지점에서 4/5 지점 사이에 배치된다.The lance is disposed between one-fifth and four-fifths between the periphery at the center of the vessel.
상기 랜스는 상기 교반기의 회전방향을 향하여 가스를 분사한다.The lance injects gas toward the rotation direction of the stirrer.
상기 랜스는 복수개가 구비되고, 복수의 랜스는 교반기의 일측에만 배치된다.The plurality of lances are provided, a plurality of lances are arranged only on one side of the stirrer.
상기 가스는 불활성 가스를 포함하고, 상기 가스공급부는, 불활성 가스를 저장하는 제1 저장유닛, 가스가 이동하는 경로를 형성하며, 일단이 상기 랜스에 연결되고 타단이 상기 제1 저장유닛에 연결되는 공급라인, 및 가스를 가열하도록 상기 제1 저장유닛 및 상기 공급라인 중 적어도 어느 하나에 설치되는 가열유닛을; 포함한다.The gas includes an inert gas, and the gas supply unit forms a first storage unit for storing the inert gas and a path through which the gas moves, one end of which is connected to the lance and the other end of which is connected to the first storage unit. A heating unit installed in at least one of the first storage unit and the supply line to heat a supply line and a gas; Include.
상기 가스공급부는, 환원성 가스를 저장하는 제2 저장유닛을 더 포함하고, 상기 공급라인은, 상기 제1 저장유닛과 연결되는 제1 배관, 상기 제2 저장유닛과 연결되는 제2 배관, 및 일단이 상기 랜스에 연결되고 타단이 상기 제1 배관 및 상기 제2 배관과 연결되는 제3 배관을 포함한다.The gas supply unit further includes a second storage unit storing a reducing gas, wherein the supply line includes: a first pipe connected to the first storage unit, a second pipe connected to the second storage unit, and one end And a third pipe connected to the lance and the other end connected to the first pipe and the second pipe.
본 발명은 용기에 수용된 용융금속을 처리하는 방법으로서, 교반기로 상기 용융금속을 교반하고, 용융금속에 처리제를 투입하며, 용융금속의 적어도 일부 영역의 탕면 높이가 다른 영역의 탕면 높이와 달라지도록 용융금속의 적어도 일부 영역으로 가스를 분사하는 과정을 포함한다.The present invention relates to a method for treating molten metal contained in a container, the stirring of the molten metal with a stirrer, the treatment agent is introduced into the molten metal, and the molten metal is melted so that the hot water level of at least a portion of the molten metal is different from the hot water level of another region. Injecting gas into at least a portion of the metal.
상기 가스를 분사하는 과정은, 용융금속에 하향류를 형성하는 과정을 포함하고, 가스와 용융금속의 탕면이 접촉하는 영역, 및 용융금속의 처리제가 투입된 영역의 적어도 일부가 중첩된다.The process of injecting the gas may include forming a downflow on the molten metal, and at least a portion of the region where the gas and the molten metal are in contact with each other and the region into which the molten metal treatment agent is injected are overlapped.
상기 가스를 분사하는 과정은, 상기 용융금속이 교반되는 방향으로 불활성 가스를 분사하는 과정을 포함한다.The spraying of the gas may include spraying an inert gas in a direction in which the molten metal is stirred.
상기 가스를 공급하는 과정은, 가스를 가열한 후 분사하는 과정을 포함한다.The supplying of the gas includes heating and spraying the gas.
상기 가스를 분사하는 과정은, 불활성 가스를 환원성 가스와 혼합한 후 분사하는 과정을 포함한다.Injecting the gas includes mixing the inert gas with the reducing gas and then injecting the gas.
상기 가스를 분사하는 과정에서 가스가 용융금속의 표면에 전달하는 에너지 밀도는 0.2W/ton 이상이다.The energy density delivered by the gas to the surface of the molten metal in the process of injecting the gas is 0.2W / ton or more.
상기 용기는 용선을 수용하는 래들을 포함하고, 상기 처리제는 탈황제를 포함한다.The container includes a ladle for receiving the molten iron and the treatment agent includes a desulfurizing agent.
본 발명의 실시 예들에 따르면, 교반되는 용융금속의 일측으로 불활성 가스를 공급하여 용융금속의 일측과 타측의 탕면 높이를 다르게 형성할 수 있다. 이에, 불활성 가스를 공급하면서 용융금속을 교반시키면 용융금속에 비대칭 와류가 발생할 수 있다. 따라서, 용융금속으로 투입된 처리제와 용융금속이 신속하고 용이하게 혼합되어 반응을 촉진시킬 수 있다. According to embodiments of the present invention, by supplying an inert gas to one side of the molten metal is stirred, it is possible to form different heights of one side and the other side of the molten metal. Thus, when the molten metal is stirred while supplying an inert gas, an asymmetrical vortex may occur in the molten metal. Therefore, the treatment agent introduced into the molten metal and the molten metal can be quickly and easily mixed to promote the reaction.
예를 들어, 용선에 탈황제를 투입하는 탈황공정을 수행하는 경우, 용선에 비대칭 와류를 발생시켜 용선과 탈황제의 반응을 촉진시킬 수 있다. 따라서, 탈황공정의 시간을 단축하여 공정의 효율을 향상시킬 수 있다. 또한, 래들의 내부에 별도의 구조물을 설치하지 않고 비대칭 와류를 발생시킬 수 있기 때문에, 래들의 용적이 감소하여 생산성이 저하되는 문제를 방지할 수 있다. 또한, 구조물이 설치되지 않기 때문에, 구조물의 파손으로 인한 정비작업을 수행하지 않아 설비의 유지보수가 용이해질 수 있다.For example, in the case of performing a desulfurization process in which a desulfurizing agent is added to the molten iron, an asymmetrical vortex may be generated in the molten iron to promote the reaction of the molten iron and the desulfurizing agent. Therefore, it is possible to shorten the time of the desulfurization process to improve the efficiency of the process. In addition, since it is possible to generate an asymmetrical vortex without installing a separate structure inside the ladle, it is possible to prevent the problem that the volume of the ladle decreases productivity is reduced. In addition, since the structure is not installed, maintenance work due to the breakage of the structure may not be performed, and thus maintenance of the facility may be facilitated.
도 1은 본 발명의 실시 예에 따른 용융금속 처리장치의 구조를 나타내는 도면.1 is a view showing the structure of a molten metal processing apparatus according to an embodiment of the present invention.
도 2는 본 발명의 실시 예에 따른 랜스의 위치를 나타내는 도면.2 is a view showing the position of the lance according to an embodiment of the present invention.
도 3은 본 발명의 다른 실시 예에 따른 분사기를 나타내는 도면.3 is a view showing an injector according to another embodiment of the present invention.
도 4는 본 발명의 또 다른 실시 예에 따른 분사기를 나타내는 도면.4 is a view showing an injector according to another embodiment of the present invention.
도 5는 본 발명의 다른 실시 예에 따른 가스공급부를 나타내는 도면.5 is a view showing a gas supply unit according to another embodiment of the present invention.
도 6은 본 발명의 실시 예에 따른 용융금속 처리장치의 작동을 나타내는 도면.6 is a view showing the operation of the molten metal processing apparatus according to an embodiment of the present invention.
도 7은 본 발명의 실시예 및 비교예의 시간에 따른 탈황거동을 나타낸 그래프.Figure 7 is a graph showing the desulfurization behavior over time of Examples and Comparative Examples of the present invention.
도 8은 본 발명의 실시예 및 비교예의 탈황속도정수를 가스의 유량에 따라 비교한 그래프.Figure 8 is a graph comparing the desulfurization rate constant of the present invention and the comparative example according to the flow rate of the gas.
도 9는 본 발명의 실시예 및 비교예의 CaO 이용효율을 비교한 그래프.9 is a graph comparing the CaO utilization efficiency of the Examples and Comparative Examples of the present invention.
도 10은 본 발명의 실시예에 따른 불활성 가스의 용선 ton당 교반에너지 밀도, 및 CaO 이용효율 사이의 관계를 나타내는 그래프.10 is a graph showing the relationship between the stirring energy density per ton of molten iron and the CaO utilization efficiency of the inert gas according to an embodiment of the present invention.
이하, 첨부된 도면을 참조하여 본 발명의 실시 예를 더욱 상세히 설명하기로 한다. 그러나 본 발명은 이하에서 개시되는 실시 예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시 예들은 본 발명의 개시가 완전하도록 하며, 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다. 발명을 상세하게 설명하기 위해 도면은 과장될 수 있고, 도면상에서 동일 부호는 동일한 요소를 지칭한다.Hereinafter, with reference to the accompanying drawings will be described an embodiment of the present invention in more detail. However, the present invention is not limited to the embodiments disclosed below, but will be implemented in various forms, and only the embodiments are intended to complete the disclosure of the present invention and to those skilled in the art to fully understand the scope of the invention. It is provided to inform you. BRIEF DESCRIPTION OF THE DRAWINGS The drawings may be exaggerated in order to illustrate the invention in detail, in which like reference numerals refer to like elements.
도 1은 본 발명의 실시 예에 따른 용융금속 처리장치의 구조를 나타내는 도면이다.1 is a view showing the structure of a molten metal processing apparatus according to an embodiment of the present invention.
도 1을 참조하면, 본 발명의 실시 예에 따른 용융금속 처리장치(1000)는, 내부에 용융금속에 수용되는 공간을 형성하는 용기(100), 용기(100)의 내부에 수용되는 용융금속을 교반하도록 용기(100)의 상부에 상하방향으로 이동 가능하게 설치되는 교반기(200), 용융금속을 처리하는 처리제를 공급하도록 용기(100)의 상부에 설치되는 처리제 공급기(미도시), 및 용융금속의 적어도 일부 영역의 탕면 높이가 다른 영역의 탕면 높이와 달라지도록 용융금속의 적어도 일부 영역으로 가스를 분사 가능하며, 용기(100)의 상부에 위치하는 분사기(400)를 포함한다. 1, the molten metal processing apparatus 1000 according to an embodiment of the present invention, the container 100 to form a space accommodated in the molten metal therein, the molten metal accommodated in the interior of the container 100 Stirrer 200 is installed to be movable in the vertical direction to the top of the vessel 100 to agitate, a treatment agent supply (not shown) installed on the top of the vessel 100 to supply a treatment agent for processing molten metal, and molten metal It is possible to inject a gas to at least a portion of the molten metal so that the height of the water surface of at least a portion of the surface is different from the height of the surface of the other area, and includes an injector 400 located on the top of the container (100).
이때, 용융금속은 용선일 수 있고, 용기(100)는 내부에 용선을 수용하는 래들일 수 있고, 처리제는 탈황제일 수 있다. 따라서, 용융금속 처리장치(1000)로 용선 내의 황을 제거하는 공정을 수행할 수 있다. At this time, the molten metal may be molten iron, the container 100 may be a ladle to accommodate the molten iron therein, the treatment agent may be a desulfurization agent. Therefore, the molten metal processing apparatus 1000 may perform a process of removing sulfur in the molten iron.
용기(100)는 원통형으로 형성되어 내부공간을 가지고, 상부가 개방될 수 있다. 용기(100)의 외형은 철피가 형성하고, 철피의 내측으로 복수의 내화물층이 구비될 수 있다. 용기(100)는 내부에 고로나 전기로 등과 같은 용해로에서 제조된 용선 등과 용융금속을 수용할 수 있다. 그러나 용기(100)의 형상 및 구조는 이에 한정되지 않고 다양할 수 있다. The container 100 is formed in a cylindrical shape and has an inner space, and an upper portion thereof can be opened. The outer shape of the container 100 may be formed of a shell, and a plurality of refractory layers may be provided inside the shell. The container 100 may accommodate molten metal and the like manufactured in a melting furnace such as a blast furnace or an electric furnace therein. However, the shape and structure of the container 100 may vary without being limited thereto.
교반기(200)는 용기(100) 내부의 용융금속을 교반시켜 용융금속과 처리제를 혼합하는 역할을 한다. 교반기(200)의 상하방향 중심축은 용기(100)의 상하방향 중심축과 동일선 상에 위치하거나 유사한 위치에 배치될 수 있다. 따라서, 교반기(200)가 용기(100)의 중심부에서 용융금속을 교반시켜 용융금속 전체가 교반될 수 있다. 교반기(200)는, 용기(100)의 상부에 설치되는 회전축(210), 및 회전축(210)과 연결되는 복수의 블레이드(220)를 포함할 수 있다.The stirrer 200 serves to mix the molten metal and the treating agent by stirring the molten metal inside the vessel 100. The vertical center axis of the stirrer 200 may be disposed on the same line as the vertical center axis of the vessel 100 or may be disposed at a position similar to the vertical axis. Therefore, the stirrer 200 may agitate the molten metal at the center of the vessel 100 to stir the molten metal as a whole. The stirrer 200 may include a rotating shaft 210 installed on the upper portion of the vessel 100, and a plurality of blades 220 connected to the rotating shaft 210.
회전축(210)은 상하방향으로 연장형성될 수 있다. 회전축(210)은 회전 구동기(230)와 연결되어 일방향으로 회전할 수 있다. 이에, 블레이드(220)들을 용융금속에 침지한 상태에서 회전축을 회전시키면 블레이드(220)들이 회전하면서 용융금속이 교반될 수 있다. 또한, 회전축(210)은 상하 구동기(미도시)와 연결되어 상하방향으로 이동할 수 있다. 따라서, 회전축(210)을 상하로 이동시켜 회전축(210)에 연결된 블레이드(220)를 용융금속에 침지시키거나 용융금속의 상측으로 이동시킬 수 있다.The rotating shaft 210 may extend in the vertical direction. The rotation shaft 210 may be connected to the rotation driver 230 to rotate in one direction. Accordingly, when the rotating shaft is rotated while the blades 220 are immersed in the molten metal, the molten metal may be stirred while the blades 220 rotate. In addition, the rotation shaft 210 may be connected to a vertical driver (not shown) to move in the vertical direction. Thus, by moving the rotary shaft 210 up and down, the blade 220 connected to the rotary shaft 210 can be immersed in the molten metal or moved to the upper side of the molten metal.
블레이드(220)는 회전축(210)의 연장방향과 교차하는 방향으로 연장될 수 있다. 블레이드(220)는 복수개가 구비되어 회전축(210)의 하단부에 방사상으로 연결될 수 있다. 블레이드(220)는 용융금속에 침지되어 용융금속과 직접 접촉할 수 있고, 회전하여 용융금속을 교반할 수 있다. 이에, 용융금속에 와류(Vortex)가 형성되어 용융금속과 처리제가 용이하게 혼합될 수 있다. 그러나 블레이드(220)의 구조와 형상은 이에 한정되지 않고 다양할 수 있다.The blade 220 may extend in a direction crossing the extending direction of the rotation shaft 210. The blade 220 may be provided in plural and may be radially connected to the lower end of the rotation shaft 210. The blade 220 may be immersed in the molten metal to be in direct contact with the molten metal, and rotate to stir the molten metal. Thus, a vortex (Vortex) is formed in the molten metal can be easily mixed with the molten metal and the treatment agent. However, the structure and shape of the blade 220 is not limited thereto and may vary.
처리제 공급기(미도시)는 용융금속으로 처리제를 공급하는 역할을 한다. 처리제 공급기는 용기(100)의 상측에 설치된다. 처리제 공급기는 용기(100)의 중심부와 내벽 사이로 처리제를 공급할 수 있다. 용기(100)의 중심부에는 교반기(200)가 위치하기 때문에, 처리제 공급기가 용기(100)의 중심부에 위치하지 못한다. 또한, 처리제 공급기가 용기(100)의 내벽으로 처리제를 공급하면, 처리제를 용융금속 전체와 혼합시키는 것이 어려워질 수 있다. Treatment agent feeder (not shown) serves to supply the treatment agent to the molten metal. The treatment agent feeder is installed above the vessel 100. The treating agent supplier may supply the treating agent between the central portion and the inner wall of the container 100. Since the stirrer 200 is positioned at the center of the vessel 100, the treatment agent supply may not be located at the center of the vessel 100. In addition, when the treatment agent supplier supplies the treatment agent to the inner wall of the container 100, it may be difficult to mix the treatment agent with the entire molten metal.
따라서, 교반기(200)의 위치, 및 처리제가 용융금속 전체와 용이하게 혼합되는 것을 고려하여 처리제 공급기가 용기(100)의 중심부와 벽체 사이에 배치되어 처리제를 공급할 수 있다. 예를 들어, 처리제 공급기는 횡방향으로 용기(100)의 중심부와 벽체 사이의 약 1/2 지점에 위치할 수 있다. 그러나 처리제 공급기의 위치는 이에 한정되지 않고 다양할 수 있다.Accordingly, in consideration of the location of the stirrer 200 and the fact that the treatment agent is easily mixed with the entire molten metal, the treatment agent supply may be disposed between the central portion and the wall of the container 100 to supply the treatment agent. For example, the treatment agent feeder may be located at about a half point between the central portion of the vessel 100 and the wall in the transverse direction. However, the location of the treatment agent feeder may vary but is not limited thereto.
이때, 처리제 공급기는, 처리제의 이동경로를 형성하고 길이 조절이 가능한 슈트를 구비할 수 있다. 따라서, 처리제를 공급할 때는, 슈트의 길이를 증가시켜 슈트의 배출구를 교반기(200)의 상하이동을 방해하지 않는 범위에서 용기(100)의 중심부에 근접시킬 수 있다. 반대로, 처리제 공급이 완료되면 슈트의 길이를 감소시킬 수 있다. 이에, 교반기(200)에 의해 용융금속에 발생한 와류의 중심부로 처리제가 권입되고, 처리제가 용융금속과 신속하게 혼합되어 반응할 수 있다.At this time, the treatment agent supply device may be provided with a chute that can form a moving path of the treatment agent and the length can be adjusted. Therefore, when supplying a treating agent, the length of the chute can be increased so that the outlet of the chute can be brought close to the center of the container 100 in a range that does not disturb the shanghai of the stirrer 200. Conversely, the length of the chute can be reduced once the treatment agent supply is complete. Thus, the treatment agent is wound into the center of the vortex generated in the molten metal by the stirrer 200, and the treatment agent can be rapidly mixed with the molten metal to react.
용선의 탈황공정을 수행하는 경우, 처리제는 생석회(CaO)를 함유할 수 있다. 또한, 매용제로서 형석이나 알류미늄재(Al-ash) 등이 혼합될 수 있다. 그러나 처리제 공급기의 구조 및 처리제의 함유되는 성분은 이에 한정되지 않고 다양할 수 있다.In the case of performing the desulfurization process of the molten iron, the treating agent may contain quicklime (CaO). In addition, a fluorite, an aluminum material (Al-ash), etc. may be mixed as a solvent. However, the structure of the treatment agent feeder and the components contained in the treatment agent may vary but are not limited thereto.
도 2는 본 발명의 실시 예에 따른 랜스의 위치를 나타내는 도면이고, 도 3은 본 발명의 다른 실시 예에 따른 분사기를 나타내는 도면이고, 도 4는 본 발명의 또 다른 실시 예에 따른 분사기를 나타내는 도면이다.2 is a view showing the position of the lance according to an embodiment of the present invention, Figure 3 is a view showing an injector according to another embodiment of the present invention, Figure 4 is a view showing an injector according to another embodiment of the present invention Drawing.
도 1 및 도 2를 참조하면, 분사기(400)는 용융금속의 일부 영역으로 가스를 공급하여 용융금속의 일부 영역의 탕면 높이를 다른 영역과 다르게 하는 역할을 한다. 이에, 교반기(200)로 용융금속에 와류를 발생시킬 때, 분사기(400)가 가스를 분사하면 용융금속의 중심부를 기준으로 일측과 타측이 서로 대칭을 이루지 않을 수 있다. 따라서, 용융금속에 비대칭 와류가 형성되어 용융금속의 표면에서 하향류가 발달하고, 용융금속에 권입되는 처리제의 양을 증가시킬 수 있다. 이러한 분사기(400)는, 하부방향으로 가스를 분사하는 랜스(410), 및 랜스(410)에 가스를 공급하도록 랜스(410)와 연결되는 가스공급부(420)를 포함한다. Referring to FIGS. 1 and 2, the injector 400 supplies gas to a portion of the molten metal to change the height of the hot water surface of the portion of the molten metal from other regions. Thus, when generating the vortex in the molten metal with the stirrer 200, when the injector 400 injects gas, one side and the other side may not be symmetrical with respect to the center of the molten metal. Thus, an asymmetrical vortex is formed in the molten metal so that the downflow develops on the surface of the molten metal, and the amount of the treatment agent wound on the molten metal can be increased. The injector 400 includes a lance 410 for injecting gas in a downward direction, and a gas supply unit 420 connected to the lance 410 to supply gas to the lance 410.
랜스(410)는 용융금속의 일부영역에 가스를 분사하는 역할을 한다. 예를 들어, 랜스(410)는 교반기(200)의 우측에 배치될 수 있고, 용융금속의 우측영영의 상부로 가스를 분사할 수 있다. 이에, 용융금속의 우측영역이 가스에 의해 하측으로 눌려 우측영역의 높이는 낮아지고, 좌측영역의 높이는 높아질 수 있다. 그러나 랜스(410)가 배치되는 위치 및 가스를 분사하는 영역은 이에 한정되지 않고 다양할 수 있다.The lance 410 serves to inject gas into a portion of the molten metal. For example, the lance 410 may be disposed on the right side of the stirrer 200 and may inject gas into the upper portion of the right side of the molten metal. Thus, the right region of the molten metal is pressed downward by the gas, the height of the right region is lowered, the height of the left region can be increased. However, the location where the lance 410 is disposed and the area in which the gas is injected may be various.
랜스(410)가 용기(100) 내의 용융금속의 일부 영역에만 불활성 가스를 분사하면, 용융금속에 상하로 파동이 발생한다. 이에, 용융금속의 표면에 하향류가 발생하고, 용융금속으로 공급된 처리제가 용융금속의 표면으로 부상하는 것을 하향류가 억제하거나 방지할 수 있다. 따라서, 처리제가 지속적으로 용융금속 내에 체류하게 되면서 용융금속과 반응하는 시간이 증가하고, 탈황효율이 향상될 수 있다.When the lance 410 injects an inert gas to only a portion of the molten metal in the container 100, waves are generated in the molten metal. Accordingly, the downflow occurs on the surface of the molten metal, and the downflow can be suppressed or prevented from rising to the surface of the molten metal. Therefore, while the treatment agent stays in the molten metal continuously, the reaction time with the molten metal increases, and the desulfurization efficiency may be improved.
또한, 랜스(410)는 용기(100)의 상부에 위치할 수 있다. 랜스(410)는 상하방향으로 연장형성될 수 있고, 내부에 가스가 이동하는 경로를 형성할 수 있다. 랜스(410)는 하나가 구비될 수 있고, 랜스(410)의 하단에는 가스를 분사하는 분사구가 구비될 수 있다. 이에, 랜스(410) 내부로 공급된 가스가 분사구를 통해 하측으로 분사될 수 있다.In addition, the lance 410 may be located above the container 100. The lance 410 may extend in the vertical direction, and may form a path through which the gas moves. One lance 410 may be provided, and a lower end of the lance 410 may be provided with an injection hole for injecting gas. Thus, the gas supplied into the lance 410 may be injected downward through the injection hole.
또한, 랜스(410)는 횡방향으로 용기(100)의 중심부에서 외곽부 사이의 1/5 지점에서 4/5 지점 사이에 배치될 수 있다. 이때, 용기(100)의 중심부에는 교반기(200)가 위치할 수 있고, 용기(100)의 외곽부에는 용기(100)의 내벽이 위치할 수 있다. 즉, 랜스(410)는 교반기(200)와 용기(100)의 내벽 사이에서 가스를 분사할 수 있다.In addition, the lance 410 may be disposed between one-fifth and four-fifths between the periphery at the center of the vessel 100 in the transverse direction. In this case, the stirrer 200 may be positioned at the center of the vessel 100, and an inner wall of the vessel 100 may be positioned at an outer portion of the vessel 100. That is, the lance 410 may inject gas between the stirrer 200 and the inner wall of the vessel 100.
용기(100)의 중심부와 외곽부 사이의 1/5 지점 이전에 랜스(410)가 위치하면, 랜스(410)가 처리제 공급기와는 거리가 멀어지고, 교반기(200)와는 거리가 가까워질 수 있다. 이에, 용융금속의 처리제가 공급된 영역을 랜스(410)에서 분사된 가스가 하측으로 눌러주지 못할 수 있다. 따라서, 처리제가 용융금속의 표면으로 쉽게 부상할 수 있고, 처리제가 용융금속에 용이하게 권입되지 못할 수 있다. If the lance 410 is located 1/5 of the point between the center and the outer portion of the vessel 100, the lance 410 may be far from the treatment agent supply and may be close to the stirrer 200. . As a result, the gas injected from the lance 410 may not press down the region supplied with the molten metal treatment agent. Thus, the treating agent may easily float to the surface of the molten metal, and the treating agent may not be easily wound into the molten metal.
용기(100)의 중심부와 외곽부 사이의 4/5 지점 이후에 랜스(410)가 위치하면, 랜스(410)가 처리제 공급기와는 거리가 멀어지고, 용기(100)의 내벽과는 거리가 가까워질 수 있다. 이에, 용융금속의 처리제가 공급된 영역을 랜스(410)에서 분사된 가스가 하측으로 눌러주지 못할 수 있다. 따라서, 처리제가 용융금속의 표면으로 쉽게 부상할 수 있고, 처리제가 용융금속에 용이하게 권입되지 못할 수 있다. If the lance 410 is positioned after 4/5 between the center and the periphery of the vessel 100, the lance 410 is far from the treatment agent supply and is close to the inner wall of the vessel 100. Can lose. As a result, the gas injected from the lance 410 may not press down the region supplied with the molten metal treatment agent. Thus, the treating agent may easily float to the surface of the molten metal, and the treating agent may not be easily wound into the molten metal.
랜스(410)에서 분사되는 가스와 용융금속이 접촉하는 영역, 및 용융금속의 처리제가 공급되는 영역의 적어도 일부분이 중첩되도록 랜스(410)를 용기(100)의 중심부에서 외곽부 사이의 1/5 지점에서 4/5 지점 사이에 배치할 수 있다. 즉, 랜스(410)가 교반기(200)나 용기(100)의 벽체보다 처리제 공급기에 근접하게 배치될 수 있다. 이에, 랜스(410)에서 분사된 가스가 처리제의 부상을 용이하게 억제하거나 방지할 수 있다. 즉, 랜스(410)는 처리제 공급기에 근접해지도록 배치할 수 있다.The lance 410 is one-fifth between the periphery of the center of the vessel 100 so that at least a portion of the region where the gas injected from the lance 410 contacts with the molten metal and the region where the molten metal is supplied are superimposed. Can be placed between 4/5 points. That is, the lance 410 may be disposed closer to the treatment agent supply than to the stirrer 200 or the wall of the vessel 100. Thus, the gas injected from the lance 410 can easily suppress or prevent the injury of the treatment agent. That is, the lance 410 may be disposed to be close to the treatment agent supply.
이때, 도 3과 같이 랜스(410)의 기울기를 조절하여 가스가 교반기(200)의 회전방향을 향하여 분사되도록 할 수 있다. 이에, 랜스(410)에서 분사되는 가스가 교반기(200)의 교반작업을 방해하지 않고, 오히려 교반이 잘되도록 용융금속의 흐름을 유도할 수 있다. 따라서, 랜스(410)에서 분사되는 가스가 교반력을 제공하여 용융금속이 더 용이하게 교반될 수 있다. 그러나 가스를 교반기()의 회전방향을 향하게 하는 방법은 이에 한정되지 않고 다양할 수 있다.In this case, as illustrated in FIG. 3, the inclination of the lance 410 may be adjusted to allow the gas to be injected toward the rotation direction of the stirrer 200. Thus, the gas injected from the lance 410 does not interfere with the stirring operation of the stirrer 200, rather it may induce a flow of molten metal so that the stirring is well. Thus, the gas injected from the lance 410 provides the stirring force so that the molten metal can be stirred more easily. However, the method of directing the gas in the direction of rotation of the stirrer may be various.
한편, 도 4와 같이 랜스(410)는 복수개가 구비될 수도 있다. 랜스(410)가 구비되는 개수가 증가하면 랜스(410)에서 분사되는 가스와 용융금속이 접촉하는 영역의 개수 또는 접촉하는 영역의 면적이 증가할 수 있다. 예를 들어, 용기(100)의 중심부에서 외측방향으로 제1 랜스(410), 제2 랜스(410), 및 제3 랜스(410)가 구비될 수 있다. 이에, 가스에 의해 하측으로 눌러지는 영역과 그렇지 않은 영역 사이의 높이 차이가 증가할 수 있고, 하향류가 더 활발히 발생하여 처리제가 용융금속에 더 신속하게 권입될 수 있다.Meanwhile, as shown in FIG. 4, a plurality of lances 410 may be provided. When the number of lances 410 is increased, the number of areas in which the gas injected from the lances 410 and the molten metal contact or the area of the areas in contact with each other may increase. For example, a first lance 410, a second lance 410, and a third lance 410 may be provided in an outward direction from the center of the container 100. As a result, the height difference between the region pressed downward by the gas and the region not pressed down may increase, and downward flow may be more actively generated so that the treating agent may be more rapidly charged into the molten metal.
복수의 랜스(410)는 교반기(200)의 일측에만 배치될 수 있다. 예를 들어, 복수의 랜스(410)는 교반기(200)의 우측에만 배치될 수 있다. 따라서, 랜스(410)로 가스를 분사하면 용융금속의 좌측영역과 우측영역 사이에 높이 차이가 발생할 수 있다. The plurality of lances 410 may be disposed only on one side of the stirrer 200. For example, the plurality of lances 410 may be disposed only on the right side of the stirrer 200. Therefore, when gas is injected into the lance 410, a height difference may occur between the left region and the right region of the molten metal.
또는, 횡방향으로 용융금속의 교반기(200)를 기준으로 구분되는 두 영역 중 어느 한 영역에만 배치될 수 있다. 예를 들어, 용융금속은 교반기(200)를 기준으로 좌측영역과 우측영역으로 구분될 수 있고, 랜스(410)들은 우측영역 또는 좌측영역만 배치될 수 있다. 따라서, 용융금속의 좌측 또는 우측으로만 가스가 공급되어 좌측 탕면과 우측 탕면에 높이 차이가 발생할 수 있다. 이에, 탕면에 비대칭 흐름을 유도하여 용융금속으로 권입되는 처리제의 양을 증가시킬 수 있다. 그러나 랜스(410)가 구비되는 개수 및 배치되는 위치는 이에 한정되지 않고 다양할 수 있다.Or, it may be disposed only in any one of the two areas divided by the stirrer 200 of the molten metal in the transverse direction. For example, the molten metal may be divided into a left region and a right region based on the stirrer 200, and the lances 410 may be disposed only in the right region or the left region. Therefore, the gas is supplied only to the left side or the right side of the molten metal, so that a height difference may occur between the left side and the right side. As a result, an asymmetric flow may be induced on the hot water surface to increase the amount of the treatment agent wound into the molten metal. However, the number and location of the lance 410 is provided is not limited to this may vary.
가스공급부(420)는 랜스(410)로 가스를 공급하는 역할을 한다. 이때, 가스는 불활성 가스일 수 있다. 가스공급부(420)는, 불활성 가스를 저장하는 제1 저장유닛(421), 가스가 이동하는 경로를 형성하며, 일단이 랜스(410)에 연결되고 타단이 제1 저장유닛(421)에 연결되는 공급라인(423), 및 가스를 가열하도록 상기 제1 저장유닛(421)과 공급라인(423) 중 적어도 어느 하나에 설치되는 가열유닛(미도시)을 포함한다.The gas supply unit 420 serves to supply gas to the lance 410. In this case, the gas may be an inert gas. The gas supply unit 420 may include a first storage unit 421 storing an inert gas and a path through which the gas moves, one end of which is connected to the lance 410 and the other end of which is connected to the first storage unit 421. A supply line 423 and a heating unit (not shown) installed in at least one of the first storage unit 421 and the supply line 423 to heat the gas.
제1 저장유닛(421)은 내부에 불활성 가스를 저장하는 탱크일 수 있다. 예를 들어, 불활성 가스는 질소 및 아르곤 가스 중 적어도 어느 하나를 포함할 수 있다. 그러나 이에 한정되지 않고 용융금속을 산화시키지 않는 다양한 불활성 가스가 사용될 수 있다. 즉, 용선을 산화시키는 가스는 탈황에 불리하고 분진을 발생시킬 수 있기 때문에, 용선을 산화시키지 않는 불활성 가스를 사용할 수 있다.The first storage unit 421 may be a tank for storing an inert gas therein. For example, the inert gas may include at least one of nitrogen and argon gas. However, the present invention is not limited thereto, and various inert gases that do not oxidize the molten metal may be used. That is, since the gas which oxidizes molten iron is disadvantageous to desulfurization and can generate dust, an inert gas which does not oxidize molten iron can be used.
공급라인(423)은 내부에 가스가 이동하는 경로를 형성하며, 일단이 랜스(410)에 연결되고, 타단이 제1 저장유닛(421)에 연결될 수 있다. 이에, 제1 저장유닛(421)에 저장된 불활성 가스가 공급라인(423)을 통해 랜스(410)로 전달될 수 있다. 공급라인(423)에는 가스의 유량을 측정하는 유량계, 및 공급라인(423)이 형성하는 가스의 이동경로를 개폐하는 밸브를 구비할 수 있다. 그러나 공급라인(423)의 구조는 이에 한정되지 않고 다양할 수 있다.The supply line 423 may form a path through which gas moves, one end may be connected to the lance 410, and the other end may be connected to the first storage unit 421. Thus, the inert gas stored in the first storage unit 421 may be delivered to the lance 410 through the supply line 423. Supply line 423 may be provided with a flow meter for measuring the flow rate of the gas, and a valve for opening and closing the movement path of the gas formed by the supply line 423. However, the structure of the supply line 423 may be various but not limited thereto.
가열유닛(미도시)은 랜스(410)로 공급되는 가스를 가열하는 역할을 한다. 예를 들어, 가열유닛은 열선일 수 있고, 제1 저장유닛(421) 및 공급라인(423) 중 적어도 어느 하나의 둘레를 감싸도록 배치될 수 있다. 이에, 가열유닛은 가스가 저장되는 공간, 및 가스가 이동하는 경로를 중 적어도 어느 하나를 가열하여 랜스(410)로 공급되는 가스의 온도를 상승시킬 수 있다. 따라서, 랜스(410)를 통해 분사되는 가스에 의해 용융금속이 냉각되는 것을 억제하거나 방지할 수 있다. 그러나 가열유닛이 가스를 가열하는 방법은 이에 한정되지 않고 다양할 수 있다.The heating unit (not shown) serves to heat the gas supplied to the lance 410. For example, the heating unit may be a hot wire, and may be disposed to surround a circumference of at least one of the first storage unit 421 and the supply line 423. Accordingly, the heating unit may increase the temperature of the gas supplied to the lance 410 by heating at least one of a space in which the gas is stored and a path through which the gas moves. Therefore, it is possible to suppress or prevent the molten metal from being cooled by the gas injected through the lance 410. However, the method of heating the gas by the heating unit is not limited thereto and may vary.
도 5는 본 발명의 다른 실시 예에 따른 가스공급부를 나타내는 도면이다.5 is a view showing a gas supply unit according to another embodiment of the present invention.
한편, 도 5와 같이 가스공급부(420)는 환원성 가스를 저장하는 제2 저장유닛(422)을 더 포함할 수도 있다.Meanwhile, as illustrated in FIG. 5, the gas supply unit 420 may further include a second storage unit 422 for storing the reducing gas.
제2 저장유닛(422)은 내부에 환원성 가스를 저장하는 탱크일 수 있다. 환원성 가스로 탄화수소계 가스일 수 있다. 예를 들어, 탄화수소계 가스로 메탄을 사용할 수 있다. 메탄은 탈황속도를 증가시킬 수 있다. 그러나 이에 한정되지 않고 다양한 환원성 가스가 사용될 수 있다.The second storage unit 422 may be a tank for storing a reducing gas therein. The reducing gas may be a hydrocarbon gas. For example, methane may be used as the hydrocarbon gas. Methane can increase the desulfurization rate. However, the present invention is not limited thereto, and various reducing gases may be used.
이때, 공급라인(423)은 제1 저장유닛(421)과 제2 저장유닛(422)의 가스를 랜스(410)로 전달해주는 역할을 한다. 공급라인(423)은, 제1 저장유닛과 연결되는 제1 배관(423a), 제2 저장유닛(422)과 연결되는 제2 배관(423b), 및 일단이 랜스(410)에 연결되고 타단이 제1 배관(423a) 및 제2 배관(423b)과 연결되는 제3 배관(423c)을 포함할 수 있다.At this time, the supply line 423 serves to deliver the gas of the first storage unit 421 and the second storage unit 422 to the lance 410. The supply line 423 includes a first pipe 423a connected to the first storage unit, a second pipe 423b connected to the second storage unit 422, and one end connected to the lance 410, and the other end thereof. The third pipe 423c may be connected to the first pipe 423a and the second pipe 423b.
제1 배관(423a)은 일단이 제1 저장유닛(421)과 연결되고, 내부에 가스가 이동하는 경로를 형성한다. 제1 배관(423a)에는 가스의 이동경로를 개폐하거나 유량을 조절하는 제1 제어밸브(423d)가 설치될 수 있다. 이에, 제1 제어밸브(423d)의 작동을 제어하여 랜스(410)로 불활성 가스가 공급되거나 공급이 중단되는 시점을 선택할 수 있고, 랜스(410)로 공급되는 불활성 가스의 양도 조절할 수 있다.One end of the first pipe 423a is connected to the first storage unit 421 and forms a path through which gas moves. The first pipe 423a may be provided with a first control valve 423d for opening and closing a gas movement path or adjusting a flow rate. Accordingly, the operation of the first control valve 423d may be controlled to select a time point at which the inert gas is supplied to the lance 410 or the supply is stopped, and the amount of the inert gas supplied to the lance 410 may be adjusted.
또한, 제1 배관(423a)에는 제1 배관(423a) 내부의 가스의 유량을 측정하는 제1 유량계(미도시) 및 압력을 측정하는 제1 압력계(미도시)가 설치될 수 있다. 따라서, 랜스(410)로 공급되는 불활성 가스의 양을 확인할 수 있고, 원하는 양 또는 원하는 압력의 불활성 가스를 랜스(410)로 정확하게 공급할 수 있다.In addition, the first pipe 423a may be provided with a first flow meter (not shown) for measuring the flow rate of the gas inside the first pipe 423a and a first pressure gauge (not shown) for measuring the pressure. Therefore, the amount of inert gas supplied to the lance 410 can be confirmed, and the inert gas of the desired amount or desired pressure can be accurately supplied to the lance 410.
제2 배관(423b)은 일단이 제2 저장유닛(422)과 연결되고, 내부에 가스가 이동하는 경로를 형성한다. 제2 배관(423b)에는 가스의 이동경로를 개폐하거나 유량을 조절하는 제2 제어밸브(423e)가 설치될 수 있다. 이에, 제2 제어밸브(423e)의 작동을 제어하여 랜스(410)로 환원성 가스가 공급되거나 공급이 중단되는 시점을 선택할 수 있고, 랜스(410)로 공급되는 환원성 가스의 양도 조절할 수 있다. 제2 제어밸브()가 가스의 이동경로를 차단하면 용융금속의 열기나 화염이 제2 저장유닛(422)으로 유입되는 것을 차단할 수 있다. 따라서, 역화를 방지하여 제2 저장유닛(422)의 환원성 가스가 폭발하는 것을 방지할 수 있다.One end of the second pipe 423b is connected to the second storage unit 422 and forms a path through which gas moves. The second pipe 423b may be provided with a second control valve 423e for opening and closing the gas movement path or adjusting the flow rate. Accordingly, the operation of the second control valve 423e may be controlled to select a time point at which the reducing gas is supplied to the lance 410 or the supply is stopped, and the amount of the reducing gas supplied to the lance 410 may be adjusted. When the second control valve () blocks the movement path of the gas, it is possible to block the heat of the molten metal or the flame from flowing into the second storage unit 422. Therefore, it is possible to prevent backfire and explosion of the reducing gas of the second storage unit 422.
또한, 제2 배관(423b)에는 제2 배관(423b) 내부의 가스의 유량을 측정하는 제2 유량계(미도시) 및 압력을 측정하는 압력계(미도시)가 설치될 수 있다. 따라서, 랜스(410)로 공급되는 환원성 가스의 양을 확인할 수 있고, 원하는 양 또는 원하는 압력의 환원성 가스를 랜스(410)로 정확하게 공급할 수 있다.In addition, a second flow meter (not shown) for measuring the flow rate of the gas inside the second pipe 423b and a pressure gauge (not shown) for measuring the pressure may be installed in the second pipe 423b. Therefore, the amount of reducing gas supplied to the lance 410 can be confirmed, and the reducing gas of the desired amount or the desired pressure can be accurately supplied to the lance 410.
제3 배관(423c)의 일단은 랜스(410)와 연결되고, 타단은 제1 배관(423a)의 타단 및 제2 배관(423b)의 타단과 연결된다. 즉, 제1 배관(423a)을 이동하는 불활성 가스와 제2 배관(423b)이동하는 환원성 가스가 제3 배관(423c)에서 만나 혼합된 후 랜스(410)로 공급될 수 있다. 제3 배관(423c)은, 내부에 불활성 가스와 환원성 가스가 혼합되는 공간을 형성하는 혼합부재, 및 가스가 이동하는 경로를 형성하여 혼합부재에서 혼합된 가스를 랜스(410)로 전달하는 경로부재를 포함할 수 있다.One end of the third pipe 423c is connected to the lance 410, and the other end is connected to the other end of the first pipe 423a and the other end of the second pipe 423b. That is, the inert gas that moves the first pipe 423a and the reducing gas that moves the second pipe 423b may meet and mix in the third pipe 423c and then be supplied to the lance 410. The third pipe 423c may include: a mixing member forming a space in which an inert gas and a reducing gas are mixed therein; and a path member forming a path through which the gas moves to deliver the gas mixed in the mixing member to the lance 410. It may include.
혼합부재는 내부공간을 가지는 박스 형태로 형성될 수 있다. 제1 배관(423a)의 타단과 제2 배관(423b)의 타단은 모두 혼합부재와 연결될 수 있다. 이에, 혼합부재 내부에서 불활성 가스와 환원성 가스가 만나 혼합될 수 있다.The mixing member may be formed in a box shape having an inner space. The other end of the first pipe 423a and the other end of the second pipe 423b may be connected to the mixing member. Thus, the inert gas and the reducing gas may meet and mix inside the mixing member.
경로부재는 가스가 이동하는 경로를 형성하며, 일단이 랜스(410)에 연결되고, 타단이 혼합부재와 연결된다. 이에, 혼합부재 내부에서 혼합된 가스가 경로부재를 통해 랜스(410)로 공급될 수 있다. 또한, 경로부재는 플랙시블(Flexible)한 재료로 제작될 수 있다. 따라서, 경로부재는 적어도 일부분이 굴절될 수 있고, 경로부재에 의해 랜스(410)의 이동이 방해받는 것을 억제하거나 방지할 수 있다. The path member forms a path through which the gas moves, one end of which is connected to the lance 410, and the other end of which is connected to the mixing member. Thus, the gas mixed inside the mixing member may be supplied to the lance 410 through the path member. In addition, the path member may be made of a flexible material. Thus, the path member can be at least partially refracted and can suppress or prevent the movement of the lance 410 from being disturbed by the path member.
예를 들어, 랜스(410)는 교반기(200)의 상하 구동기에 설치되어 지지될 수 있고, 상하 구동기에 의해 상하로 이동할 수 있다. 이에, 랜스(410)가 용이하게 상하로 이동할 수 있도록 랜스(410)와 연결되는 경로부재를 플랙시블한 재료로 제작할 수 있다. 그러나 제3 배관(423c)의 구조는 이에 한정되지 않고 다양할 수 있다.For example, the lance 410 may be installed and supported by the up and down driver of the stirrer 200, and may move up and down by the up and down driver. Thus, the path member connected to the lance 410 can be made of a flexible material so that the lance 410 can be easily moved up and down. However, the structure of the third pipe 423c may not be limited thereto and may vary.
이때, 가열유닛은 제2 저장유닛(422)에 설치될 수도 있다. 따라서, 가열유닛은 랜스(410)로 공급되는 불활성 가스와 환원성 가스 모두를 가열할 수 있다. 이에, 랜스(410)에서 분사되는 가스로 인해 용융금속이 냉각되는 것을 억제하거나 방지할 수 있다. 그러나 가열유닛이 설치되는 위치는 이에 한정되지 않고 다양할 수 있다.In this case, the heating unit may be installed in the second storage unit 422. Thus, the heating unit can heat both the inert gas and the reducing gas supplied to the lance 410. Thus, cooling of the molten metal due to the gas injected from the lance 410 can be suppressed or prevented. However, the location where the heating unit is installed may be various but not limited thereto.
이처럼 교반되는 용융금속의 일부 영역으로만 불활성 가스를 공급하여 용융금속의 일부 영역의 탕면 높이와 다른 영역의 탕면 높이를 다르게 형성할 수 있다. 이에, 불활성 가스를 공급하면서 용융금속을 교반시키면 용융금속에 비대칭 와류가 발생할 수 있다. 따라서, 용융금속으로 투입된 처리제와 용융금속이 신속하고 용이하게 혼합되어 반응을 촉진시킬 수 있다. The inert gas may be supplied only to a portion of the molten metal that is stirred in this way to form different heights of the surface of the molten metal and a surface of the other of the molten metal. Thus, when the molten metal is stirred while supplying an inert gas, an asymmetrical vortex may occur in the molten metal. Therefore, the treatment agent introduced into the molten metal and the molten metal can be quickly and easily mixed to promote the reaction.
도 6은 본 발명의 실시 예에 따른 용융금속 처리장치의 작동을 나타내는 도면이다.6 is a view showing the operation of the molten metal processing apparatus according to an embodiment of the present invention.
도 6을 참조하면 본 발명의 실시 예에 따른 용융금속 처리방법은, 용기에 수용된 용융금속을 처리하는 방법으로서, 교반기로 상기 용융금속을 교반하고, 용융금속에 처리제를 투입하며, 용융금속의 적어도 일부 영역의 탕면 높이가 다른 영역의 탕면 높이와 달라지도록 용융금속의 적어도 일부 영역으로 가스를 분사하는 과정을 포함한다. 이때, 용융금속을 교반하는 작업, 용융금속에 처리제를 투입하는 작업, 및 용융금속의 적어도 일부 영역으로 가스를 분사하는 작업의 순서는 다양하게 선택될 수 있다.Referring to FIG. 6, a molten metal treating method according to an exemplary embodiment of the present invention is a method of treating molten metal contained in a container, agitating the molten metal with a stirrer, injecting a treating agent into the molten metal, and applying at least the molten metal. Injecting a gas into at least a portion of the molten metal so that the height of the water surface in some areas is different from the height of the water surface in other areas. At this time, the order of the operation of stirring the molten metal, the operation of injecting the treatment agent into the molten metal, and the operation of spraying the gas to at least a portion of the molten metal may be variously selected.
이때, 용융금속은 용선일 수 있고, 용기(100)는 내부에 용선을 수용하는 래들일 수 있고, 처리제는 탈황제일 수 있다. 따라서, 용융금속 처리방법은 용선 내의 황을 제거하는 방법일 수 있다. At this time, the molten metal may be molten iron, the container 100 may be a ladle to accommodate the molten iron therein, the treatment agent may be a desulfurization agent. Therefore, the molten metal treatment method may be a method of removing sulfur in the molten iron.
용융금속이 장입된 용기(100)를 지지대(미도시)에 안착시킨다. 교반기(200)를 하측으로 이동시켜 블레이드(220)를 용융금속에 침지시킨다. 이때, 교반기(200)는 용기(100)의 중심부에 배치되고, 용융금속을 교반할 수 있도록 블레이드(220)의 상부면은 용융금속의 탕면보다 낮은 위치까지 이동할 수 있다.The container 100 loaded with molten metal is seated on a support (not shown). The stirrer 200 is moved downward to immerse the blade 220 in the molten metal. At this time, the stirrer 200 is disposed in the center of the vessel 100, the upper surface of the blade 220 may be moved to a position lower than the molten metal of the molten metal to agitate the molten metal.
그 다음, 교반기(200)를 작동시켜 용융금속을 교반한다. 블레이드(220)의 회전에 의해 용융금속에 와류가 발생할 수 있다. 따라서, 용융금속의 중심부의 높이는 감소하고, 외곽부의 높이는 증가할 수 있다. 이때, 용융금속으로 처리제를 투입할 수 있다. Then, the stirrer 200 is operated to stir the molten metal. Vortex flow may occur in the molten metal by the rotation of the blade 220. Therefore, the height of the center portion of the molten metal can be decreased, and the height of the outer portion can be increased. At this time, the treatment agent may be added to the molten metal.
또한, 랜스(410)를 통해 용융금속의 일부 영역(예를 들어, 우측 상부)에 가스를 분사할 수 있다. 랜스(410)가 용기(100) 내의 용융금속의 일부 영역에만 가스를 분사하면, 비대칭 와류가 발생하여 용융금속의 탕면에 상하로 파동이 발생한다. 용융금속의 일부 영역(예를 들어, 우측 상부)의 높이(h2)는 불활성 가스에 의해 낮아지고, 다른 영역(예를 들어, 좌측 상부)의 높이(h1)는 높아질 수 있다. 이에, 용융금속의 표면에 하향류가 발생하고, 용융금속으로 공급된 처리제가 용융금속의 표면으로 부상하는 것을 하향류가 억제하거나 방지할 수 있다. 따라서, 처리제가 지속적으로 용융금속 내에 체류하게 되면서 용융금속과 반응하는 시간이 증가하고, 탈황효율이 향상될 수 있다.In addition, the gas may be injected into a portion of the molten metal (eg, upper right) through the lance 410. When the lance 410 injects gas only to a portion of the molten metal in the container 100, an asymmetrical vortex occurs, causing waves to rise and fall on the molten metal's hot water surface. The height h2 of some regions (eg, upper right) of the molten metal may be lowered by the inert gas, and the height h1 of other regions (eg, upper left) may be higher. Accordingly, the downflow occurs on the surface of the molten metal, and the downflow can be suppressed or prevented from rising to the surface of the molten metal. Therefore, while the treatment agent stays in the molten metal continuously, the reaction time with the molten metal increases, and the desulfurization efficiency may be improved.
이처럼 랜스(410)에서 분사된 가스가 용융금속에 하향류를 형성할 수 있다. 가스와 용융금속의 탕면이 접촉하는 영역, 및 용융금속의 처리제가 투입된 영역의 적어도 일부가 중첩되면 가스에 의해 발생한 하향류가 처리제의 부상을 더 효과적으로 억제하거나 방지할 수 있다.As such, the gas injected from the lance 410 may form a downflow to the molten metal. When at least a portion of the region where the gas and the molten metal are in contact with each other and the region into which the molten metal treatment agent is injected are overlapped, the downflow caused by the gas can more effectively suppress or prevent the injury of the treatment agent.
이때, 가스는 횡방향으로 용기(100)의 중심부에서 내벽 사이의 1/5 지점에서 4/5 지점 사이에서 분사될 수 있다. 용기(100)의 중심부와 내벽 사이의 1/5 지점 이전 또는 4/5지점 이후에서 가스를 공급하면, 가스와 용융금속이 접촉하는 영역, 및 처리제와 용융금속이 접촉하는 면적이 서로 중첩되지 못하거나 중첩되는 부분의 크기가 작을 수 있다. 따라서, 처리제가 용융금속의 표면으로 쉽게 부상할 수 있고, 처리제가 용융금속에 용이하게 권입되지 못할 수 있다. At this time, the gas may be injected between 1/5 to 4/5 points between the inner wall and the center of the container 100 in the transverse direction. When the gas is supplied before the 1/5 point or after the 4/5 point between the center and the inner wall of the container 100, the area where the gas and the molten metal contact and the area where the treatment agent and the molten metal contact each other do not overlap each other. Or overlapping portions may have a small size. Thus, the treating agent may easily float to the surface of the molten metal, and the treating agent may not be easily wound into the molten metal.
가스와 용융금속이 접촉하는 영역, 및 용융금속의 처리제가 공급되는 영역의 중첩되는 부분을 증가시키기 위해 용기(100)의 중심부에서 내벽 사이의 1/5 지점에서 4/5 지점 사이로 가스를 공급할 수 있다. 즉, 가스를 공급하는 부분과 처리제를 공급하는 부분을 서로 근접시킬 수 있다. 이에, 랜스(410)에서 분사된 가스가 처리제의 부상을 용이하게 억제하거나 방지할 수 있다. Gas may be supplied between 1/5 to 4/5 of the inner wall at the center of the vessel 100 to increase the overlapping portion of the region where the gas and molten metal are in contact, and the region where the molten metal is supplied with the treatment agent. have. That is, the part which supplies a gas and the part which supplies a processing agent can approach each other. Thus, the gas injected from the lance 410 can easily suppress or prevent the injury of the treatment agent.
또한, 용융금속이 교반되는 방향을 향하여 가스를 분사할 수도 있다. 이에, 가스가 교반기(200)에 의한 용융금속의 교반을 방해하지 않으면서 용융금속의 일부 영역에 하측으로 힘을 가할 수 있다. 따라서, 제공하여 교반기(200)가 용이하게 용강을 교반시킬 수 있다.In addition, the gas may be injected toward the direction in which the molten metal is stirred. Accordingly, the gas may apply a force downward to a portion of the molten metal without disturbing the stirring of the molten metal by the stirrer 200. Therefore, by providing the stirrer 200 can easily stir the molten steel.
이때, 가스를 가열한 후 용융금속으로 분사할 수도 있다. 가스의 온도가 낮으면 용융금속과 접촉할 때 용융금속을 냉각시킬 수 있다. 따라서, 용융금속을 가열하여 온도를 상승시킬 수 있고, 온도가 상승된 가스를 용융금속으로 분사하여 용융금속이 냉각되는 것을 억제하거나 방지할 수 있다. 가스는 불활성 가스일 수 있다.At this time, the gas may be heated and then injected into the molten metal. The low temperature of the gas allows the molten metal to cool when in contact with the molten metal. Therefore, the molten metal can be heated to raise the temperature, and the gas whose temperature is raised can be injected into the molten metal to suppress or prevent cooling of the molten metal. The gas may be an inert gas.
또한, 용융금속에 가스를 공급할 때 불활성 가스에 환원성 가스를 혼합한 후 용융금속에 분사할 수 있다. 환원성 가스는 탈황속도를 증가시킬 수 있다. 이에, 용융금속에 가스를 분사할 때, 가스에 환원성 가스를 혼합할 수 있다. 불활성 가스는 질소 및 아르곤 가스 중 적어도 어느 하나를 포함하고, 환원성 가스는 탄화수소 가스를 포함할 수 있다. 그러나 불활성 가스와 환원성 가스의 종류는 이에 한정되지 않고 다양할 수 있다.In addition, when the gas is supplied to the molten metal, the reducing gas may be mixed with the inert gas and then injected into the molten metal. Reducible gases can increase the desulfurization rate. Thus, when gas is injected into the molten metal, a reducing gas can be mixed into the gas. The inert gas may include at least one of nitrogen and argon gas, and the reducing gas may include a hydrocarbon gas. However, the type of inert gas and the reducing gas may vary, without being limited thereto.
또한, 랜스(410)에서 분사되는 가스가 용융금속의 표면에 전달하는 에너지 밀도는 0.2W/ton 내지 4W/ton일 수 있다. 분사되는 가스의 에너지 밀도가 0.2W/ton 미만이면 가스가 용융금소의 탕면을 누르지 못해 탕면에 높이 차이가 발생하지 않을 수 있고, 분사되는 가스의 에너지 밀도 4W/ton를 초과하면 다른 영역의 용융금속의 높이가 너무 높아져 용기(100)의 외측으로 넘칠 수도 있다. 따라서, 용융금속의 일부 영역과 다른 영역 사이의 높이 차를 발생시키면서 용융금속이 용기(100) 내에 안정적으로 수용될 수 있도록 랜스(410)가 가스를 분사해야 한다.In addition, the energy density delivered by the gas injected from the lance 410 to the surface of the molten metal may be 0.2W / to 4W / ton. If the energy density of the injected gas is less than 0.2W / ton, the gas may not press the molten metal's hot surface, so the height difference may not occur on the hot water surface.If the energy density of the injected gas exceeds 4W / ton, the molten metal in other areas The height of the too high may overflow to the outside of the container 100. Therefore, the lance 410 must inject gas so that the molten metal can be stably received in the container 100 while generating a height difference between some regions of the molten metal and other regions.
이후, 용융금속을 정련하는 과정이 완료되면, 용기(100)를 지지대에서 분리하고, 후속공정이 수행되는 장소로 이동시킬 수 있다.Then, when the process of refining the molten metal is completed, the vessel 100 can be separated from the support, and moved to the place where the subsequent process is performed.
이처럼 용선에 탈황제를 투입하는 탈황공정을 수행하는 경우, 용선에 비대칭 와류를 발생시켜 용선과 탈황제의 반응을 촉진시킬 수 있다. 따라서, 탈황공정의 시간을 단축하여 생산성을 향상시킬 수 있다. 또한, 용기 내부에 별도의 구조물을 설치하지 않고 비대칭 와류를 발생시킬 수 있기 때문에, 구조물의 파손으로 인한 정비작업을 수행하지 않을 수 있고, 용기의 용적이 감소하여 생산성이 저하되는 문제를 방지할 수 있다.As described above, in the case of performing a desulfurization process in which a desulfurization agent is added to the molten iron, an asymmetrical vortex may be generated in the molten iron to promote the reaction between the molten iron and the desulfurizing agent. Therefore, the productivity of the desulfurization process can be shortened. In addition, since an asymmetrical vortex can be generated without installing a separate structure inside the container, maintenance work due to the breakage of the structure can not be performed, and the volume of the container can be reduced to prevent the problem of reduced productivity. have.
도 7은 본 발명의 실시예 및 비교예의 시간에 따른 탈황거동을 나타낸 그래프이고, 도 8은 본 발명의 실시예 및 비교예의 탈황속도정수를 가스의 유량에 따라 비교한 그래프이다. 하기에서는 실험 예를 통해 본 발명을 더욱 상세하게 설명하기로 한다.7 is a graph showing the desulfurization behavior according to the time of Examples and Comparative Examples of the present invention, Figure 8 is a graph comparing the desulfurization rate constant of the Examples and Comparative Examples of the present invention according to the flow rate of the gas. Hereinafter, the present invention will be described in more detail through experimental examples.
우선, 용융금속을 수용하는 용기로 200kg급 실험로를 이용하였고, 전해철 150kg을 용해했다. 용해된 융융금속에 가탄제와 유황을 첨가하여 용융금속이 탄소(C)를 4.5% 함유하고, 황(S)을 0.035% 함유하도록 성분을 조절하였다. 용융금속의 실험온도는 약 1350℃였다. 실험로가 소형이기 때문에 대형로와 유사한 혼합강도를 확보하기 위해 교반기의 회전수는 500rpm을 설정하였다. 교반기와 실험로의 벽체의 중간지점에서 불활성 가스가 분사되도록 랜스를 교반기와 실험로의 벽체 사이의 1/2 지점에 위치시켰다. 이때, 랜스는 내경이 4.57mm인 SUS pipe일 수 있다. 교반기의 회전으로 인한 용융금속의 비산으로 랜스가 막히는 것을 방지하기 위해 용융금속의 탕면에서 약 100mm 상측에 랜스를 설치하였다. 이러한 장비로 4가지 조건의 실험을 진행하였다.First, a 200kg class reactor was used as a container for molten metal, and 150kg of electrolytic iron was dissolved. The molten metal was added with a carbonization agent and sulfur to adjust the components so that the molten metal contained 4.5% of carbon (C) and 0.035% of sulfur (S). Experimental temperature of the molten metal was about 1350 ℃. Since the experimental furnace was small, the rotation speed of the stirrer was set to 500 rpm to secure the mixing strength similar to that of the large furnace. The lance was positioned at the half point between the stirrer and the wall of the furnace so that an inert gas was injected at the midpoint of the wall of the stirrer and the furnace. In this case, the lance may be a SUS pipe having an internal diameter of 4.57 mm. In order to prevent the lance from clogging due to scattering of the molten metal due to the rotation of the stirrer, a lance was installed about 100 mm above the molten metal. These equipments were tested under four conditions.
비교예(또는, 종래예)는 용융금속에 불활성 가스를 분사하지 않으면서 탈황공정을 수행한 것이고, 실시예 1은 용융금속에 불활성 가스인 질소와 환원성 가스인 메탄(CH4)을 혼합하여 8 liter/min으로 분사하면서 탈황공정을 수행한 것이고, 실시예 2는 용융금속에 불활성 가스인 질소를 10 liter/min으로 분사하면서 탈황공정을 수행한 것이고, 실시예 3은 용융금속에 불활성 가스인 질소를 15 liter/min으로 분사하면서 탈황공정을 수행한 것이다. 각 조건에 따라 실험을 진해하면서 용융금속의 샘플을 채취하고, 시간에 따른 용융금속의 유황을 분석하여 탈황속도를 비교하였다. 일반적으로 단위 시간당 탈황속도는 아래의 식 1로 표시된다. Comparative Example (or conventional example) is a desulfurization process without spraying the inert gas to the molten metal, Example 1 is a mixture of inert gas nitrogen and reducing gas methane (CH 4 ) 8 The desulfurization process was performed while spraying at liter / min, and Example 2 was a desulfurization process while spraying nitrogen, which is an inert gas, to the molten metal at 10 liter / min. Desulfurization process was performed while spraying at 15 liters / min. Samples of molten metal were taken while the experiments were carried out according to each condition, and sulfur desulfurization was analyzed over time to compare the desulfurization rates. In general, the desulfurization rate per unit time is expressed by Equation 1 below.
식 1: -d[%S]/dt=Kt*([%S]-[%S]e)Equation 1: -d [% S] / dt = K t * ([% S]-[% S] e )
(여기서, Kt는 겉보기 속도상수, [%S]는 샘플의 유황농도, [%S]e는 평형도달시 유황농도임)Where K t is the apparent rate constant, [% S] is the sulfur concentration of the sample, and [% S] e is the sulfur concentration at equilibrium)
이때, 통상적으로 [%S]e는 값이 매우 작기 때문에, 0으로 간주하고 식 1을 적분하여 정리하면 아래의 식 2가 나온다.At this time, since the value of [% S] e is very small, considering Equation 1 and integrating Equation 1, Equation 2 below appears.
식 2: ln([%S]/[%S]o)=-Kt*tEquation 2: ln ([% S] / [% S] o ) =-K t * t
(여기서, Kt는 겉보기 속도상수, [%S]는 샘플의 유황농도, [%S]o는 초기 유황농도, t는 시간임)Where K t is the apparent rate constant, [% S] is the sulfur concentration of the sample, [% S] o is the initial sulfur concentration, and t is the time
도 7은 비교예, 실시예1, 실시예2, 실시예3의 시간에 따른 탈황거동을 나타낸 그래프이고, 이 그래프의 기울기가 탈황속도 정수이다. 도 7을 참조하면, 실시예들의 경우, 비교예보다 그래프의 기울기가 더 가파르다. 즉, 실시예들이 비교예보다 탈황속도가 빠르다. 이에, 교반되는 용융금속의 일측으로 불활성 가스를 공급하여 비대칭 와류를 발생시키면, 탈황속도가 빨라지는 것을 확인할 수 있다.7 is a graph showing desulfurization behavior according to time of Comparative Example, Example 1, Example 2, and Example 3, and the slope of the graph is a desulfurization rate constant. Referring to FIG. 7, the slope of the graph is steeper than that of the comparative example. That is, the embodiments have a faster desulfurization rate than the comparative example. Thus, by supplying an inert gas to one side of the stirred molten metal to generate an asymmetrical vortex, it can be seen that the desulfurization rate is increased.
또한, 실시예2보다 실시예1 및 실시예2의 탈황속도가 더 빠르다. 이에, 실시예1과 같이 불활성 가스에 환원성 가스를 혼합하여 분사하거나, 실시예3과 같이 시간당 분사되는 불활성 가스의 양을 증가시키면 탈황속도가 더 빨라지는 것을 확인할 수 있다.In addition, the desulfurization rates of Examples 1 and 2 are faster than those of Example 2. Thus, it can be seen that the desulfurization rate is increased by injecting a reducing gas into the inert gas as in Example 1 or by increasing the amount of inert gas injected per hour as in Example 3.
도 8은 용융금속으로 불활성 가스만 공급하는 경우, 및 용융금속으로 불활성 가스와 환원성 가스를 혼합하여 공급하는 경우의 탈황속도정수를 가스의 유량에 따라 비교한 그래프이다. 이때, 불황성 가스로 질소를 사용하였고, 환원성 가스로 메탄을 사용하였다. 도 8을 참조하면, 공급되는 가스의 유량의 적을 때는 불활성 가스와 환원성 가스를 혼합하여 분사하는 것이 불활성 가스만 분사하는 경우보다 탈황속도가 빠르다. 그러나 유량이 증가할수록 불활성 가스만 공급하는 경우, 및 용융금속으로 불활성 가스와 환원성 가스를 혼합하여 공급하는 경우의 탈황속도 차이가 감소하여 차이가 거의 없어지게 된다.8 is a graph comparing the desulfurization rate constant according to the flow rate of the gas when only inert gas is supplied to the molten metal and when the inert gas and the reducing gas are mixed and supplied to the molten metal. At this time, nitrogen was used as the inert gas, and methane was used as the reducing gas. Referring to FIG. 8, when the flow rate of the supplied gas is small, the inert gas and the reducing gas are mixed and sprayed faster than the inert gas only. However, as the flow rate increases, the difference in the desulfurization rate in the case of supplying only the inert gas and in the case of supplying the inert gas and the reducing gas mixed with the molten metal decreases to almost eliminate the difference.
즉, 용융금속의 일측으로 가스를 분사하면 용융금속의 탕면 파동으로 인한 하향류가 발생하고, 하향류가 용융금속으로 처리제가 권입되는 양 및 용융금속 내의 체류시간을 증가시켜 탈황을 촉진하는 것을 확인할 수 있다. 이에, 질소나 메탄 외에 다양한 가스를 분사하여도 탈황을 촉진할 수 있다. 그러나 용선의 성분을 산화시키는 가스는 탈황에 불리하고, 분진을 발생시킬 수 있기 때문에, 불활성 가스를 사용하여 용융금속에 하향류를 발생시킬 수 있다.That is, when gas is injected to one side of the molten metal, the downflow occurs due to the melt surface wave of the molten metal, and the downflow promotes desulfurization by increasing the amount of treatment agent wound into the molten metal and the residence time in the molten metal. Can be. Thus, desulfurization may be promoted by injecting various gases in addition to nitrogen or methane. However, since the gas oxidizing the component of the molten iron is disadvantageous to desulfurization and can generate dust, an inert gas can be used to generate the downflow to the molten metal.
도 9는 본 발명의 실시예 및 비교예의 CaO 이용효율을 비교한 그래프이고, 도 10은 본 발명의 실시예에 따른 불활성 가스의 용선 ton당 교반에너지 밀도, 및 CaO 이용효율 사이의 관계를 나타내는 그래프이다. 하기에서는 다른 실험 예를 통해 본 발명을 더 상세하게 설명하기로 한다. Figure 9 is a graph comparing the CaO utilization efficiency of the Examples and Comparative Examples of the present invention, Figure 10 is a graph showing the relationship between the agitation energy density, and CaO utilization efficiency of the molten iron ton of the inert gas according to an embodiment of the present invention to be. Hereinafter, the present invention will be described in more detail with reference to other experimental examples.
우선, 용융금속을 수용하는 용기로 300ton급 래들을 이용하고, 용융금속인 용선이 장입된 래들의 상측에 교반기와 불활성 가스를 분사하는 랜스를 배치하였다. 랜스가 비산되는 용선에 의해 막히거나 작업성을 고려하여, 랜스는 용선의 탕면에서 1m 이상 상부에 위치시켰다. 예를 들어, 래들의 중심부에서 외각부까지의 거리를 R이라고 하면 랜스는 약 0.4R이 되는 위치에 배치시켰다. 불활성 가스로 질소를 사용하고, 처리제로 분생석회, Al-ash, 형석이 혼합된 원료를 사용하였다. 이러한 설비를 이용하여 랜스의 내경, 랜스와 탕면 사이의 이격거리, 및 불활성 가스의 유량을 다양하게 변경하여 탈황작업을 실시하고, 각 조건에서 용융금속의 샘플을 채취하였다. First, a 300 ton ladle was used as a container for the molten metal, and a lance for injecting a stirrer and an inert gas was placed above the ladle loaded with molten metal, molten metal. In consideration of workability, the lance was placed at least 1 m above the molten iron surface of the molten iron. For example, if the distance from the center of the ladle to the outer shell is R, the lance is positioned at about 0.4R. Nitrogen was used as an inert gas, and the raw material which mixed condensed lime, Al-ash, and fluorspar was used as a processing agent. Using this facility, desulfurization was carried out by varying the inner diameter of the lance, the separation distance between the lance and the hot water surface, and the flow rate of the inert gas, and a sample of molten metal was taken under each condition.
이때, 래들에서 탈황처리 작업을 수행할 때는 중간에 용융금속의 샘플을 채취하기가 어렵다. 즉, 교반기에 의해 샘플을 채취하는 샘플링 장치가 파손될 수 있기 때문에, 탈황처리 작업을 수행하기 전과 후에 샘플을 채취하여 유황농도를 비교하였다.At this time, when performing the desulfurization operation in the ladle it is difficult to take a sample of molten metal in the middle. That is, since the sampling device for taking the sample by the stirrer may be damaged, the sample was taken before and after the desulfurization treatment to compare the sulfur concentration.
그 다음, 처리제 중 CaO가 용융금속 중의 유황과 얼마나 반응했는지 비교하기 위해 CaO 이용효율을 계산하여 비교하였다. CaO 이용효율은 아래의 식 3에 의해 계산될 수 있다.Then, CaO utilization efficiency was calculated and compared to compare how CaO in the treatment reacted with sulfur in the molten metal. CaO utilization efficiency can be calculated by Equation 3 below.
식 3: CaO 이용효율(%)=(([%S]i-[%S]f)/WCaO)*10*(56/32)*100Equation 3: CaO utilization efficiency (%) = (([% S] i -[% S] f ) / W CaO ) * 10 * (56/32) * 100
(여기서, [%S]i는 초기 유황농도, [%S]f는 탈황처리 후 유황농도, WCaO는 용선 ton당 CaO원단위임)Where [% S] i is the initial sulfur concentration, [% S] f is the sulfur concentration after desulfurization, and W CaO is the unit of CaO per ton of molten iron.
CaO 이용효율이 높으면 동일한 양의 CaO를 용융금속으로 투입해도 CaO 이용효율이 낮은 경우보다 CaO가 더 많은 양의 유황과 반응한다. 즉, CaO 이용효율이 높다는 것은 반응효율이 높다는 것을 의미한다. If CaO utilization efficiency is high, even if the same amount of CaO is injected into the molten metal, CaO reacts with more sulfur than if CaO utilization efficiency is low. In other words, high CaO utilization efficiency means high reaction efficiency.
한편, 랜스의 내경, 랜스와 용융금속의 탕면 사이의 이격거리, 및 불활성 가스의 유량을 변경하여 실험을 실시하기 때문에 랜스로부터 공급된 가스에 의한 효과를 일괄적으로 정리할 필요가 있다. 따라서, 랜스의 내경, 랜스와 탕면 사이의 이격거리, 및 불활성 가스의 유량의 조건에 따른 효과를 비교할 수 있는 식을 사용할 수 있다. 랜스에서 공급되는 가스에 의해 용융금속의 표면에 전달되는 교반 에너지는 아래의 식 4에 의해 계산될 수 있다.On the other hand, since the experiment is carried out by changing the inner diameter of the lance, the separation distance between the lance and the hot water surface of the molten metal, and the flow rate of the inert gas, it is necessary to collectively summarize the effects of the gas supplied from the lance. Therefore, it is possible to use an equation that can compare the effects of the inner diameter of the lance, the separation distance between the lance and the water surface, and the conditions of the flow rate of the inert gas. The stirring energy delivered to the surface of the molten metal by the gas supplied from the lance can be calculated by Equation 4 below.
식 4: Ev=((6.32*10-7*cosθ)/V)*((Q3*M)/(d3*h))Equation 4: Ev = ((6.32 * 10 -7 * cosθ) / V) * ((Q 3 * M) / (d 3 * h))
(여기서, Ev는 교반 에너지(W/m3)이고, θ는 랜스의 경각이고, Q는 가스 유동률(Nm3/min)이고, M은 가스분사량이고, V는 용융금속의 부피(m3)이고, d는 랜스의 노즐 직경(m)이고, h는 랜스와 용융금속 사이의 이격거리(m) 임)Where Ev is the stirring energy (W / m 3 ), θ is the angle of lance, Q is the gas flow rate (Nm 3 / min), M is the gas injection rate, and V is the volume of molten metal (m 3 ) D is the nozzle diameter of the lance (m) and h is the separation distance (m) between the lance and the molten metal)
일반적으로 용선은 부피값보다 ton당 값을 많이 사용하기 때문에, 식 4에서 얻어진 값을 용선의 비중(6.7)으로 나누면 용선의 ton당 에너지 밀도를 산출할 수 있다. 식 4를 보면 용선 탕면에 공급되는 에너지 밀도는 가스의 분사량이 증가할수록, 랜스의 노즐 직경은 작을수록, 랜스와 용융금속 사이의 이격거리가 작아질수록 커지는 것을 확인할 수 있다. In general, since molten iron uses more values per ton than the volume value, the energy density per ton of the molten iron can be calculated by dividing the value obtained in Equation 4 by the specific gravity of the molten iron (6.7). Equation 4 shows that the energy density supplied to the molten iron surface increases as the amount of gas injection increases, the smaller the nozzle diameter of the lance, and the smaller the separation distance between the lance and the molten metal.
이때, 랜스와 용융금속 사이의 이격거리가 너무 짧으면 교반기의 회전에 의해 발생되는 용선의 스플래쉬가 랜스에 쉽게 부착되는 문제가 있다. 또한, 랜스의 노즐의 직경이 너무 작으면 지금 부착에 취약해진다. 따라서, 작업성과 정비성을 고려하여 랜스와 용융금속 사이의 이격거리 및 랜스의 노즐의 직경을 선택해야 한다.At this time, if the separation distance between the lance and the molten metal is too short, there is a problem that the splash of the molten iron caused by the rotation of the stirrer is easily attached to the lance. In addition, if the diameter of the nozzle of the lance is too small, it becomes vulnerable to adhesion now. Therefore, the distance between the lance and the molten metal and the diameter of the nozzle of the lance should be selected in consideration of workability and serviceability.
도 9는 탈황처리 전 용선의 유황농도에 따라 불황성 가스를 공급하지 않는 경우(비교예)와 불활성 가스를 공급하는 경우(실시예)의 CaO 이용효율을 비교한 그래프이다. 도 9를 참조하면, 유황의 농도가 높아질수록 CaO 이용효율이 높게 나타나는 경향이 있다. 또한, 용선으로 불활성 가스를 분사하는 경우(실시예)에 불활성 가스를 분사하지 않는 경우(비교예)보다 CaO 이용효율이 약 1.5배 정도 증가한 것을 확인할 수 있다. 따라서, 불활성 가스의 일측으로 불활성 가스를 공급하면 탈황처리 속도가 향상되는 것을 확인할 수 있다.FIG. 9 is a graph comparing CaO utilization efficiency when not supplying inert gas (comparative example) and supplying inert gas (example) according to sulfur concentration of molten iron before desulfurization treatment. Referring to FIG. 9, the higher the concentration of sulfur, the higher the CaO utilization efficiency tends to appear. In addition, when the inert gas is injected into the molten iron (Example), it is confirmed that CaO utilization efficiency is increased by about 1.5 times compared with the case of not injecting the inert gas (Comparative Example). Therefore, it can be seen that when the inert gas is supplied to one side of the inert gas, the desulfurization treatment rate is improved.
도 10은 랜스의 내경, 랜스와 탕면 사이의 이격거리, 및 불활성 가스의 유량의 조건에 따라 분사된 불활성 가스의 용선 ton당 교반에너지 밀도를 계산하고, 평균적인 CaO 이용효율과의 관계를 나타내는 그래프이다. 도 10을 참고하면, 교반 에너지 밀도가 커질수록 CaO 이용효율도 증가하는 것을 확인할 수 있다. 즉, 교반 에너지 밀도와 CaO 이용효율이 비례관계에 있는 것을 확인할 수 있다. 이에, 불활성 가스의 분사량이 증가할수록, 랜스의 노즐 직경은 작을수록, 랜스와 용융금속 사이의 이격거리가 작아질수록 커지는 것을 확인할 수 있다. 10 is a graph showing a relationship between the average CaO utilization efficiency and calculating the agitation energy density per ton of molten inert gas injected according to the condition of the inner diameter of the lance, the separation distance between the lance and the hot water surface, and the flow rate of the inert gas. to be. Referring to FIG. 10, it can be seen that the CaO utilization efficiency also increases as the stirring energy density increases. That is, it can be seen that the stirring energy density and the CaO utilization efficiency are in proportion. Thus, it can be seen that as the injection amount of the inert gas increases, the smaller the nozzle diameter of the lance, the smaller the separation distance between the lance and the molten metal increases.
또한, 불활성 가스를 분사하지 않는 경우(또는, 교반 에너지 밀도가 0인 경우)에도 조업조건에 다른 CaO 이용효율의 불활성 가스를 분사할 때보다 낮다. 따라서, 탈황속도를 향상시키는 효과를 나타내기 위해서는 0.2W/ton 이상의 교반에너지 밀도를 공급할 수도 있도록 가스의 분사량, 랜스의 노즐 직경, 및 랜스와 용융금속 사이의 이격거리 중 적어도 어느 하나를 조절할 수 있다. In addition, even when the inert gas is not injected (or when the stirring energy density is 0), it is lower than when injecting the inert gas having a CaO utilization efficiency which differs depending on the operating conditions. Therefore, in order to exhibit an effect of improving the desulfurization rate, at least one of the injection amount of the gas, the nozzle diameter of the lance, and the separation distance between the lance and the molten metal may be adjusted to supply a stirring energy density of 0.2 W / ton or more. .
이처럼 용선에 탈황제를 투입하는 탈황공정을 수행할 때, 용선의 일측으로 불활성 가스를 공급하면 용선에 비대칭 와류를 발생시켜 용선과 탈황제의 반응을 촉진시키는 확인할 수 있다. 따라서, 탈황공정의 시간을 단축하여 생산성을 향상시킬 수 있다.As described above, when performing the desulfurization process of injecting a desulfurization agent into the molten iron, supplying an inert gas to one side of the molten iron generates an asymmetrical vortex in the molten iron, thereby promoting reaction of the molten iron and the desulfurization agent. Therefore, the productivity of the desulfurization process can be shortened.
이와 같이, 본 발명의 상세한 설명에서는 구체적인 실시 예에 관해 설명하였으나, 본 발명의 범주에서 벗어나지 않는 한도 내에서 여러 가지 변형이 가능하다. 그러므로, 본 발명의 범위는 설명된 실시 예에 국한되어 정해져서는 안되며, 아래에 기재될 특허청구범위뿐만 아니라 이 청구범위와 균등한 것들에 의해 정해져야 한다.As described above, in the detailed description of the present invention, specific embodiments have been described, but various modifications may be made without departing from the scope of the present invention. Therefore, the scope of the present invention should not be limited to the described embodiments, but should be defined not only by the claims described below, but also by equivalents thereof.

Claims (14)

  1. 내부에 용융금속에 수용되는 공간을 형성하는 용기;A container forming a space accommodated in the molten metal therein;
    상기 용기의 내부에 수용되는 용융금속을 교반하도록 상기 용기의 상부에 상하방향으로 이동 가능하게 설치되는 교반기; A stirrer movably installed in a vertical direction to an upper portion of the vessel to agitate molten metal contained in the vessel;
    용융금속을 처리하는 처리제를 공급하도록 상기 용기의 상부에 설치되는 처리제 공급기; 및A treatment agent feeder installed on an upper portion of the vessel to supply a treatment agent for treating molten metal; And
    용융금속의 적어도 일부 영역의 탕면 높이가 다른 영역의 탕면 높이와 달라지도록 상기 용융금속의 적어도 일부 영역으로 가스를 분사 가능하며, 상기 용기의 상부에 위치하는 분사기를; 포함하는 용융금속 처리장치.An injector located at an upper portion of the vessel, capable of injecting gas into at least a portion of the molten metal so that the height of the at least one region of the molten metal is different from that of the other region; Molten metal processing apparatus comprising.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 분사기는,The injector,
    하부방향으로 가스를 분사하는 랜스; 및A lance for injecting gas downward; And
    상기 랜스에 가스를 공급하도록 상기 랜스와 연결되는 가스공급부를; 포함하는 용융금속 처리장치.A gas supply unit connected to the lance to supply gas to the lance; Molten metal processing apparatus comprising.
  3. 청구항 2에 있어서,The method according to claim 2,
    상기 랜스는 상기 용기의 중심부에서 외곽부 사이의 1/5 지점에서 4/5 지점 사이에 배치되는 용융금속 처리장치.And the lance is disposed between one fifth and four fifth points between an outer portion and a central portion of the vessel.
  4. 청구항 2에 있어서,The method according to claim 2,
    상기 랜스는 상기 교반기의 회전방향을 향하여 가스를 분사하는 용융금속 처리장치.The lance is molten metal processing apparatus for injecting gas toward the rotation direction of the stirrer.
  5. 청구항 2에 있어서,The method according to claim 2,
    상기 랜스는 복수개가 구비되고,The lance is provided with a plurality,
    복수의 랜스는 교반기의 일측에만 배치되는 용융금속 처리장치.The plural lances molten metal processing apparatus is disposed only on one side of the stirrer.
  6. 청구항 2에 있어서,The method according to claim 2,
    상기 가스는 불활성 가스를 포함하고,The gas comprises an inert gas,
    상기 가스공급부는, 불활성 가스를 저장하는 제1 저장유닛, 가스가 이동하는 경로를 형성하며, 일단이 상기 랜스에 연결되고 타단이 상기 제1 저장유닛에 연결되는 공급라인, 및 가스를 가열하도록 상기 제1 저장유닛 및 상기 공급라인 중 적어도 어느 하나에 설치되는 가열유닛을; 포함하는 용융금속 처리장치.The gas supply unit forms a first storage unit for storing an inert gas, a path through which gas moves, a supply line having one end connected to the lance and the other end connected to the first storage unit, and the gas to heat the gas. A heating unit installed in at least one of the first storage unit and the supply line; Molten metal processing apparatus comprising.
  7. 청구항 6에 있어서,The method according to claim 6,
    상기 가스공급부는, 환원성 가스를 저장하는 제2 저장유닛을 더 포함하고,The gas supply unit further includes a second storage unit for storing a reducing gas,
    상기 공급라인은, 상기 제1 저장유닛과 연결되는 제1 배관, 상기 제2 저장유닛과 연결되는 제2 배관, 및 일단이 상기 랜스에 연결되고 타단이 상기 제1 배관 및 상기 제2 배관과 연결되는 제3 배관을 포함하는 용융금속 처리장치.The supply line may include a first pipe connected to the first storage unit, a second pipe connected to the second storage unit, and one end connected to the lance and the other end connected to the first pipe and the second pipe. Molten metal processing apparatus comprising a third pipe to be.
  8. 용기에 수용된 용융금속을 처리하는 방법으로서,A method of treating molten metal contained in a container,
    교반기로 상기 용융금속을 교반하고, 용융금속에 처리제를 투입하며, 용융금속의 적어도 일부 영역의 탕면 높이가 다른 영역의 탕면 높이와 달라지도록 용융금속의 적어도 일부 영역으로 가스를 분사하는 과정을 포함하는 용융금속 처리방법.Stirring the molten metal with a stirrer, injecting a treatment agent into the molten metal, and injecting a gas into at least a portion of the molten metal such that the height of the bottom surface of the at least some region of the molten metal is different from that of the other region; Molten metal treatment method.
  9. 청구항 8에 있어서,The method according to claim 8,
    상기 가스를 분사하는 과정은, 용융금속에 하향류를 형성하는 과정을 포함하고,The spraying of the gas may include forming a downflow in the molten metal.
    가스와 용융금속의 탕면이 접촉하는 영역, 및 용융금속의 처리제가 투입되는 영역의 적어도 일부가 중첩되는 용융금속 처리방법.The molten metal processing method which overlaps at least one part of the area | region which a gas and the molten metal surface contact, and the area | region into which the processing agent of molten metal is injected.
  10. 청구항 9에 있어서,The method according to claim 9,
    상기 가스를 분사하는 과정은,The process of injecting the gas,
    상기 용융금속이 교반되는 방향으로 불활성 가스를 분사하는 과정을 포함하는 용융금속 처리방법.Molten metal processing method comprising the step of injecting an inert gas in the direction in which the molten metal is stirred.
  11. 청구항 9에 있어서,The method according to claim 9,
    상기 가스를 공급하는 과정은,The process of supplying the gas,
    가스를 가열한 후 분사하는 과정을 포함하는 용융금속 처리방법.A molten metal processing method comprising the step of heating and then spraying a gas.
  12. 청구항 9에 있어서,The method according to claim 9,
    상기 가스를 분사하는 과정은,The process of injecting the gas,
    불활성 가스를 환원성 가스와 혼합한 후 분사하는 과정을 포함하는 용융금속 처리방법.A molten metal treatment method comprising the step of injecting an inert gas with a reducing gas and then spraying.
  13. 청구항 9에 있어서,The method according to claim 9,
    상기 가스를 분사하는 과정에서In the process of injecting the gas
    가스가 용융금속의 표면에 전달하는 에너지 밀도는 0.2W/ton 이상인 용융금속 처리방법.The method of processing the molten metal gas energy delivered to the surface of the molten metal is more than 0.2W / ton.
  14. 청구항 8 내지 청구항 13 중 어느 한 항에 있어서,The method according to any one of claims 8 to 13,
    상기 용기는 용선을 수용하는 래들을 포함하고, 상기 처리제는 탈황제를 포함하는 용융금속 처리방법.Said container comprising a ladle containing molten iron and said treating agent comprises a desulfurizing agent.
PCT/KR2016/014021 2016-08-04 2016-12-01 Molten metal treatment apparatus and treatment method WO2018026066A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0099525 2016-08-04
KR20160099525 2016-08-04

Publications (1)

Publication Number Publication Date
WO2018026066A1 true WO2018026066A1 (en) 2018-02-08

Family

ID=61073002

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/014021 WO2018026066A1 (en) 2016-08-04 2016-12-01 Molten metal treatment apparatus and treatment method

Country Status (1)

Country Link
WO (1) WO2018026066A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108588318A (en) * 2018-05-22 2018-09-28 武汉钢铁有限公司 Molten iron mechanical agitation efficient low-consume sulfur method
WO2020027582A1 (en) * 2018-08-03 2020-02-06 주식회사 포스코 Molten iron processing apparatus and molten iron processing method
CN114096686A (en) * 2020-05-29 2022-02-25 钻石工程株式会社 Mechanical stirring type desulfurization system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010015070A (en) * 1999-07-05 2001-02-26 에모토 간지 Method of desulfurizing molten iron alloy
JP2003166009A (en) * 2001-11-28 2003-06-13 Kawasaki Steel Corp Desulfurization method for molten pig iron
JP2006336036A (en) * 2005-05-31 2006-12-14 Jfe Steel Kk Method for desulfurizing molten iron
JP2009079261A (en) * 2007-09-26 2009-04-16 Jfe Steel Kk Method for desulfurizing molten pig iron
JP2013095924A (en) * 2011-10-28 2013-05-20 Jfe Steel Corp Method for desulfurizing molten iron

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010015070A (en) * 1999-07-05 2001-02-26 에모토 간지 Method of desulfurizing molten iron alloy
JP2003166009A (en) * 2001-11-28 2003-06-13 Kawasaki Steel Corp Desulfurization method for molten pig iron
JP2006336036A (en) * 2005-05-31 2006-12-14 Jfe Steel Kk Method for desulfurizing molten iron
JP2009079261A (en) * 2007-09-26 2009-04-16 Jfe Steel Kk Method for desulfurizing molten pig iron
JP2013095924A (en) * 2011-10-28 2013-05-20 Jfe Steel Corp Method for desulfurizing molten iron

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108588318A (en) * 2018-05-22 2018-09-28 武汉钢铁有限公司 Molten iron mechanical agitation efficient low-consume sulfur method
CN108588318B (en) * 2018-05-22 2019-11-08 武汉钢铁有限公司 Molten iron mechanical stirring efficient low-consume sulfur method
WO2020027582A1 (en) * 2018-08-03 2020-02-06 주식회사 포스코 Molten iron processing apparatus and molten iron processing method
CN114096686A (en) * 2020-05-29 2022-02-25 钻石工程株式会社 Mechanical stirring type desulfurization system

Similar Documents

Publication Publication Date Title
KR920000524B1 (en) Melting furnace and method for melting metal
WO2018026066A1 (en) Molten metal treatment apparatus and treatment method
JP3972266B2 (en) Method and apparatus for operating a double vessel arc furnace
US4326701A (en) Lance apparatus
KR100266826B1 (en) The steel making process and plant
WO2007100113A1 (en) Blowing lance for refining, blowing lance apparatus for refining, method of desiliconizing of molten iron, and method of pretreatment of molten iron
US3812275A (en) Steel production method and apparatus
WO2016132160A1 (en) Method of making steel using a single installation, and installation
KR101423604B1 (en) Molten steel processing apparatus and the method thereof
JPH02501148A (en) Method for heating molten steel contained in a ladle
WO2018016909A1 (en) Method for refining molten metal in converter
JP7067280B2 (en) Ladle refining method for molten steel
US11549156B2 (en) Smelting assembly for the production of steel
WO2020027582A1 (en) Molten iron processing apparatus and molten iron processing method
TWI703219B (en) Dephosphorization method of hot metal
JP2018506649A (en) Blow lance assembly for metal production and refining
US3961779A (en) Apparatus and method for refining a metal melt
WO2020101360A1 (en) Molten iron production method and apparatus therefor
US6149858A (en) Apparatus for producing steel utilizing an electrical steel making furnace vessel
WO2014058157A1 (en) Impellor and melt-pool processing method using same
KR101818511B1 (en) Method for removing adherent
JP3835358B2 (en) Method for refining molten metal
WO2018038508A1 (en) Method for refining hot metal in convertor
US4341553A (en) Method of, and cupola furnace for, the introduction of treatment agents into cupola iron melts
WO2020101359A1 (en) Molten material treatment method and molten material treatment apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16911727

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16911727

Country of ref document: EP

Kind code of ref document: A1