WO2020101359A1 - Molten material treatment method and molten material treatment apparatus - Google Patents

Molten material treatment method and molten material treatment apparatus Download PDF

Info

Publication number
WO2020101359A1
WO2020101359A1 PCT/KR2019/015465 KR2019015465W WO2020101359A1 WO 2020101359 A1 WO2020101359 A1 WO 2020101359A1 KR 2019015465 W KR2019015465 W KR 2019015465W WO 2020101359 A1 WO2020101359 A1 WO 2020101359A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
refractory
container
melt
slag
Prior art date
Application number
PCT/KR2019/015465
Other languages
French (fr)
Korean (ko)
Inventor
윤상현
이상범
정은주
김완이
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Publication of WO2020101359A1 publication Critical patent/WO2020101359A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs
    • F27D1/16Making or repairing linings increasing the durability of linings or breaking away linings
    • F27D1/1678Increasing the durability of linings; Means for protecting
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/52Manufacture of steel in electric furnaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B3/00Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
    • F27B3/02Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces of single-chamber fixed-hearth type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/52Manufacture of steel in electric furnaces
    • C21C2005/5288Measuring or sampling devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices
    • F27D2019/0006Monitoring the characteristics (composition, quantities, temperature, pressure) of at least one of the gases of the kiln atmosphere and using it as a controlling value
    • F27D2019/0025Monitoring the temperature of a part or of an element of the furnace structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a melt processing method and a melt processing apparatus, and more particularly, to a melt processing method and a melt processing apparatus capable of suppressing or preventing refractory damage of a container in which the melt is charged.
  • the production process of stainless steel includes an electric furnace process, a refining furnace process and a continuous casting process. At this time, due to the time difference between the electric furnace process and the continuous casting process, a waiting time occurs when the furnace body of the refining furnace is operated in the refining furnace process.
  • refractories built up inside the furnace body may be damaged.
  • slag penetrates into the pores of the refractory during the refining process. And after completion of the refining process, the slag remains in the pores of the refractory until the next refining process starts.
  • the temperature of the refractory is gradually cooled from about several thousand to several hundred degrees Celsius, and the slag inside the pores is gradually cooled.
  • the temperature of the slag is about 725 ° C or lower, the phase changes to ⁇ -C 2 S and the volume expands by about 10%. Due to the volume expansion of the slag, cracks are formed inside the refractory material and the refractory material is damaged. That is, in the atmosphere of the furnace body, the slag remaining in the pores of the refractory material expands in volume to generate spalling of the refractory material.
  • Patent Document 1 proposes a method for modifying stainless slag. According to patent document 1, when a boric acid compound is mixed with stainless steel slag, the volume change during cooling of the stainless steel slag can be prevented.
  • Patent Document 1 is difficult to apply to the refining process of stainless steel.
  • the reason for this is as follows. First, the economic efficiency is reduced due to the boric acid compound introduced into the slag for slag modification. Second, when the boric acid compound is added to the slag, damage to the refractory material is accelerated as the melting point of the slag is lowered.
  • a method for improving the refractory life there is a method of lowering the basicity of the slag. For example, if the basicity of the slag is lower than 1.3, the phase transition of the slag to ⁇ -C 2 S at 725 ° C. or less is suppressed, and volume expansion can be suppressed.
  • the refractory material built in the furnace body used in the refining process of stainless steel is dolomite refractory material (CaO-MgO).
  • the dolomite refractory material can react with the slag to increase the basicity of the slag. That is, even if the basicity of the slag is lowered during the refining process, the basicity of the slag rises to the basicity that can cause phase transition by reacting the slag that has penetrated the refractory in the atmosphere of the furnace body and the refractory. Accordingly, the slag is phase-shifted to ⁇ -C 2 S and the volume expands. That is, it is not possible to prevent refractory damage of the furnace body in the air by lowering the basicity of slag during the refining process.
  • Patent Document 1 JP1999-061219 A
  • Patent Document 2 KR10-2011-0019875 A
  • the present invention provides a melt processing method and a melt processing apparatus capable of suppressing or preventing refractory damage of a container in which a melt is charged.
  • Melt processing method charging the melt in a container with an open top, and processing the melt; Discharging the processed melt from the container; Measuring the internal temperature of the container; Including; a process of controlling the internal temperature of the container to be higher than a predetermined reference temperature; and the process of measuring the internal temperature of the container includes a process of measuring the temperature of the refractory material built in the container.
  • measuring the temperature of the refractory may include measuring the surface temperature of the refractory at the height at which the slag is formed.
  • the process of measuring the surface temperature of the refractory may include detecting state information on the surface of the refractory in a non-contact manner and obtaining the surface temperature from the state information.
  • the reference temperature may be higher than the phase transition temperature of the slag.
  • the reference temperature may be determined according to the depth of penetration of the slag to the refractory.
  • the process of detecting the state information on the surface of the refractory material includes a process of photographing a thermal image of the surface of the refractory, and a thermal imaging camera within 20 m from the surface of the refractory material during the process of photographing the thermal image of the refractory surface. Can be separated by a distance.
  • the process of controlling the internal temperature of the container to be higher than the reference temperature includes: comparing the measured temperature with the reference temperature; If the measured temperature is below the reference temperature, the process of heating the inside of the container to a temperature higher than the reference temperature; may include.
  • the process of heating the inside of the container includes tilting the container, spraying a flame inside the container, and after the process of heating the inside of the container, loading a subsequent melt into the container, and And processing the subsequent melt.
  • the melt may include molten steel for manufacturing stainless steel, and the refractory material may include a refractory material having a carbon content of less than 5% by weight of the total weight of the refractory material and a porosity of 20% or less.
  • the upper portion is opened, a container in which a refractory material is built; A lance disposed above the container; A heat source provided on the outside of the container; A temperature measuring unit disposed on the top of the container, supported by the heat source, spaced apart from the refractory, and capable of measuring the temperature of the refractory; It includes; a control unit for controlling the operation of the heat source so that the temperature of the refractory is higher than a predetermined reference temperature.
  • the container has an inlet region, an intermediate region and a lower region, and when the melt is processed, slag is located in the intermediate region, and the temperature measuring unit is configured to measure the surface temperature of the refractory material in the intermediate region. It may be inclined at the top of the container to face the region, or supported by the heat source and inclined relative to the extended direction of the heat source.
  • the temperature measuring unit includes a non-contact temperature measuring device, and the control unit may obtain the surface temperature from state information on the surface of the refractory detected by the non-contact temperature measuring device.
  • the non-contact temperature measuring device may include a thermal imaging camera, and the thermal imaging camera may be spaced within a distance of 20 m from the surface of the refractory material in the intermediate region.
  • the thermal imaging camera may have a hood in front of the lens to narrow the angle of view.
  • the control unit may operate the heat source to spray a flame inside the container when the temperature of the refractory is below a reference temperature.
  • the furnace body of the refining furnace is operated, and when the measured temperature is below a reference temperature by measuring the temperature of the refractory material built in the furnace body during the waiting time, the refractory material is heated to a temperature higher than the reference temperature. That is, the temperature of the refractory can be maintained at a temperature higher than the reference temperature during the waiting time. Accordingly, phase transition and volume expansion of the slag remaining in the pores of the refractory can be suppressed. Accordingly, occurrence of spalling of the refractory can be suppressed or prevented.
  • FIG. 1 is a schematic diagram of a melt processing apparatus according to an embodiment of the present invention.
  • FIG. 2 is a schematic view of a melt processing apparatus according to a modification of the present invention.
  • FIG. 3 is a flow chart of a melt processing method according to an embodiment of the present invention.
  • FIG. 4 is a phase equilibrium diagram of a slag according to an embodiment of the present invention.
  • FIG. 5 is a thermal image photographing a furnace refractory furnace in a refining process in a refining process according to an embodiment of the present invention.
  • FIG. 6 is a graph for explaining the change in the life of the refractory according to an embodiment of the present invention.
  • melt processing method and the melt processing apparatus according to the embodiment of the present invention can be variously applied to various processing processes for processing various melts contained in a refractory container in various ways.
  • FIG. 1 is a schematic diagram of a melt processing apparatus according to an embodiment of the present invention.
  • 2 is a schematic view of a melt processing apparatus according to a modification of the present invention.
  • FIG. 1 omits the burner of the melt processing apparatus, and
  • FIG. 2 shows only the container, burner, and temperature measurement unit of the melt processing apparatus.
  • the melt processing apparatus the top is open, a container in which the refractory 12 is built, a lance 30 disposed on the top of the container, a heat source provided on the outside of the container, the container Is disposed on the top, supported by a heat source, spaced apart from the refractory 12, a temperature measuring unit capable of measuring the temperature of the refractory 12, the temperature of the refractory 12 is higher than a predetermined reference temperature of the heat source And a control unit (not shown) that controls operation.
  • the container may include a furnace body 10 of a refining furnace capable of accommodating and melting molten steel as a reactor capable of receiving a melt and processing in various ways.
  • the molten steel is, for example, a molten steel for manufacturing stainless steel manufactured in an electric furnace process
  • the furnace body 10 may be a furnace body 10 of an Argon Oxygen Decarburization (AOD) refining furnace.
  • AOD Argon Oxygen Decarburization
  • the furnace body 10 may have an internal space.
  • the molten steel can be accommodated in the interior space.
  • the furnace body 10 may be formed with a furnace opening open at the top.
  • the lance 30 may be disposed on the top of the furnace body 10 to penetrate the furnace sphere in the vertical direction.
  • a nozzle (not shown) may be installed to penetrate the lower portion of the furnace body 10 in a horizontal direction.
  • Oxygen gas may be blown into the furnace body 10 through the lance 30.
  • Argon gas can be blown into the furnace body 10 through the nozzle.
  • the molten steel can be blown with argon gas and oxygen gas. During the blowing of molten steel, the content of carbon, oxygen and sulfur components in molten steel can be adjusted. At this time, a deoxidizing agent, a desulfurizing agent, and a flux may be introduced into the furnace body 10.
  • the furnace body 10 may include an iron shell 11 and a refractory material 12.
  • the shell 11 may have a bottom plate extending in a horizontal direction and a side wall extending upward from the periphery of the bottom plate.
  • the bottom plate may have a disc shape.
  • the side wall may have a cylindrical shape with a convex center.
  • the side wall has a horizontal axis (not shown) connected to the center, and the skin 11 can be tilted about the horizontal axis.
  • the refractory material 12 may be constructed on the inner surface of the iron shell 11.
  • the refractory material 12 may include a refractory material having a carbon content of less than 10% by weight of the total weight of the refractory material and a porosity of 20% or less.
  • the refractory material 12 may include a refractory material having a carbon content of less than 5% by weight of the total weight of the refractory material and a porosity of 20% or less.
  • the carbon content of the refractory material 12 is less than 10% by weight of the total weight of the refractory material, slag may penetrate into the pores of the refractory material 12.
  • the porosity of the refractory 12 exceeds 20%, refractory erosion may increase.
  • the refractory material 12 may have various components and porosity depending on the type of melt.
  • the type of refractory material may be various, such as dolomite refractories (CaO-MgO refractories), magron refractories (MgO-Cr 2 O 3 refractories), and carbon-containing refractories.
  • CaO-MgO refractories dolomite refractories
  • MgO-Cr 2 O 3 refractories magron refractories
  • carbon-containing refractories carbon-containing refractories.
  • the entire region D of the furnace body 10 may include a plurality of partial regions arranged in the vertical direction.
  • the furnace body 10 may include an entrance region D3, an intermediate region D2, and a lower region D1 in a direction from top to bottom.
  • the inlet area D3 may gradually increase its inner diameter downward.
  • the inner diameter of the lower region D1 may gradually decrease downward.
  • the middle region D2 may connect the lower region D1 and the inlet region D3. In the middle region D2, the inner diameter may be constant in the vertical direction, or the inner diameter may gradually increase and decrease again as it goes downward.
  • the molten steel may be charged into the inner space of the furnace body 10 through the inlet region D3, and may be accommodated in the lower region D1 and the middle region D2 of the furnace body 10.
  • slag may be formed on the molten metal surface.
  • the slag may be located in the intermediate region D2. Therefore, the slag can easily penetrate the pores of the refractory material 12 in the intermediate region D2.
  • the refractory 12 in the middle region D2 of the furnace body 10 may be referred to as a slag penetration region.
  • the slag may include stainless steel slag having a basicity of 1.3 or higher.
  • Stainless steel slag refers to slag produced during the refining process of stainless steel.
  • the basicity of slag can vary continuously during the processing of molten steel.
  • a heat source (also referred to as a “heat supply source”) may be provided outside the furnace body 10.
  • the heat source may include a burner 70, for example.
  • the heat source may include various heat supply devices such as heat pipes and heating wires.
  • Burner 70 may extend in a horizontal direction.
  • the burner 70 may be supplied with at least one of liquefied petroleum gas and liquefied natural gas and at least one of oxygen and air to generate a flame F and spray the inside of the furnace body 10. At this time, the furnace body 10 may be tilted so that the furnace tool faces the burner 70.
  • the temperature measuring unit may include a non-contact temperature measuring device.
  • the non-contact temperature meter may include a thermal imaging camera 60 and an infrared thermometer.
  • the non-contact temperature measuring device may include various non-contact thermometers, in addition to the thermal imaging camera 60 and the infrared thermometer. Since the temperature measuring unit is a non-contact temperature measuring device, thermal disturbance can be prevented during temperature measurement.
  • the thermal disturbance means, for example, a thermal disturbance according to heat loss that may occur on the surface of the refractory material upon contact between the refractory material and the contact temperature measuring device.
  • the thermal imaging camera 60 and the infrared thermometer may be spaced apart from the refractory 12.
  • the thermal imaging camera 60 and the infrared thermometer can measure the temperature of the refractory 12, specifically the surface temperature of the refractory 12.
  • the thermal imaging camera 60 may measure the surface temperature of the refractory 12 in the form of a thermal image by photographing a thermal image of the surface of the refractory 12. At this time, the thermal imaging camera 60 may take a thermal image of the surface of the refractory 12 in the middle region D2 of the furnace body 10. That is, a thermal image of the slag penetration region, which is a partial region where the slag penetrates, can be captured in the entire region of the surface of the refractory 12.
  • the infrared thermometer measures the infrared radiation energy of the surface of the refractory 12 to obtain the surface temperature of the refractory 12 in the form of energy intensity and wavelength distribution. At this time, the infrared thermometer can obtain the energy intensity and wavelength distribution of infrared radiation energy for a predetermined location of the slag penetration region.
  • the furnace body 10 may be a shape that rotates symmetrically around the vertical axis (not shown) passing through the center of the furnace body 10. Accordingly, the temperature of the refractory material 12 in the slag penetration region in the circumferential direction of the furnace body 10 may be the same or similar. That is, when the thermal imaging camera 60 photographs the thermal image of the slag penetration region, the thermal image of the thermal image photographed at the same position in the circumferential direction of the furnace body 10 is thermal image at a different height from the same height The temperature distribution of the thermal image photographed with may be the same or similar to each other.
  • the control unit when the thermal imaging camera 60 photographs the thermal image of the slag penetration region, the control unit, even if the thermal image at any position in the circumferential direction of the furnace body 10, the refractory of the slag penetration region from the captured thermal image ( The surface temperature of 12) can be accurately known.
  • the thermal imaging camera 60 may be disposed on the top of the furnace body 10 or supported by the burner 70.
  • the thermal imaging camera 60 according to an embodiment of the present invention can measure the surface temperature of the refractory 12 of the intermediate region D2 of the furnace body 10 so as to measure the surface temperature of the furnace body 10.
  • the thermal imaging camera 60 may face the intermediate region D2 of the furnace body 10 in an inclined manner and measure the surface temperature of the refractory material 12 in the intermediate region D2. Referring to FIG.
  • the thermal imaging camera 60 allows the burner 70 to be described later to measure the surface temperature of the refractory 12 in the middle region D2 of the furnace body 10
  • the burner 70 may be inclined with respect to the extended direction. Accordingly, the thermal imaging camera 60 may tilt the middle region D2 of the furnace body 10 when the furnace body 10 is tilted, and measure the surface temperature of the refractory material 12 in the middle region D2. .
  • the thermal imaging camera 60 may take a thermal image of the surface of the refractory 12. At this time, as the thermal imaging camera 60 moves away from the surface of the refractory 12, an error in the surface temperature of the thermal image and the refractory 12 captured by the thermal imaging camera 60 may occur. Accordingly, the thermal imaging camera 60 may be spaced within 30 m from the surface of the refractory 12 in the intermediate region D2 of the furnace body 10. Preferably, the thermal imaging camera 60 may be spaced within 20 m from the surface of the refractory 12 in the middle region D2 of the furnace body 10. That is, the distance L between the thermal imaging camera 60 and the surface of the refractory 12 in the intermediate region D2 of the furnace body 10 may be within 20 m.
  • the thermal imaging camera 60 is farther than 20 m from the surface of the refractory 12 in the intermediate region D2 of the furnace body 10, the accuracy of the thermal imaging may deteriorate.
  • the thermal imaging camera 60 is farther than 30 m from the surface of the refractory 12 in the middle region D2 of the furnace body 10, due to interference with structures around the furnace body 10, the thermal imaging camera 60 Deployment can be difficult.
  • the thermal camera 60 classifies the subject in the photographing area by temperature, and the pixels of the thermal image are color-coded according to temperature. At this time, as the size of the photographing area is smaller, the thermal imaging camera 60 can clearly distinguish the temperature profile of the subject. For example, if the size of the imaging area of the thermal imaging camera 60 is large, the temperature variation in the imaging area is large, and the thermal imaging of the surface of the refractory 12 is complicated. If the size of the imaging area of the thermal imaging camera 60 is small, the temperature deviation in the imaging area is small, and the thermal image on the surface of the refractory 12 becomes relatively simple.
  • the thermal imaging camera 60 may be provided with a lens hood (not shown) in front of the lens to reduce the size of the imaging area, that is, to narrow the angle of view of the lens (not shown) of the thermal imaging camera 60.
  • the lens hood may have various shapes such as a circular lens hood and a square lens hood.
  • the lens hood is a hollow cylindrical shape, and is mounted to surround the lens, and can be extended to the front of the lens.
  • the lens hood narrows the angle of view of the thermal imaging camera 60, and the thermal imaging camera 60 can locally photograph the surface of the refractory 12 in the middle section D2 of the furnace body 10.
  • the control unit may control the operation of the burner 70 so that the temperature of the refractory material 12 is higher than the reference temperature.
  • the control unit may obtain the surface temperature of the refractory 12 from state information on the surface of the refractory 12 detected by the non-contact temperature measuring device.
  • the control unit may acquire the surface temperature of the refractory 12 from a thermal imaging photograph of the surface of the refractory 12 photographed by the thermal imaging camera 60. have.
  • the control unit may acquire the surface temperature of the refractory 12 from the infrared radiation energy of the surface of the refractory measured by the infrared thermometer.
  • the control unit When the surface temperature of the refractory material 12 is equal to or lower than the reference temperature, the control unit operates the burner 70 to rotate the above-described horizontal axis to incline the furnace body 10 and spray flame F into the furnace body 10. I can do it.
  • the control unit receives a thermal image from the thermal imaging camera 60, reads the color of the pixels of the thermal image input, and at least one pixel displayed in a color corresponding to a temperature below a reference temperature among the pixels If it is abnormal, it is determined that the surface temperature of the refractory material 12 in the slag penetration region is below the reference temperature. When it is determined that the surface temperature of the refractory material 12 in the slag penetration region is equal to or lower than the reference temperature, the controller controls the operation of the horizontal axis described above to tilt the furnace body 10, and the flame (F) inside the furnace body 10 It can operate the burner 70 to spray.
  • the control unit receives the energy intensity and wavelength distribution of infrared radiation energy from the infrared thermometer, and if the received energy intensity or wavelength distribution is the energy intensity or wavelength distribution of infrared radiation energy corresponding to a temperature below the reference temperature, the slag penetration area It is determined that the surface temperature of the refractory material 12 is below the reference temperature.
  • the controller controls the operation of the horizontal axis described above to tilt the furnace body 10, and the flame (F) inside the furnace body 10 It can operate the burner 70 to spray.
  • the melt processing apparatus is installed to surround the furnace sphere of the furnace body 10, the hood 20 through which the lance 30 penetrates in the vertical direction, the hopper 40 installed on the outside of the hood 20, the hopper 40 It is connected to, extending toward the furnace of the furnace body 10, may further include a chute (50) installed to penetrate the hood (20).
  • the inside of the hood 20 may be opened downward.
  • the hood 20 may extend in the vertical direction.
  • the lance 30 may be installed to penetrate the hood 20 in the vertical direction.
  • the hood 20 may have negative pressure formed therein.
  • the hood 20 may extract gas from the furnace port of the furnace body 10 using negative pressure.
  • the thermal imaging camera 60 may be located inside the hood 20.
  • the hopper 40 may be a plurality.
  • the hopper 40 may be stored in the input.
  • the input may include a deoxidizing agent, a desulfurizing agent and a flux. At this time, the input may be various types depending on the process performed in the furnace body (10).
  • a deoxidizing agent, a desulfurizing agent, and a flux may be stored in the hopper 40, respectively.
  • a valve (not shown) is provided at the bottom of the hopper 40, and when the valve is opened, an input may be supplied to the chute 50.
  • the chute 50 may be installed such that one end is branched and connected to the lower portion of the hopper 40, the other end extends toward the furnace, and penetrates the lower portion of the hopper 20.
  • the input may be charged into the furnace body 10 through the chute 50.
  • the thermal imaging camera 60 may be supported at the other end of the suit 50. Of course, the thermal imaging camera 60 may be supported on the inner wall of the hood 20.
  • FIG 3 is a flow chart of a melt processing method according to an embodiment of the present invention.
  • Figure 4 is a phase equilibrium diagram of a slag according to an embodiment of the present invention
  • Figure 5 (a) and (b) is a thermal imaging photograph of the furnace body refractory by refining in the refining process according to the embodiment of the present invention to be.
  • Figure 6 is a graph for explaining the change in the life of the refractory according to an embodiment of the present invention.
  • the method of processing a melt includes charging a melt in a container with an open top, processing a melt, discharging a processed melt from a container, measuring an internal temperature of the container, and And controlling the internal temperature to be higher than a predetermined reference temperature.
  • the process of measuring the internal temperature of the container includes a process of measuring the temperature of the refractory material built in the container.
  • the melt processing method may include a process of controlling the internal temperature of the container to be higher than a predetermined reference temperature, charging the subsequent melt in the container, and processing the subsequent melt.
  • the melt may include molten steel for manufacturing stainless steel.
  • Stainless steel for manufacturing stainless steel can be produced in an electric furnace process.
  • the molten steel for the production of stainless steel produced in the electric furnace process may also be referred to as molten metal.
  • the melt may vary.
  • the container may include a furnace body 10 of a refining furnace capable of receiving and blowing molten steel.
  • the furnace body 10 may be the furnace body 10 of the AOD refining furnace.
  • the refractory material 12 constructed inside the furnace body 10 may include a refractory material having a porosity of 20% or less and a carbon content of less than 5% by weight of the total weight of the refractory material.
  • slag may be generated inside the furnace body 10.
  • the slag may be located inside the middle region D2 of the furnace body 10, and a slag layer may be formed at a predetermined thickness on the molten metal melt surface. The slag can contact the refractory 12 in the middle region D2 of the furnace body 10.
  • the slag may include stainless steel slag having a basicity of 1.3 or higher.
  • the slag may include calcium oxide (CaO) and silicon dioxide (SiO 2 ).
  • CaO calcium oxide
  • SiO 2 silicon dioxide
  • Slag has various phases according to temperature according to the basicity (C / S), which is an index indicating the ratio of calcium oxide and silicon dioxide.
  • Figure 4 is a diagram of the equilibrium slag according to an embodiment of the present invention, specifically, FIG equilibrium CaO-SiO 2 2-component system phase.
  • the content of silicon dioxide in the slag is large when going to the right, and the content of calcium oxide in the slag is large when going to the left.
  • the vertical axis of the drawing is the temperature axis.
  • the hatched square region is a region where the slag has a basicity of 1.3 or more.
  • the basicity of the slag is controlled in the range of 1 to 3.
  • 2CaO ⁇ SiO 2 (Dicalcium silicate, C 2 S) in the condition of the basicity of the slag is about 1.3 or higher, phase transitions from ⁇ -C 2 S to ⁇ ⁇ -C 2 S as the temperature of the slag decreases, and is about 725 ° C.
  • C 2 S density before and after the phase change becomes lower as the density is 2.97g / cm 3 eseo 3.31g / cm 3.
  • a decrease in density at the same mass means volume expansion.
  • the C 2 S phase of the slag before and after the phase transition undergoes a volume expansion of 10% or more, and powdering is performed. This is called slag differentiation.
  • spalling of the refractory occurs by expansion of the C 2 S phase of the slag that has penetrated into the pores of the refractory 12.
  • the C 2 S phase of the slag that has penetrated the pores of the refractory 12 is a high-melting-point phase, and when the above-described phase transition is suppressed, it can act as a protective layer. That is, the C 2 S phase of the slag fills up the pores of the refractory 12 and prevents the penetration of the later slag without volume expansion.
  • a molten material such as molten steel is charged into the furnace body 10, and oxygen and argon are blown into the furnace body 10 through the lance 30 and the nozzle to blow the molten material.
  • the melt can be blown with argon gas and oxygen gas.
  • the content of carbon, oxygen and sulfur components contained in the melt can be adjusted.
  • a deoxidizing agent, a desulfurizing agent, and a flux may be introduced into the furnace body 10.
  • a process of discharging the melted material from the furnace body 10 is performed (S100).
  • S100 a process of discharging the melted material from the furnace body 10 is performed.
  • the furnace body 10 is tilted, and the treated melt in the furnace body 10 is discharged to a ladle (not shown).
  • a ladle not shown
  • slag is formed on top of the melt.
  • slag exclusion means that the furnace body 10 is tilted to discharge the slag in the furnace body 10 to a slag port (not shown).
  • the process of measuring the internal temperature of the furnace body 10 includes a process of measuring the temperature of the refractory material 12 built in the furnace body 10.
  • the temperature of the refractory 12 is measured in a non-contact manner using a thermal imaging camera 60 as a temperature measuring unit or an infrared thermometer.
  • a thermal image of the surface of the refractory 12 is photographed to measure the surface temperature of the refractory 12 at the height at which the slag is formed in the form of a thermal image.
  • the surface temperature of the refractory body 12 at the height at which the slag is formed in the form of energy intensity and wavelength distribution is measured.
  • the process of measuring the surface temperature of the refractory material includes detecting a state information on the surface of the refractory material in a non-contact manner using a non-contact temperature measuring device and obtaining a surface temperature of the refractory material from the state information.
  • the status information may be varied, including thermal imaging and infrared radiation energy on the surface of the refractory. Therefore, the process of detecting the state information on the surface of the refractory material includes the process of taking a thermal image of the surface of the refractory material, and the process of obtaining the surface temperature from the detected state information is performed by the surface temperature from the captured thermal image photograph. It may include the process of obtaining a. At this time, the thermal image camera 60 may continuously photograph the thermal image of the refractory surface, or periodically photograph at a predetermined time interval.
  • the process of detecting the state information on the surface of the refractory material includes measuring the infrared radiation energy of the surface of the refractory material, and the process of obtaining the surface temperature of the refractory material from the detected state information is measured infrared radiation energy It may include the process of obtaining the surface temperature using at least one of the energy intensity and wavelength distribution of.
  • the reference temperature is defined as the surface temperature of the refractory 12 when the internal temperature of the refractory substance 12 is a temperature capable of preventing the spalling of the slag penetrating the refractory substance 12.
  • the reference temperature may be determined in advance by reflecting the penetration depth of the slag in the phase transition temperature of the slag, and may be input to the control unit.
  • the phase transition temperature of the slag means a temperature at which the C 2 S phase of the slag phase changes from ⁇ ⁇ -C 2 S to ⁇ -C 2 S.
  • the phase transition temperature may be a predetermined temperature value around 725 ° C.
  • the reason for measuring the surface temperature of the refractory 12 is to control the surface temperature of the refractory 12 to be higher than the reference temperature.
  • the reference temperature is higher than the phase transition temperature of the slag. The reason for this is as follows.
  • the refractory material 12 built in the furnace body 10 has a high temperature on the inner surface toward the inner space of the furnace body 10, and a temperature gradually decreases in the direction toward the iron shell 11 of the furnace body 10. Therefore, even if the surface temperature of the refractory 12 is higher than the phase transition temperature of the slag, the internal temperature of the refractory 12 may be lower than the phase transition temperature of the slag. In this case, slag penetrating deep inside the refractory 12 may be differentiated. That is, when the surface temperature of the refractory material 12 becomes a reference temperature or higher than the phase transition temperature of the slag, it is preferable to heat the refractory material 12 of the furnace body 10.
  • the reference temperature higher than the phase transition temperature of the slag
  • the phase transition temperature of the slag is about 725 ° C
  • the reference temperature is greater than 725 ° C
  • the deeper the penetration depth of the slag the greater the reference temperature. That is, the reference temperature may be proportional to the depth of penetration of the slag penetrating into the interior of the refractory 12 from the surface of the refractory 12 through the pores of the refractory 12.
  • the reference temperature can be determined according to the depth of penetration of the slag to the refractory material 12.
  • porosity, penetration depth, and reference temperature are proportional to each other.
  • the depth through which the slag penetrates may be about 50 mm from the surface of the refractory 12. As the porosity increases, the penetration depth becomes deeper, and as the porosity decreases, the penetration depth may decrease.
  • the depth of penetration can be obtained by inspecting the refractory 12 built in the furnace body 10 at the end of the refining process.
  • a refining experiment may be performed similarly to the refining furnace process using an experimental apparatus simulating the furnace body 10, and the depth of penetration of the slag may be obtained by inspecting the refractory of the experimental apparatus.
  • the penetration depth can be theoretically determined by using physical properties of the refractory material 12 and slag during the refining process.
  • the reference temperature may be set to 1100 ° C.
  • the temperature gradually decreases as it moves away from the surface of the refractory material 12, and the temperature of a portion 50 mm deep from the surface of the refractory material 12 is 725 ° C at a temperature higher than 725 ° C. Even close to, it can be maintained at a temperature higher than 725 ° C.
  • the reference temperature can be set to 1300 ° C. Accordingly, when the surface temperature of the refractory material 12 is 1300 ° C, the temperature of a portion 50 mm deep from the surface of the refractory material 12 can be maintained at a temperature higher than 725 ° C. In addition, if the surface temperature of the refractory 12 is 1300 ° C, even if the slag penetrates deeper into the refractory 12 than 50 mm for reasons such as an increase in porosity of the refractory 12, the temperature of the portion where the slag penetrated is increased. It can be maintained at a temperature higher than 725 ° C.
  • the thermal imaging camera 60 is separated from the surface of the refractory 12 by a distance within 20 m. That is, the distance between the surface of the refractory 12 and the thermal imaging camera 60 is within 20 m. Thus, it is possible to secure the accuracy of the photographed thermal image.
  • FIGS. 5 (a) and (b) are thermal imaging photographs of the furnace body refractory material in a refining process according to an embodiment of the present invention. Performing a smelting furnace process to which the melt processing method according to an embodiment of the present invention is applied, and taking a thermal image of the surface of the refractory 12 with a thermal imaging camera 60, as shown in FIGS. 5 (a) and 5 (b). I was able to get a thermal image.
  • FIG. 5 (b) is a thermal image of the surface of the refractory film 12 after a predetermined time has passed after discharging the melt, and the temperature of spot 1 is 822 ° C, and the temperature of spot 2 is 822 It appears that it is °C.
  • FIG. 5 (b) is a thermal image of the surface of the refractory film 12 after a predetermined time has passed after discharging the melt, and the temperature of spot 1 is 822 ° C, and the temperature of spot 2 is 822 It appears that it is °C.
  • FIG. 5 (b) is a thermal image of the surface of the refractory film 12 after a predetermined time has passed after discharging the melt, and the temperature of spot 1 is 822 ° C, and the temperature of spot 2 is 822 It appears that it is °C.
  • FIG. 5 (b) is a thermal image of the surface of the refractory film 12 after a predetermined time has passed after discharging the melt, and the temperature of spot 1 is
  • a thermal image of the surface of the refractory 12 is photographed by the thermal image camera 60 to generate a thermal image and send it to the control unit to perform the following process.
  • the control unit reads the color of the pixels of the thermal image received from the thermal imaging camera 60, and if there is at least one pixel of a color corresponding to a temperature below a reference temperature, the refractory material of the slag penetration area ( It is judged that the surface temperature of 12) is below the reference temperature. On the other hand, if there is no pixel displayed in a color corresponding to a temperature below the reference temperature among the pixels of the thermal image, the controller determines that the surface temperature of the refractory material 12 in the slag penetration region is higher than the reference temperature.
  • control unit compares the energy intensity and wavelength distribution of the infrared radiation energy received from the infrared thermometer with the energy intensity and wavelength distribution of the infrared radiation energy corresponding to a temperature below the reference temperature, so that the energy intensity or wavelength of the received infrared radiation energy If the distribution is included in the energy intensity or wavelength distribution of infrared radiation energy corresponding to a temperature below the reference temperature, it is determined that the surface temperature of the refractory material 12 in the slag penetration region is below the reference temperature.
  • the control unit may adjust the surface temperature of the refractory material 12 in the slag penetration region. It is judged that it is higher than the reference temperature.
  • the inside of the furnace body 10 is heated to a temperature higher than the reference temperature (S400).
  • the process of heating the inside of the furnace body 10 includes tilting the furnace body 10 and spraying flames inside the furnace body 10.
  • a heat source such as a burner 70 is disposed to face the inside of the furnace body 10, and a flame is injected into the furnace body 10 using the burner 70.
  • flame spraying may continue until the subsequent melt is ready. Thereafter, when the subsequent melt is prepared, the burner 70 is stopped to stop the injection of the flame F. Subsequently, a subsequent melt is charged to the furnace body 10, and subsequent melt processing is started. Alternatively, the flame is sprayed for a predetermined time, and the flame is temporarily stopped, and then it is determined whether the subsequent melt is ready (S500). If the subsequent melt is not ready, the above-described temperature measurement process inside the container is repeated. When the subsequent melt is ready, the burner 70 is stopped to stop spraying the flame F. Subsequently, a subsequent melt is charged to the furnace body 10 and subsequent melt processing is started (S600).
  • the control unit determines whether a subsequent melt is prepared (S500). If the subsequent melt is not ready, the temperature measurement process inside the vessel is repeated. When the subsequent melt is ready, the burner 70 is stopped to terminate the injection of the flame F, the melt is charged into the furnace body 10, and processing of the subsequent melt is started (S600).
  • the slag that has penetrated into the pores of the slag 12 is cooled in the atmosphere of the furnace body 10 and can be prevented or prevented from being expanded in volume while being phase-shifted. That is, slag differentiation can be suppressed or prevented by the above-described process.
  • the furnace body 10 is controlled to have an internal temperature of about 2000 ° C.
  • the temperature of the furnace body 10 has a temperature of about 1700 ° C to 1800 ° C.
  • the temperature of the flame injected from the burner 70 is around 1300 ° C. Accordingly, if the flame is injected into the furnace body 10 immediately after discharging the melt from the furnace body 10, the furnace body 10 can be rapidly cooled to about 1300 ° C. by the flame.
  • increasing the proportion of oxygen supplied to the burner 70 to increase the flame temperature of the burner 70 to about 1700 ° C to 1800 ° C there is a safety problem, and the tip of the burner 70 may be damaged by high heat. have.
  • the furnace body 10 waits while the furnace body 10 waits until after the treatment of the melt is completed and discharged from the furnace body 10 at this time until a subsequent melt of the next cycle is prepared. It is possible to control the temperature of the refractory material 12 built in the interior to be higher than the reference temperature.
  • the surface temperature of the refractory 12 may be measured in real time using a thermal imaging camera 60 in a non-contact manner, and the surface temperature of the refractory 12 may be measured using the measurement result. It is possible to control the operation of the burner 70 so that it is always higher than the reference temperature.
  • the temperature of the refractory 12 can be maintained at all times above the critical temperature at which spalling does not occur. Therefore, while the furnace body 10 is in standby, spooling of the refractory 12 can be suppressed or prevented, and the life of the refractory 12 can be improved. That is, the furnace body 10 can be used smoothly without changing the refractory material and process conditions.
  • the X-axis of the graph refers to the furnace of the refining furnace
  • the Y-axis refers to the life of the refining furnace.
  • one refining furnace furnace is made of a plurality of times, for example, several hundred to several thousand times.
  • the refractory 12 of the furnace body 10 is rebuilt. Subsequently, the next refining furnace performs multiple rounds of the furnace.
  • the condition of the refractory material 12 is good, the number of rounding steps of the refining furnace furnace increases.
  • the line A of the graph shows a smelting furnace process of stainless steel by the above-described melt treatment method according to an embodiment of the present invention, and represents the number of rounding furnace furnace furnace processes by smelting furnace life.
  • the B line of the graph shows the number of rounding furnace processes by furnace smelt as the life of the smelter while performing the smelter process with the melt processing method according to the comparative example of the present invention.
  • Melt processing method according to a comparative example of the present invention the process of measuring the internal temperature of the furnace body 10 in the above-described melt processing method according to an embodiment of the present invention, the internal temperature of the furnace body 10 is higher than the reference temperature Control was excluded.

Abstract

The present invention relates to a molten material treatment method and a molten material treatment apparatus used therefor, the molten material treatment method comprising the steps of: charging a receptacle, which has an open top part, with a molten material and treating the molten material; discharging the treated molten material from the receptacle; measuring the internal temperature of the receptacle; and controlling the internal temperature of the receptacle to be higher than a reference temperature. Presented are a molten material treatment method and a molten material treatment apparatus which can inhibit or prevent damage to refractories of a receptacle charged with a molten material.

Description

용융물 처리 방법 및 용융물 처리 장치Melt processing method and melt processing apparatus
본 발명은 용융물 처리 방법 및 용융물 처리 장치에 관한 것으로서, 더욱 상세하게는 용융물이 장입되는 용기의 내화물 손상을 억제 혹은 방지할 수 있는 용융물 처리 방법 및 용융물 처리 장치에 관한 것이다.The present invention relates to a melt processing method and a melt processing apparatus, and more particularly, to a melt processing method and a melt processing apparatus capable of suppressing or preventing refractory damage of a container in which the melt is charged.
스테인리스강(STS)의 생산 공정은 전기로 공정, 정련로 공정 및 연속주조 공정을 포함한다. 이때, 전기로 공정과 연속주조 공정의 시간 차이로 인하여, 정련로 공정에서 정련로의 노체를 운용할 때 대기 시간이 발생한다.The production process of stainless steel (STS) includes an electric furnace process, a refining furnace process and a continuous casting process. At this time, due to the time difference between the electric furnace process and the continuous casting process, a waiting time occurs when the furnace body of the refining furnace is operated in the refining furnace process.
노체의 대기 중에, 노체의 내부에 구축된 내화물이 손상될 수 있다. 예컨대 정련로 공정 중에 내화물의 기공에 슬래그가 침투한다. 그리고 정련로 공정의 종료 이후 다음 정련로 공정이 시작될 때까지 슬래그는 내화물의 기공에 잔류한다. 내화물은 온도가 약 수천℃에서 수백℃까지 점차 자연 냉각되고, 기공 내부의 슬래그도 점차 냉각된다. 슬래그는 온도가 약 725℃ 이하로 되면 γ-C2S로 상전이되며 부피가 10% 정도 팽창한다. 슬래그의 부피 팽창에 의하여 내화물 내부에 균열이 생기며 내화물이 손상된다. 즉, 노체의 대기 중에, 내화물의 기공에 잔류하는 슬래그가 부피 팽창하여 내화물의 스폴링(spalling)이 발생한다.In the atmosphere of the furnace body, refractories built up inside the furnace body may be damaged. For example, slag penetrates into the pores of the refractory during the refining process. And after completion of the refining process, the slag remains in the pores of the refractory until the next refining process starts. The temperature of the refractory is gradually cooled from about several thousand to several hundred degrees Celsius, and the slag inside the pores is gradually cooled. When the temperature of the slag is about 725 ° C or lower, the phase changes to γ-C 2 S and the volume expands by about 10%. Due to the volume expansion of the slag, cracks are formed inside the refractory material and the refractory material is damaged. That is, in the atmosphere of the furnace body, the slag remaining in the pores of the refractory material expands in volume to generate spalling of the refractory material.
한편, 하기의 특허문헌 1은 스테인리스 슬래그의 개질 방법을 제시한다. 특허문헌 1에 따르면, 스테인리스 슬래그에 붕산 화합물을 혼합하면 스테인리스 슬래그의 냉각 시 부피 변화를 예방할 수 있다.On the other hand, Patent Document 1 below proposes a method for modifying stainless slag. According to patent document 1, when a boric acid compound is mixed with stainless steel slag, the volume change during cooling of the stainless steel slag can be prevented.
하지만, 특허문헌 1의 방법은 스테인리스강의 정련로 공정에 적용하기 어렵다. 그 이유는 다음과 같다. 첫째, 슬래그 개질을 위해 슬래그에 투입되는 붕산 화합물로 인하여 경제성이 저하된다. 둘째, 붕산 화합물이 슬래그에 첨가되면, 슬래그의 융점이 낮아짐에 따라 내화물의 손상이 가속화된다.However, the method of Patent Document 1 is difficult to apply to the refining process of stainless steel. The reason for this is as follows. First, the economic efficiency is reduced due to the boric acid compound introduced into the slag for slag modification. Second, when the boric acid compound is added to the slag, damage to the refractory material is accelerated as the melting point of the slag is lowered.
상술한 방식 외에도, 내화물 수명을 향상시키기 위한 방식으로, 슬래그의 염기도를 낮추는 방식이 있다. 예컨대 슬래그의 염기도가 1.3 보다 낮으면, 슬래그가 725℃ 이하에서 γ-C2S로 상전이하는 것이 억제되며 부피 팽창이 억제될 수 있다.In addition to the above-described method, as a method for improving the refractory life, there is a method of lowering the basicity of the slag. For example, if the basicity of the slag is lower than 1.3, the phase transition of the slag to γ-C 2 S at 725 ° C. or less is suppressed, and volume expansion can be suppressed.
하지만, 일반적으로 스테인리스강의 정련로 공정에서 사용되는 노체에 구축된 내화물은 돌로마이트 내화물(CaO-MgO)이다. 이때, 돌로마이트 내화물은 슬래그와 반응하여 슬래그의 염기도를 상승시킬 수 있다. 즉, 정련로 공정 중에 슬래그의 염기도를 낮추더라도, 노체의 대기 중에, 내화물에 침투한 슬래그와 내화물이 반응하여 슬래그의 염기도가 상전이를 유발할 수 있는 염기도로 상승한다. 이에, 슬래그가 γ-C2S로 상전이되며 부피가 팽창한다. 즉, 정련로 공정 중에 슬래그의 염기도를 낮추는 방식으로는 대기 중인 노체의 내화물 손상을 방지할 수 없다.However, in general, the refractory material built in the furnace body used in the refining process of stainless steel is dolomite refractory material (CaO-MgO). At this time, the dolomite refractory material can react with the slag to increase the basicity of the slag. That is, even if the basicity of the slag is lowered during the refining process, the basicity of the slag rises to the basicity that can cause phase transition by reacting the slag that has penetrated the refractory in the atmosphere of the furnace body and the refractory. Accordingly, the slag is phase-shifted to γ-C 2 S and the volume expands. That is, it is not possible to prevent refractory damage of the furnace body in the air by lowering the basicity of slag during the refining process.
본 발명의 배경이 되는 기술은 하기의 특허문헌들에 게재되어 있다.The technology which is the background of the present invention is published in the following patent documents.
(선행기술문헌)(Advanced technical literature)
(특허문헌 1) JP1999-061219 A (Patent Document 1) JP1999-061219 A
(특허문헌 2) KR10-2011-0019875 A (Patent Document 2) KR10-2011-0019875 A
본 발명은 용융물이 장입되는 용기의 내화물 손상을 억제 혹은 방지할 수 있는 용융물 처리 방법 및 용융물 처리 장치를 제공한다.The present invention provides a melt processing method and a melt processing apparatus capable of suppressing or preventing refractory damage of a container in which a melt is charged.
본 발명의 실시 형태에 따른 용융물 처리 방법은, 상부가 개방된 용기에 용융물을 장입하고, 상기 용융물을 처리하는 과정; 상기 용기로부터 처리된 용융물을 배출하는 과정; 상기 용기의 내부 온도를 측정하는 과정; 상기 용기의 내부 온도를 미리 정한 기준온도보다 높도록 제어하는 과정;을 포함하고, 상기 용기의 내부 온도를 측정하는 과정은, 상기 용기의 내부에 구축된 내화물의 온도를 측정하는 과정을 포함한다.Melt processing method according to an embodiment of the present invention, charging the melt in a container with an open top, and processing the melt; Discharging the processed melt from the container; Measuring the internal temperature of the container; Including; a process of controlling the internal temperature of the container to be higher than a predetermined reference temperature; and the process of measuring the internal temperature of the container includes a process of measuring the temperature of the refractory material built in the container.
상기 용융물을 처리하는 과정에서 상기 용융물의 상부에 슬래그가 형성되고, 상기 내화물의 온도를 측정하는 과정은, 상기 슬래그가 형성되는 높이에서 상기 내화물의 표면 온도를 측정하는 과정을 포함할 수 있다.In the process of processing the melt, slag is formed on the top of the melt, and measuring the temperature of the refractory may include measuring the surface temperature of the refractory at the height at which the slag is formed.
상기 내화물의 표면 온도를 측정하는 과정은, 비접촉식으로 상기 내화물의 표면에 대한 상태정보를 검출하는 과정 및 상기 상태정보로부터 상기 표면 온도를 획득하는 과정을 포함할 수 있다.The process of measuring the surface temperature of the refractory may include detecting state information on the surface of the refractory in a non-contact manner and obtaining the surface temperature from the state information.
상기 기준온도는 상기 슬래그의 상전이 온도보다 높을 수 있다.The reference temperature may be higher than the phase transition temperature of the slag.
상기 내화물에 대한 슬래그의 침투 깊이에 따라 상기 기준온도를 정할 수 있다.The reference temperature may be determined according to the depth of penetration of the slag to the refractory.
상기 내화물의 기공률이 클수록 상기 침투 깊이가 깊어지고, 상기 침투 깊이가 깊어질수록 상기 기준온도가 높아질 수 있다.The greater the porosity of the refractory, the deeper the penetration depth, and the deeper the penetration depth, the higher the reference temperature.
상기 내화물의 표면에 대한 상태정보를 검출하는 과정은, 상기 내화물의 표면의 열영상을 촬영하는 과정을 포함하고, 상기 내화물 표면의 열영상을 촬영하는 과정에서 열영상 카메라를 상기 내화물 표면으로부터 20m 이내의 거리로 이격시킬 수 있다.The process of detecting the state information on the surface of the refractory material includes a process of photographing a thermal image of the surface of the refractory, and a thermal imaging camera within 20 m from the surface of the refractory material during the process of photographing the thermal image of the refractory surface. Can be separated by a distance.
상기 용기의 내부 온도를 기준온도보다 높도록 제어하는 과정은, 측정된 온도와 상기 기준온도를 대비하는 과정; 상기 측정된 온도가 상기 기준온도 이하이면 상기 기준온도보다 높은 온도로 상기 용기의 내부를 승온시키는 과정;을 포함할 수 있다.The process of controlling the internal temperature of the container to be higher than the reference temperature includes: comparing the measured temperature with the reference temperature; If the measured temperature is below the reference temperature, the process of heating the inside of the container to a temperature higher than the reference temperature; may include.
상기 용기의 내부를 승온시키는 과정은, 상기 용기를 경동시키고, 상기 용기 내부에 화염을 분사하는 과정을 포함하고, 상기 용기의 내부를 승온시키는 과정 이후에, 상기 용기에 후속 용융물을 장입하고, 상기 후속 용융물을 처리하는 과정;을 포함할 수 있다.The process of heating the inside of the container includes tilting the container, spraying a flame inside the container, and after the process of heating the inside of the container, loading a subsequent melt into the container, and And processing the subsequent melt.
상기 용융물은 스테인리스강 제조용의 용강을 포함하고, 상기 내화물은 카본 함량이 내화물 전체 중량의 5중량% 미만이고, 기공률이 20% 이하인 내화물을 포함할 수 있다.The melt may include molten steel for manufacturing stainless steel, and the refractory material may include a refractory material having a carbon content of less than 5% by weight of the total weight of the refractory material and a porosity of 20% or less.
본 발명의 실시 형태에 따른 용융물 처리 장치는, 상부가 개방되고, 내부에 내화물이 구축되는 용기; 상기 용기 상부에 배치되는 랜스; 상기 용기의 외부에 마련되는 열원; 상기 용기의 상부에 배치되거나, 상기 열원에 지지되고, 상기 내화물에서 이격되며, 상기 내화물의 온도를 측정할 수 있는 온도 측정부; 상기 내화물의 온도가 미리 정한 기준온도보다 높도록 상기 열원의 작동을 제어하는 제어부;를 포함한다.Melt processing apparatus according to an embodiment of the present invention, the upper portion is opened, a container in which a refractory material is built; A lance disposed above the container; A heat source provided on the outside of the container; A temperature measuring unit disposed on the top of the container, supported by the heat source, spaced apart from the refractory, and capable of measuring the temperature of the refractory; It includes; a control unit for controlling the operation of the heat source so that the temperature of the refractory is higher than a predetermined reference temperature.
상기 용기는 입구 영역, 중간 영역 및 하부 영역을 구비하고, 상기 용융물을 처리할 때 상기 중간 영역에 슬래그가 위치하고, 상기 온도 측정부는, 상기 중간 영역의 내화물의 표면 온도를 측정할 수 있도록, 상기 중간 영역을 향하도록 상기 용기의 상부에 경사지게 배치되거나, 상기 열원에 지지되며 상기 열원이 연장된 방향에 대하여 경사지게 배치될 수 있다.The container has an inlet region, an intermediate region and a lower region, and when the melt is processed, slag is located in the intermediate region, and the temperature measuring unit is configured to measure the surface temperature of the refractory material in the intermediate region. It may be inclined at the top of the container to face the region, or supported by the heat source and inclined relative to the extended direction of the heat source.
상기 온도 측정부는 비접촉식 온도 측정기를 포함하고, 상기 제어부는 상기 비접촉식 온도 측정기에서 검출된 상기 내화물의 표면에 대한 상태정보로부터 상기 표면 온도를 획득할 수 있다.The temperature measuring unit includes a non-contact temperature measuring device, and the control unit may obtain the surface temperature from state information on the surface of the refractory detected by the non-contact temperature measuring device.
상기 비접촉식 온도 측정기는 열영상 카메라를 포함하고, 상기 열영상 카메라는 상기 중간 영역의 내화물의 표면으로부터 20m 이내의 거리로 이격될 수 있다.The non-contact temperature measuring device may include a thermal imaging camera, and the thermal imaging camera may be spaced within a distance of 20 m from the surface of the refractory material in the intermediate region.
상기 열영상 카메라는 화각을 좁히도록 렌즈의 전방에 후드를 구비할 수 있다.The thermal imaging camera may have a hood in front of the lens to narrow the angle of view.
상기 제어부는 상기 내화물의 온도가 기준온도 이하이면 상기 용기의 내부에 화염을 분사하도록 상기 열원을 작동시킬 수 있다.The control unit may operate the heat source to spray a flame inside the container when the temperature of the refractory is below a reference temperature.
본 발명의 실시 형태에 따르면, 용융물이 장입되는 용기의 내화물 손상을 억제 혹은 방지할 수 있다. 예컨대 스테인리스강의 정련로 공정에서 정련로의 노체를 운용하며, 대기 시간 중에 노체의 내부에 구축된 내화물의 온도를 측정하여 측정된 온도가 기준온도 이하일 때, 기준온도보다 높은 온도로 내화물을 승온시킨다. 즉, 대기 시간 중에 내화물의 온도를 기준온도보다 높은 온도로 유지할 수 있다. 이에, 내화물의 기공에 잔류하는 슬래그의 상전이 및 부피 팽창을 억제할 수 있다. 이에, 내화물의 스폴링 발생을 억제 혹은 방지할 수 있다.According to the embodiment of the present invention, it is possible to suppress or prevent refractory damage of a container in which a melt is charged. For example, in the refining furnace process of stainless steel, the furnace body of the refining furnace is operated, and when the measured temperature is below a reference temperature by measuring the temperature of the refractory material built in the furnace body during the waiting time, the refractory material is heated to a temperature higher than the reference temperature. That is, the temperature of the refractory can be maintained at a temperature higher than the reference temperature during the waiting time. Accordingly, phase transition and volume expansion of the slag remaining in the pores of the refractory can be suppressed. Accordingly, occurrence of spalling of the refractory can be suppressed or prevented.
도 1은 본 발명의 실시 예에 따른 용융물 처리 장치의 개략도이다.1 is a schematic diagram of a melt processing apparatus according to an embodiment of the present invention.
도 2는 본 발명의 변형 예에 따른 용융물 처리 장치의 개략도이다.2 is a schematic view of a melt processing apparatus according to a modification of the present invention.
도 3은 본 발명의 실시 예에 따른 용융물 처리 방법의 순서도이다.3 is a flow chart of a melt processing method according to an embodiment of the present invention.
도 4는 본 발명의 실시 예에 따른 슬래그의 상평형도이다.4 is a phase equilibrium diagram of a slag according to an embodiment of the present invention.
도 5는 본 발명의 실시 예에 따른 정련 공정에서 정련로 노체 내화물을 촬영한 열영상 사진이다.5 is a thermal image photographing a furnace refractory furnace in a refining process in a refining process according to an embodiment of the present invention.
도 6은 본 발명의 실시 예에 따른 내화물의 수명 변화를 설명하기 위한 그래프이다.6 is a graph for explaining the change in the life of the refractory according to an embodiment of the present invention.
이하, 첨부된 도면을 참조하여, 본 발명의 실시 예를 상세히 설명한다. 그러나 본 발명은 이하에서 개시되는 실시 예에 한정되는 것이 아니고, 서로 다른 다양한 형태로 구현될 것이다. 단지 본 발명의 실시 예는 본 발명의 개시가 완전하도록 하고, 해당 분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다. 본 발명의 실시 예를 설명하기 위하여 도면은 과장될 수 있고, 도면상의 동일한 부호는 동일한 요소를 지칭한다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below, and will be implemented in various different forms. Only the embodiments of the present invention are provided to make the disclosure of the present invention complete, and to fully inform the scope of the invention to those skilled in the art. The drawings may be exaggerated to describe embodiments of the present invention, and the same reference numerals in the drawings refer to the same elements.
이하, 전기로 공정에서 생산된 용강을 정련하는 정련로 공정을 기준으로 본 발명의 실시 예를 상세하게 설명한다. 그러나 본 발명의 실시 예에 따른 용융물 처리 방법 및 용융물 처리 장치는 내화물 용기에 담긴 각종 용융물을 각종 방식으로 처리하는 다양한 처리 공정에도 다양하게 적용될 수 있다.Hereinafter, an embodiment of the present invention will be described in detail based on a refining furnace process for refining molten steel produced in an electric furnace process. However, the melt processing method and the melt processing apparatus according to the embodiment of the present invention can be variously applied to various processing processes for processing various melts contained in a refractory container in various ways.
도 1은 본 발명의 실시 예에 따른 용융물 처리 장치의 개략도이다. 또한, 도 2는 본 발명의 변형 예에 따른 용융물 처리 장치의 개략도이다. 이때, 도 1은 용융물 처리 장치의 버너의 도시를 생략하였고, 도 2는 용융물 처리 장치의 용기, 버너 및 온도 측정부만 발췌 도시하였다.1 is a schematic diagram of a melt processing apparatus according to an embodiment of the present invention. 2 is a schematic view of a melt processing apparatus according to a modification of the present invention. In this case, FIG. 1 omits the burner of the melt processing apparatus, and FIG. 2 shows only the container, burner, and temperature measurement unit of the melt processing apparatus.
먼저, 본 발명의 실시 예에 따른 용융물 처리 장치를 설명한다.First, a melt processing apparatus according to an embodiment of the present invention will be described.
도 1 및 도 2를 참조하면, 용융물 처리 장치는, 상부가 개방되고, 내부에 내화물(12)이 구축되는 용기, 용기의 상부에 배치되는 랜스(30), 용기의 외부에 마련되는 열원, 용기의 상부에 배치되거나, 열원에 지지되고, 내화물(12)에서 이격되며, 내화물(12)의 온도를 측정할 수 있는 온도 측정부, 내화물(12)의 온도가 미리 정한 기준온도보다 높도록 열원의 작동을 제어하는 제어부(미도시)를 포함한다.Referring to Figures 1 and 2, the melt processing apparatus, the top is open, a container in which the refractory 12 is built, a lance 30 disposed on the top of the container, a heat source provided on the outside of the container, the container Is disposed on the top, supported by a heat source, spaced apart from the refractory 12, a temperature measuring unit capable of measuring the temperature of the refractory 12, the temperature of the refractory 12 is higher than a predetermined reference temperature of the heat source And a control unit (not shown) that controls operation.
용기는 용융물을 수용하여 각종 방식으로 처리할 수 있는 반응기로서 예컨대 용강을 수용하여 취련할 수 있는 정련로의 노체(10)를 포함할 수 있다. 여기서, 용강은 예컨대 전기로 공정에서 제조된 스테인리스강 제조용의 용강이고, 노체(10)는 에이오디(AOD, Argon Oxygen Decarburization) 정련로의 노체(10)일 수 있다.The container may include a furnace body 10 of a refining furnace capable of accommodating and melting molten steel as a reactor capable of receiving a melt and processing in various ways. Here, the molten steel is, for example, a molten steel for manufacturing stainless steel manufactured in an electric furnace process, and the furnace body 10 may be a furnace body 10 of an Argon Oxygen Decarburization (AOD) refining furnace.
노체(10)는 내부 공간을 구비할 수 있다. 내부 공간에 용강이 수용될 수 있다. 노체(10)는 상부에 개방된 노구가 형성될 수 있다. 랜스(30)는 노구를 상하 방향으로 관통하도록 노체(10)의 상부에 배치될 수 있다. 노체(10)의 하부를 수평 방향으로 관통하도록 노즐(미도시)이 설치될 수 있다. 랜스(30)를 통하여 노체(10)의 내부에 산소 가스를 취입할 수 있다. 노즐을 통하여 노체(10)의 내부에 아르곤 가스를 취입할 수 있다. 용강은 아르곤 가스 및 산소 가스에 의하여 취련될 수 있다. 용강의 취련 중에, 용강에 함유된 탄소, 산소 및 황 성분의 함량이 조정될 수 있다. 이때, 노체(10)의 내부에 탈산제, 탈황제 및 플럭스가 투입될 수 있다.The furnace body 10 may have an internal space. The molten steel can be accommodated in the interior space. The furnace body 10 may be formed with a furnace opening open at the top. The lance 30 may be disposed on the top of the furnace body 10 to penetrate the furnace sphere in the vertical direction. A nozzle (not shown) may be installed to penetrate the lower portion of the furnace body 10 in a horizontal direction. Oxygen gas may be blown into the furnace body 10 through the lance 30. Argon gas can be blown into the furnace body 10 through the nozzle. The molten steel can be blown with argon gas and oxygen gas. During the blowing of molten steel, the content of carbon, oxygen and sulfur components in molten steel can be adjusted. At this time, a deoxidizing agent, a desulfurizing agent, and a flux may be introduced into the furnace body 10.
노체(10)는 철피(11) 및 내화물(12)을 구비할 수 있다. 철피(11)는 수평 방향으로 연장된 바닥판 및 바닥판의 둘레에서 상방으로 연장된 측벽을 구비할 수 있다. 바닥판은 원판 형상일 수 있다. 측벽은 중심이 볼록한 원통체 형상일 수 있다. 측벽은 중심에 수평 방향 축(미도시)이 연결되고, 철피(11)는 수평 방향 축을 중심으로 경동할 수 있다. 내화물(12)은 철피(11)의 내부면에 구축될 수 있다. 여기서, 내화물(12)은 카본 함량이 내화물 전체 중량의 10중량% 미만이고, 기공률이 20% 이하인 내화물을 포함할 수 있다. 보다 바람직하게는, 내화물(12)은 카본 함량이 내화물 전체 중량의 5중량% 미만이고, 기공률이 20% 이하인 내화물을 포함할 수 있다. 내화물(12)의 카본 함량이 높을수록 내화물(12)의 기공에 슬래그가 침투하기 어렵다. 내화물(12)의 카본 함량이 내화물 전체 중량의 10중량% 미만일 때, 내화물(12)의 기공에 슬래그가 침투할 수 있다. 내화물(12)의 기공률이 20% 를 초과하면 내화물 침식이 증가할 수 있다. 내화물(12)은 용융물의 종류에 따라 성분 및 기공률이 다양할 수 있다. 내화물의 종류는 돌로마이트 내화물(CaO-MgO refractories), 마그크론 내화물(MgO-Cr2O3 refractories) 및 카본 함유 내화물 등 다양할 수 있다.The furnace body 10 may include an iron shell 11 and a refractory material 12. The shell 11 may have a bottom plate extending in a horizontal direction and a side wall extending upward from the periphery of the bottom plate. The bottom plate may have a disc shape. The side wall may have a cylindrical shape with a convex center. The side wall has a horizontal axis (not shown) connected to the center, and the skin 11 can be tilted about the horizontal axis. The refractory material 12 may be constructed on the inner surface of the iron shell 11. Here, the refractory material 12 may include a refractory material having a carbon content of less than 10% by weight of the total weight of the refractory material and a porosity of 20% or less. More preferably, the refractory material 12 may include a refractory material having a carbon content of less than 5% by weight of the total weight of the refractory material and a porosity of 20% or less. The higher the carbon content of the refractory 12, the more difficult it is for the slag to penetrate the pores of the refractory 12. When the carbon content of the refractory material 12 is less than 10% by weight of the total weight of the refractory material, slag may penetrate into the pores of the refractory material 12. When the porosity of the refractory 12 exceeds 20%, refractory erosion may increase. The refractory material 12 may have various components and porosity depending on the type of melt. The type of refractory material may be various, such as dolomite refractories (CaO-MgO refractories), magron refractories (MgO-Cr 2 O 3 refractories), and carbon-containing refractories.
노체(10)의 전체 영역(D)은 상하 방향으로 나열된 복수의 부분 영역을 포함할 수 있다. 노체(10)는 상부에서 하부를 향하는 방향으로 입구 영역(D3), 중간 영역(D2) 및 하부 영역(D1)을 포함할 수 있다. 그중 입구 영역(D3)은 하방으로 그 내경이 점차 커질 수 있다. 또한, 하부 영역(D1)은 하방으로 내경이 점차 작아질 수 있다. 중간 영역(D2)은 하부 영역(D1)과 입구 영역(D3)을 연결시킬 수 있다. 중간 영역(D2)은 내경이 상하 방향으로 일정하거나, 또는, 하방으로 갈수록 내경이 점차 커지다가 다시 작아질 수 있다.The entire region D of the furnace body 10 may include a plurality of partial regions arranged in the vertical direction. The furnace body 10 may include an entrance region D3, an intermediate region D2, and a lower region D1 in a direction from top to bottom. Among them, the inlet area D3 may gradually increase its inner diameter downward. In addition, the inner diameter of the lower region D1 may gradually decrease downward. The middle region D2 may connect the lower region D1 and the inlet region D3. In the middle region D2, the inner diameter may be constant in the vertical direction, or the inner diameter may gradually increase and decrease again as it goes downward.
용강은 입구 영역(D3)을 통하여 노체(10)의 내부 공간으로 장입될 수 있고, 노체(10)의 하부 영역(D1) 및 중간 영역(D2)에 수용될 수 있다. 용강을 처리할 때, 용강의 탕면에 슬래그가 형성될 수 있다. 이때, 슬래그는 중간 영역(D2)에 위치할 수 있다. 따라서, 슬래그는 중간 영역(D2)의 내화물(12)의 기공에 쉽게 침투할 수 있다. 노체(10)의 중간 영역(D2)의 내화물(12)을 슬래그 침투 영역이라 지칭할 수 있다. 슬래그는 염기도가 1.3 이상인 스테인리스 슬래그를 포함할 수 있다. 스테인리스 슬래그는 스테인리스강의 정련로 공정 중에 생성되는 슬래그를 의미한다. 슬래그의 염기도는 용강을 처리하는 동안 지속적으로 달라질 수 있다.The molten steel may be charged into the inner space of the furnace body 10 through the inlet region D3, and may be accommodated in the lower region D1 and the middle region D2 of the furnace body 10. When processing molten steel, slag may be formed on the molten metal surface. At this time, the slag may be located in the intermediate region D2. Therefore, the slag can easily penetrate the pores of the refractory material 12 in the intermediate region D2. The refractory 12 in the middle region D2 of the furnace body 10 may be referred to as a slag penetration region. The slag may include stainless steel slag having a basicity of 1.3 or higher. Stainless steel slag refers to slag produced during the refining process of stainless steel. The basicity of slag can vary continuously during the processing of molten steel.
도 2를 참조하면, 열원('열공급원'이라고도 한다)은 노체(10)의 외부에 마련될 수 있다. 열원은 예컨대 버너(70)를 포함할 수 있다. 열원은 버너 외에 히트 파이프 및 열선 등 다양한 열공급 기기를 포함할 수 있다. 버너(70)는 수평 방향으로 연장될 수 있다. 버너(70)는 액화 석유가스 및 액화 천연가스 중 적어도 하나와 산소 및 공기 중 적어도 하나를 공급받아 화염(F)을 생성하여 노체(10)의 내부에 분사할 수 있다. 이때, 노체(10)는 노구가 버너(70)를 향하도록 경동될 수 있다.Referring to FIG. 2, a heat source (also referred to as a “heat supply source”) may be provided outside the furnace body 10. The heat source may include a burner 70, for example. In addition to the burner, the heat source may include various heat supply devices such as heat pipes and heating wires. Burner 70 may extend in a horizontal direction. The burner 70 may be supplied with at least one of liquefied petroleum gas and liquefied natural gas and at least one of oxygen and air to generate a flame F and spray the inside of the furnace body 10. At this time, the furnace body 10 may be tilted so that the furnace tool faces the burner 70.
온도 측정부는 비접촉식 온도 측정기를 포함할 수 있다. 비접촉식 온도 측정기는 열영상 카메라(60) 및 적외선 온도계를 포함할 수 있다. 물론, 비접촉식 온도 측정기는 열영상 카메라(60) 및 적외선 온도계 외에, 다양한 비접촉 온도계를 포함할 수 있다. 온도 측정부가 비접촉식 온도 측정기이므로, 온도 측정 시에 열교란을 방지할 수 있다. 여기서, 열교란은 예컨대 내화물과 접촉식 온도 측정기의 접촉 시에 내화물의 표면에서 발생할 수 있는 열손실에 따른 열교란을 의미한다.The temperature measuring unit may include a non-contact temperature measuring device. The non-contact temperature meter may include a thermal imaging camera 60 and an infrared thermometer. Of course, the non-contact temperature measuring device may include various non-contact thermometers, in addition to the thermal imaging camera 60 and the infrared thermometer. Since the temperature measuring unit is a non-contact temperature measuring device, thermal disturbance can be prevented during temperature measurement. Here, the thermal disturbance means, for example, a thermal disturbance according to heat loss that may occur on the surface of the refractory material upon contact between the refractory material and the contact temperature measuring device.
열영상 카메라(60) 및 적외선 온도계는 내화물(12)에서 이격될 수 있다. 열영상 카메라(60) 및 적외선 온도계는 내화물(12)의 온도 구체적으로 내화물(12)의 표면 온도를 측정할 수 있다.The thermal imaging camera 60 and the infrared thermometer may be spaced apart from the refractory 12. The thermal imaging camera 60 and the infrared thermometer can measure the temperature of the refractory 12, specifically the surface temperature of the refractory 12.
더욱 상세하게는, 열영상 카메라(60)는 내화물(12)의 표면의 열영상을 촬영하는 방식으로, 내화물(12)의 표면 온도를 열영상 사진 형태로 측정할 수 있다. 이때, 열영상 카메라(60)는 노체(10)의 중간 영역(D2)의 내화물(12)의 표면의 열영상을 촬영할 수 있다. 즉, 내화물(12)의 표면의 전체영역 중에 슬래그가 침투하는 부분 영역인 슬래그 침투 영역의 열영상을 촬영할 수 있다.More specifically, the thermal imaging camera 60 may measure the surface temperature of the refractory 12 in the form of a thermal image by photographing a thermal image of the surface of the refractory 12. At this time, the thermal imaging camera 60 may take a thermal image of the surface of the refractory 12 in the middle region D2 of the furnace body 10. That is, a thermal image of the slag penetration region, which is a partial region where the slag penetrates, can be captured in the entire region of the surface of the refractory 12.
적외선 온도계는 내화물(12)의 표면의 적외선 방사 에너지를 계측하여, 내화물(12)의 표면 온도를 에너지 강도 및 파장 분포의 형태로 얻을 수 있다. 이때, 적외선 온도계는 슬래그 침투 영역의 소정 위치에 대한 적외선 방사 에너지의 에너지 강도 및 파장 분포를 얻을 수 있다.The infrared thermometer measures the infrared radiation energy of the surface of the refractory 12 to obtain the surface temperature of the refractory 12 in the form of energy intensity and wavelength distribution. At this time, the infrared thermometer can obtain the energy intensity and wavelength distribution of infrared radiation energy for a predetermined location of the slag penetration region.
한편, 노체(10)는 노체(10)의 중심을 지나는 상하 방향 축(미도시)를 중심으로 회전 대칭하는 형상일 수 있다. 따라서, 노체(10)의 둘레 방향으로 슬래그 침투 영역의 내화물(12)의 온도가 동일하거나 유사할 수 있다. 즉, 열영상 카메라(60)가 슬래그 침투 영역의 열영상을 촬영할 때, 노체(10)의 둘레 방향으로 일 위치의 열영상을 촬영한 열영상 사진의 온도 분포와 동일 높이에서 다른 위치의 열영상을 촬영한 열영상 사진의 온도 분포가 서로 동일하거나 유사할 수 있다.On the other hand, the furnace body 10 may be a shape that rotates symmetrically around the vertical axis (not shown) passing through the center of the furnace body 10. Accordingly, the temperature of the refractory material 12 in the slag penetration region in the circumferential direction of the furnace body 10 may be the same or similar. That is, when the thermal imaging camera 60 photographs the thermal image of the slag penetration region, the thermal image of the thermal image photographed at the same position in the circumferential direction of the furnace body 10 is thermal image at a different height from the same height The temperature distribution of the thermal image photographed with may be the same or similar to each other.
즉, 열영상 카메라(60)로 슬래그 침투 영역의 열영상을 촬영할 때, 노체(10)의 둘레 방향으로 어느 위치의 열영상을 촬영하더라도, 제어부가 촬영된 열영상 사진으로부터 슬래그 침투 영역의 내화물(12)의 표면 온도를 정확하게 알 수 있다.That is, when the thermal imaging camera 60 photographs the thermal image of the slag penetration region, the control unit, even if the thermal image at any position in the circumferential direction of the furnace body 10, the refractory of the slag penetration region from the captured thermal image ( The surface temperature of 12) can be accurately known.
도 1 및 도 2를 참조하면, 열영상 카메라(60)는 노체(10)의 상부에 배치되거나, 버너(70)에 지지될 수 있다. 구체적으로, 도 1을 참조하면, 본 발명의 실시 예에 따른 열영상 카메라(60)는 노체(10)의 중간 영역(D2)의 내화물(12)의 표면 온도를 측정할 수 있도록, 노체(10)의 중간 영역(D2)을 향하도록 노체(10)의 상부에 경사지게 배치될 수 있다. 그리고 열영상 카메라(60)는 노체(10)의 중간 영역(D2)을 경사지게 마주보며, 중간 영역(D2)의 내화물(12)의 표면 온도를 측정할 수 있다. 도 2를 참조하면, 본 발명의 변형 예에 따른 열영상 카메라(60)는 노체(10)의 중간 영역(D2)의 내화물(12)의 표면 온도를 측정할 수 있도록, 후술하는 버너(70)에 지지되며 버너(70)가 연장된 방향에 대하여 경사지게 연장될 수 있다. 이에, 열영상 카메라(60)는 노체(10)의 경동 시, 노체(10)의 중간 영역(D2)을 경사지게 마주보며, 중간 영역(D2)의 내화물(12)의 표면 온도를 측정할 수 있다.1 and 2, the thermal imaging camera 60 may be disposed on the top of the furnace body 10 or supported by the burner 70. Specifically, referring to FIG. 1, the thermal imaging camera 60 according to an embodiment of the present invention can measure the surface temperature of the refractory 12 of the intermediate region D2 of the furnace body 10 so as to measure the surface temperature of the furnace body 10. ) May be disposed obliquely on the top of the furnace body 10 to face the intermediate region D2. In addition, the thermal imaging camera 60 may face the intermediate region D2 of the furnace body 10 in an inclined manner and measure the surface temperature of the refractory material 12 in the intermediate region D2. Referring to FIG. 2, the thermal imaging camera 60 according to a modified example of the present invention allows the burner 70 to be described later to measure the surface temperature of the refractory 12 in the middle region D2 of the furnace body 10 The burner 70 may be inclined with respect to the extended direction. Accordingly, the thermal imaging camera 60 may tilt the middle region D2 of the furnace body 10 when the furnace body 10 is tilted, and measure the surface temperature of the refractory material 12 in the middle region D2. .
열영상 카메라(60)는 내화물(12)의 표면의 열영상을 촬영할 수 있다. 이때, 열영상 카메라(60)가 내화물(12)의 표면에서 멀어질수록 열영상 카메라(60)에서 촬영된 열영상과 내화물(12)의 표면 온도의 오차가 발생할 수 있다. 이에, 열영상 카메라(60)는 노체(10)의 중간 영역(D2)의 내화물(12)의 표면으로부터 30m 이내로 이격될 수 있다. 바람직하게는 열영상 카메라(60)는 노체(10)의 중간 영역(D2)의 내화물(12)의 표면으로부터 20m 이내로 이격될 수 있다. 즉, 열영상 카메라(60)와 노체(10)의 중간 영역(D2)의 내화물(12)의 표면 사이의 거리(L)는 20m 이내일 수 있다. 예컨대 열영상 카메라(60)가 노체(10)의 중간 영역(D2)의 내화물(12)의 표면으로부터 20m 보다 멀면, 열영상 사진의 정확도가 저하될 수 있다. 한편, 열영상 카메라(60)가 노체(10)의 중간 영역(D2)의 내화물(12)의 표면으로부터 30m 보다 멀면, 노체(10) 주변의 구조물과의 간섭으로 인하여 열영상 카메라(60)의 배치가 어려울 수 있다.The thermal imaging camera 60 may take a thermal image of the surface of the refractory 12. At this time, as the thermal imaging camera 60 moves away from the surface of the refractory 12, an error in the surface temperature of the thermal image and the refractory 12 captured by the thermal imaging camera 60 may occur. Accordingly, the thermal imaging camera 60 may be spaced within 30 m from the surface of the refractory 12 in the intermediate region D2 of the furnace body 10. Preferably, the thermal imaging camera 60 may be spaced within 20 m from the surface of the refractory 12 in the middle region D2 of the furnace body 10. That is, the distance L between the thermal imaging camera 60 and the surface of the refractory 12 in the intermediate region D2 of the furnace body 10 may be within 20 m. For example, if the thermal imaging camera 60 is farther than 20 m from the surface of the refractory 12 in the intermediate region D2 of the furnace body 10, the accuracy of the thermal imaging may deteriorate. On the other hand, if the thermal imaging camera 60 is farther than 30 m from the surface of the refractory 12 in the middle region D2 of the furnace body 10, due to interference with structures around the furnace body 10, the thermal imaging camera 60 Deployment can be difficult.
열영상 카메라(60)는 촬영 영역의 피사체를 온도로 구분하고, 열영상 사진의 픽셀은 온도에 따라 색이 구분되어 표시된다. 이때, 촬영 영역의 크기가 작을수록 열영상 카메라(60)가 피사체의 온도 분포(temperature profile)를 명확하게 구분할 수 있다. 예컨대 열영상 카메라(60)의 촬영 영역의 크기가 크면, 촬영 영역 내의 온도 편차가 크고, 내화물(12)의 표면의 열영상이 복잡하다. 열영상 카메라(60)의 촬영 영역의 크기가 작으면 촬영 영역 내의 온도 편차가 작고, 내화물(12)의 표면의 열영상이 상대적으로 단순해진다.The thermal camera 60 classifies the subject in the photographing area by temperature, and the pixels of the thermal image are color-coded according to temperature. At this time, as the size of the photographing area is smaller, the thermal imaging camera 60 can clearly distinguish the temperature profile of the subject. For example, if the size of the imaging area of the thermal imaging camera 60 is large, the temperature variation in the imaging area is large, and the thermal imaging of the surface of the refractory 12 is complicated. If the size of the imaging area of the thermal imaging camera 60 is small, the temperature deviation in the imaging area is small, and the thermal image on the surface of the refractory 12 becomes relatively simple.
열영상 카메라(60)는 촬영 영역의 크기가 작아지도록, 즉, 열영상 카메라(60)의 렌즈(미도시)의 화각을 좁히도록 렌즈의 전방에 렌즈 후드(미도시)를 구비할 수 있다. 이때, 렌즈 후드는 원형 렌즈 후드 및 사각 렌즈 후드 등 다양한 형태일 수 있다. 렌즈 후드는 중공의 통 형상으로서, 렌즈의 주위를 감싸도록 장착되고, 렌즈의 전방으로 길게 연장될 수 있다. 렌즈 후드가 열영상 카메라(60)의 화각을 좁히고, 열영상 카메라(60)가 노체(10)의 중간 구간(D2)의 내화물(12)의 표면을 국부적으로 촬영할 수 있다.The thermal imaging camera 60 may be provided with a lens hood (not shown) in front of the lens to reduce the size of the imaging area, that is, to narrow the angle of view of the lens (not shown) of the thermal imaging camera 60. At this time, the lens hood may have various shapes such as a circular lens hood and a square lens hood. The lens hood is a hollow cylindrical shape, and is mounted to surround the lens, and can be extended to the front of the lens. The lens hood narrows the angle of view of the thermal imaging camera 60, and the thermal imaging camera 60 can locally photograph the surface of the refractory 12 in the middle section D2 of the furnace body 10.
제어부(미도시)는 내화물(12)의 온도가 기준온도보다 높도록 버너(70)의 작동을 제어할 수 있다. 제어부는 비접촉식 온도 측정기에서 검출된 내화물(12)의 표면에 대한 상태정보로부터 내화물(12)의 표면 온도를 획득할 수 있다.The control unit (not shown) may control the operation of the burner 70 so that the temperature of the refractory material 12 is higher than the reference temperature. The control unit may obtain the surface temperature of the refractory 12 from state information on the surface of the refractory 12 detected by the non-contact temperature measuring device.
구체적으로, 비접촉식 온도 측정기로 열영상 카메라(60)를 사용하면, 제어부는 열영상 카메라(60)에서 촬영된 내화물(12)의 표면의 열영상 사진으로부터 내화물(12)의 표면 온도를 획득할 수 있다. 또한, 비접촉식 온도 측정기로 적외선 온도계를 사용하면, 제어부는 적외선 온도계에서 계측된 상기 내화물의 표면의 적외선 방사 에너지로부터 내화물(12)의 표면 온도를 획득할 수 있다.Specifically, when the thermal imaging camera 60 is used as a non-contact temperature measuring device, the control unit may acquire the surface temperature of the refractory 12 from a thermal imaging photograph of the surface of the refractory 12 photographed by the thermal imaging camera 60. have. In addition, when an infrared thermometer is used as a non-contact temperature meter, the control unit may acquire the surface temperature of the refractory 12 from the infrared radiation energy of the surface of the refractory measured by the infrared thermometer.
제어부는 내화물(12)의 표면 온도가 기준온도 이하이면, 상술한 수평 방향 축을 회전시켜 노체(10)를 경동시키고, 노체(10)의 내부에 화염(F)을 분사하도록 버너(70)를 작동시킬 수 있다.When the surface temperature of the refractory material 12 is equal to or lower than the reference temperature, the control unit operates the burner 70 to rotate the above-described horizontal axis to incline the furnace body 10 and spray flame F into the furnace body 10. I can do it.
구체적으로, 제어부는 열영상 카메라(60)로부터 열영상 사진을 입력받고, 입력받은 열영상 사진의 픽셀들의 색을 판독하여, 픽셀들 중 기준온도 이하의 온도에 해당하는 색으로 표시된 픽셀이 적어도 하나 이상 있으면, 슬래그 침투 영역의 내화물(12)의 표면 온도가 기준온도 이하인 것으로 판단한다. 제어부는 슬래그 침투 영역의 내화물(12)의 표면 온도가 기준온도 이하인 것으로 판단되면, 노체(10)를 경동시키도록 상술한 수평 방향 축의 작동을 제어하고, 노체(10)의 내부에 화염(F)을 분사하도록 버너(70)를 작동시킬 수 있다.Specifically, the control unit receives a thermal image from the thermal imaging camera 60, reads the color of the pixels of the thermal image input, and at least one pixel displayed in a color corresponding to a temperature below a reference temperature among the pixels If it is abnormal, it is determined that the surface temperature of the refractory material 12 in the slag penetration region is below the reference temperature. When it is determined that the surface temperature of the refractory material 12 in the slag penetration region is equal to or lower than the reference temperature, the controller controls the operation of the horizontal axis described above to tilt the furnace body 10, and the flame (F) inside the furnace body 10 It can operate the burner 70 to spray.
또는, 제어부는 적외선 온도계로부터 적외선 방사 에너지의 에너지 강도 및 파장 분포를 입력받고, 입력받은 에너지 강도 또는 파장 분포가 기준온도 이하의 온도에 해당하는 적외선 방사 에너지의 에너지 강도 또는 파장 분포이면, 슬래그 침투 영역의 내화물(12)의 표면 온도가 기준온도 이하인 것으로 판단한다. 제어부는 슬래그 침투 영역의 내화물(12)의 표면 온도가 기준온도 이하인 것으로 판단되면, 노체(10)를 경동시키도록 상술한 수평 방향 축의 작동을 제어하고, 노체(10)의 내부에 화염(F)을 분사하도록 버너(70)를 작동시킬 수 있다.Alternatively, the control unit receives the energy intensity and wavelength distribution of infrared radiation energy from the infrared thermometer, and if the received energy intensity or wavelength distribution is the energy intensity or wavelength distribution of infrared radiation energy corresponding to a temperature below the reference temperature, the slag penetration area It is determined that the surface temperature of the refractory material 12 is below the reference temperature. When it is determined that the surface temperature of the refractory material 12 in the slag penetration region is equal to or lower than the reference temperature, the controller controls the operation of the horizontal axis described above to tilt the furnace body 10, and the flame (F) inside the furnace body 10 It can operate the burner 70 to spray.
용융물 처리 장치는, 노체(10)의 노구를 감싸도록 설치되고, 랜스(30)가 상하 방향으로 관통하는 후드(20), 후드(20)의 외부에 설치되는 호퍼(40), 호퍼(40)에 연결되고, 노체(10)의 노구를 향하여 연장되며, 후드(20)를 관통하도록 설치되는 슈트(50)를 더 포함할 수 있다.The melt processing apparatus is installed to surround the furnace sphere of the furnace body 10, the hood 20 through which the lance 30 penetrates in the vertical direction, the hopper 40 installed on the outside of the hood 20, the hopper 40 It is connected to, extending toward the furnace of the furnace body 10, may further include a chute (50) installed to penetrate the hood (20).
후드(20)는 내부가 하측으로 개방될 수 있다. 후드(20)는 상하 방향으로 연장될 수 있다. 후드(20)를 상하 방향으로 관통하도록 랜스(30)가 설치될 수 있다. 후드(20)는 내부에 부압이 형성될 수 있다. 후드(20)는 부압을 이용하여 노체(10)의 노구로부터 가스를 흡출시킬 수 있다. 후드(20)의 내부에 열영상 카메라(60)가 위치할 수 있다.The inside of the hood 20 may be opened downward. The hood 20 may extend in the vertical direction. The lance 30 may be installed to penetrate the hood 20 in the vertical direction. The hood 20 may have negative pressure formed therein. The hood 20 may extract gas from the furnace port of the furnace body 10 using negative pressure. The thermal imaging camera 60 may be located inside the hood 20.
호퍼(40)는 복수개일 수 있다. 호퍼(40)는 내부에 투입물이 저장될 수 있다. 투입물은 탈산제, 탈황제 및 플럭스를 포함할 수 있다. 이때, 투입물은 노체(10)에서 수행되는 공정에 따라 종류가 다양할 수 있다. 호퍼(40)의 내부에 탈산제, 탈황제 및 플럭스가 각각 저장될 수 있다. 호퍼(40)의 하부에는 밸브(미도시)가 구비되고, 밸브가 개방되면 슈트(50)로 투입물이 공급될 수 있다.The hopper 40 may be a plurality. The hopper 40 may be stored in the input. The input may include a deoxidizing agent, a desulfurizing agent and a flux. At this time, the input may be various types depending on the process performed in the furnace body (10). A deoxidizing agent, a desulfurizing agent, and a flux may be stored in the hopper 40, respectively. A valve (not shown) is provided at the bottom of the hopper 40, and when the valve is opened, an input may be supplied to the chute 50.
슈트(50)는 일단이 분기되어 호퍼(40)의 하부에 각각 연결되고, 타단이 노구를 향하여 연장되며 호퍼(20)의 하부를 관통하도록 설치될 수 있다. 슈트(50)를 통하여 투입물이 노체(10)의 내부에 장입될 수 있다. 슈트(50)의 타단에는 열영상 카메라(60)가 지지될 수 있다. 물론, 열영상 카메라(60)는 후드(20)의 내벽에 지지될 수도 있다.The chute 50 may be installed such that one end is branched and connected to the lower portion of the hopper 40, the other end extends toward the furnace, and penetrates the lower portion of the hopper 20. The input may be charged into the furnace body 10 through the chute 50. The thermal imaging camera 60 may be supported at the other end of the suit 50. Of course, the thermal imaging camera 60 may be supported on the inner wall of the hood 20.
도 3은 본 발명의 실시 예에 따른 용융물 처리 방법의 순서도이다. 또한, 도 4는 본 발명의 실시 예에 따른 슬래그의 상평형도이고, 도 5의 (a) 및 (b)는 본 발명의 실시 예에 따른 정련 공정에서 정련로 노체 내화물을 촬영한 열영상 사진이다. 또한, 도 6은 본 발명의 실시 예에 따른 내화물의 수명 변화를 설명하기 위한 그래프이다.3 is a flow chart of a melt processing method according to an embodiment of the present invention. In addition, Figure 4 is a phase equilibrium diagram of a slag according to an embodiment of the present invention, Figure 5 (a) and (b) is a thermal imaging photograph of the furnace body refractory by refining in the refining process according to the embodiment of the present invention to be. In addition, Figure 6 is a graph for explaining the change in the life of the refractory according to an embodiment of the present invention.
이하에서, 도 1 내지 도 6을 참조하여, 본 발명의 실시 예에 따른 용융물 처리 장치를 사용한 용융물 처리 방법을 상세하게 설명한다.Hereinafter, a method of treating a melt using a melt treating apparatus according to an embodiment of the present invention will be described in detail with reference to FIGS. 1 to 6.
본 발명의 실시 예에 따른 용융물 처리 방법은, 상부가 개방된 용기에 용융물을 장입하고, 용융물을 처리하는 과정, 용기로부터 처리된 용융물을 배출하는 과정, 용기의 내부 온도를 측정하는 과정, 용기의 내부 온도를 미리 정한 기준온도보다 높도록 제어하는 과정을 포함한다. 이때, 용기의 내부 온도를 측정하는 과정은, 용기의 내부에 구축된 내화물의 온도를 측정하는 과정을 포함한다.The method of processing a melt according to an embodiment of the present invention includes charging a melt in a container with an open top, processing a melt, discharging a processed melt from a container, measuring an internal temperature of the container, and And controlling the internal temperature to be higher than a predetermined reference temperature. At this time, the process of measuring the internal temperature of the container includes a process of measuring the temperature of the refractory material built in the container.
본 발명의 실시 예에 따른 용융물 처리 방법은, 용기의 내부 온도를 미리 정한 기준온도보다 높도록 제어하는 과정 이후에, 용기에 후속 용융물을 장입하고, 후속 용융물을 처리하는 과정을 포함할 수 있다.The melt processing method according to the embodiment of the present invention may include a process of controlling the internal temperature of the container to be higher than a predetermined reference temperature, charging the subsequent melt in the container, and processing the subsequent melt.
용융물은 스테인리스강 제조용의 용강을 포함할 수 있다. 스테인리스강 제조용의 용강은 전기로 공정에서 제조될 수 있다. 전기로 공정에서 제조된 스테인리스강 제조용의 용강을 용탕이라고 할 수도 있다. 물론, 용융물은 다양할 수 있다.The melt may include molten steel for manufacturing stainless steel. Stainless steel for manufacturing stainless steel can be produced in an electric furnace process. The molten steel for the production of stainless steel produced in the electric furnace process may also be referred to as molten metal. Of course, the melt may vary.
용기는 용강을 수용하여 취련할 수 있는 정련로의 노체(10)를 포함할 수 있다. 노체(10)는 에이오디 정련로의 노체(10)일 수 있다. 노체(10)의 내부에 구축된 내화물(12)은 기공률이 20% 이하이고, 카본 함량이 내화물 전체 중량의 5중량% 미만인 내화물을 포함할 수 있다. 용융물을 처리하는 중에, 노체(10)의 내부에 슬래그가 생성될 수 있다. 슬래그는 노체(10)의 중간 영역(D2)의 내부에 위치할 수 있고, 용융물의 탕면에 소정 두께로 슬래그 층을 형성할 수 있다. 슬래그는 노체(10)의 중간 영역(D2)의 내화물(12)에 접촉할 수 있다. 슬래그는 염기도가 1.3 이상인 스테인리스 슬래그를 포함할 수 있다. 슬래그는 산화칼슘(CaO) 및 이산화규소(SiO2)를 포함할 수 있다. 용융물을 처리하는 중에, 슬래그의 염기도는 증감할 수 있다.The container may include a furnace body 10 of a refining furnace capable of receiving and blowing molten steel. The furnace body 10 may be the furnace body 10 of the AOD refining furnace. The refractory material 12 constructed inside the furnace body 10 may include a refractory material having a porosity of 20% or less and a carbon content of less than 5% by weight of the total weight of the refractory material. During the processing of the melt, slag may be generated inside the furnace body 10. The slag may be located inside the middle region D2 of the furnace body 10, and a slag layer may be formed at a predetermined thickness on the molten metal melt surface. The slag can contact the refractory 12 in the middle region D2 of the furnace body 10. The slag may include stainless steel slag having a basicity of 1.3 or higher. The slag may include calcium oxide (CaO) and silicon dioxide (SiO 2 ). During the processing of the melt, the basicity of the slag can increase or decrease.
슬래그는 산화칼슘과 이산화규소의 비율을 나타내는 지표인 염기도(C/S)에 따라 온도별로 다양한 상들이 존재한다. 도 4는 본 발명의 실시 예에 따른 슬래그의 상평형도로서, 구체적으로 CaO-SiO2 2성분계 상평형도이다. 도면의 가로 축에서, 우측으로 가면 슬래그 중의 이산화규소의 함량이 크고, 좌측으로 가면 슬래그 중의 산화칼슘의 함량이 크다. 도면의 세로 축은 온도 축이다. 도면에서 빗금친 네모 영역은 슬래그의 염기도가 1.3 이상인 영역이다.Slag has various phases according to temperature according to the basicity (C / S), which is an index indicating the ratio of calcium oxide and silicon dioxide. Figure 4 is a diagram of the equilibrium slag according to an embodiment of the present invention, specifically, FIG equilibrium CaO-SiO 2 2-component system phase. In the horizontal axis of the figure, the content of silicon dioxide in the slag is large when going to the right, and the content of calcium oxide in the slag is large when going to the left. The vertical axis of the drawing is the temperature axis. In the figure, the hatched square region is a region where the slag has a basicity of 1.3 or more.
통상적으로 스테인리스강의 정련로 공정을 수행하는 중에, 슬래그의 염기도는 1 내지 3의 범위로 제어된다. 이때, 슬래그의 염기도가 약 1.3 이상인 조건에서 2CaO·SiO2(Dicalcium silicate, C2S)는 슬래그의 온도가 감소함에 따라 α―C2S에서 α´―C2S로 상전이하고, 약 725℃ 부근에서 다시 γ―C2S로 상전이한다. 이때, 상전이 전후의 C2S 밀도는 3.31g/㎝3에서 2.97g/cm3 으로 밀도가 낮아지게 된다. 이때, 동일한 질량에서 밀도의 감소는 부피 팽창을 의미한다. 즉, 상전이 전후의 슬래그의 C2S 상은 10% 이상의 부피 팽창을 하고, 이에, 분말화가 이루어진다. 이를 슬래그 분화 현상이라고 한다. 그리고 내화물(12)의 기공 내에 침투한 슬래그의 C2S상의 팽창에 의해 내화물의 스폴링이 발생한다.Typically, during the process of refining the stainless steel, the basicity of the slag is controlled in the range of 1 to 3. At this time, 2CaO · SiO 2 (Dicalcium silicate, C 2 S) in the condition of the basicity of the slag is about 1.3 or higher, phase transitions from α-C 2 S to α´-C 2 S as the temperature of the slag decreases, and is about 725 ° C. The phase transitions to γ-C 2 S again in the vicinity. At this time, C 2 S density before and after the phase change becomes lower as the density is 2.97g / cm 3 eseo 3.31g / ㎝ 3. At this time, a decrease in density at the same mass means volume expansion. That is, the C 2 S phase of the slag before and after the phase transition undergoes a volume expansion of 10% or more, and powdering is performed. This is called slag differentiation. In addition, spalling of the refractory occurs by expansion of the C 2 S phase of the slag that has penetrated into the pores of the refractory 12.
이 경우, 내화물(12)의 내부에 균열이 발생하고, 내화물(12)의 수명이 저하된다. 한편, 내화물(12)의 기공에 침투한 슬래그의 C2S상은 고융점 상으로서, 상술한 상전이를 억제하면, 보호층으로 작용할 수 있다. 즉, 부피 팽창 없이 슬래그의 C2S상이 내화물(12)의 기공을 메워서 막아주면서 이후의 슬래그의 침투를 방지할 수 있다.In this case, cracks are generated inside the refractory 12, and the life of the refractory 12 is reduced. On the other hand, the C 2 S phase of the slag that has penetrated the pores of the refractory 12 is a high-melting-point phase, and when the above-described phase transition is suppressed, it can act as a protective layer. That is, the C 2 S phase of the slag fills up the pores of the refractory 12 and prevents the penetration of the later slag without volume expansion.
우선, 상부가 개방된 용기 예컨대 노체(10)에 용융물을 장입하고, 용융물을 처리하는 과정을 수행한다. 노체(10)에 용융물 예컨대 용강을 장입하고, 랜스(30)와 노즐을 통하여 노체(10)의 내부에 산소와 아르곤을 불어넣으며 용융물을 취련한다. 용융물은 아르곤 가스 및 산소 가스에 의하여 취련될 수 있다. 용융물의 취련 중에, 용융물에 함유된 탄소, 산소 및 황 성분의 함량이 조정될 수 있다. 이때, 노체(10)의 내부에 탈산제, 탈황제 및 플럭스가 투입될 수 있다.First, a process in which a melt is charged into a container with an open top, such as a furnace body 10, and the melt is processed. A molten material such as molten steel is charged into the furnace body 10, and oxygen and argon are blown into the furnace body 10 through the lance 30 and the nozzle to blow the molten material. The melt can be blown with argon gas and oxygen gas. During the blow of the melt, the content of carbon, oxygen and sulfur components contained in the melt can be adjusted. At this time, a deoxidizing agent, a desulfurizing agent, and a flux may be introduced into the furnace body 10.
이후, 노체(10)로부터 처리된 용융물을 배출하는 과정을 수행한다(S100). 앞서 설명한 수평 방향 축(미도시)를 회전시켜, 노체(10)를 경동시키고, 노체(10)내의 처리된 용융물을 래들(미도시)로 배출한다. 용융물을 처리하는 과정에서 용융물의 상부에 슬래그가 형성된다. 이에, 용융물을 배출하는 과정 이전에 또는 이후에, 슬래그 배제가 수행될 수도 있다. 슬래그 배제는 노체(10)를 경동시켜 노체(10) 내의 슬래그를 슬래그 포트(미도시)에 배출하는 것을 의미한다.Thereafter, a process of discharging the melted material from the furnace body 10 is performed (S100). By rotating the horizontal axis (not shown) described above, the furnace body 10 is tilted, and the treated melt in the furnace body 10 is discharged to a ladle (not shown). During the processing of the melt, slag is formed on top of the melt. Thus, before or after the process of discharging the melt, slag exclusion may be performed. Slag exclusion means that the furnace body 10 is tilted to discharge the slag in the furnace body 10 to a slag port (not shown).
이후, 노체(10)의 내부 온도를 측정하는 과정을 수행한다(S200). 노체(10)의 내부 온도를 측정하는 과정은, 노체(10)의 내부에 구축된 내화물(12)의 온도를 측정하는 과정을 포함한다. 내화물(12)의 온도는 온도 측정부인 열영상 카메라(60)나 적외선 온도계를 사용하여 비접촉 방식으로 측정한다. 이때, 슬래그가 형성되는 높이에서, 내화물(12)의 표면의 열영상을 촬영하여 열영상 사진의 형태로 슬래그가 형성되는 높이의 내화물(12)의 표면 온도를 측정한다. 또는, 슬래그가 형성되는 높이에서, 내화물(12)의 표면의 적외선 방사 에너지를 계측하여 에너지 강도 및 파장 분포의 형태로 슬래그가 형성되는 높이의 내화물(12)의 표면 온도를 측정한다.Thereafter, a process of measuring the internal temperature of the furnace body 10 is performed (S200). The process of measuring the internal temperature of the furnace body 10 includes a process of measuring the temperature of the refractory material 12 built in the furnace body 10. The temperature of the refractory 12 is measured in a non-contact manner using a thermal imaging camera 60 as a temperature measuring unit or an infrared thermometer. At this time, at the height at which the slag is formed, a thermal image of the surface of the refractory 12 is photographed to measure the surface temperature of the refractory 12 at the height at which the slag is formed in the form of a thermal image. Alternatively, by measuring the infrared radiation energy of the surface of the refractory 12 at the height at which the slag is formed, the surface temperature of the refractory body 12 at the height at which the slag is formed in the form of energy intensity and wavelength distribution is measured.
즉, 내화물의 표면 온도를 측정하는 과정은, 비접촉식 온도 측정기를 이용하여 비접촉식으로 내화물의 표면에 대한 상태정보를 검출하는 과정 및 상태정보로부터 내화물의 표면 온도를 획득하는 과정을 포함한다.That is, the process of measuring the surface temperature of the refractory material includes detecting a state information on the surface of the refractory material in a non-contact manner using a non-contact temperature measuring device and obtaining a surface temperature of the refractory material from the state information.
여기서, 상태정보는 내화물의 표면의 열영상 및 적외선 방사 에너지를 포함하여 다양할 수 있다. 따라서, 내화물의 표면에 대한 상태정보를 검출하는 과정은, 내화물의 표면의 열영상을 촬영하는 과정을 포함하고, 검출된 상태 정보로부터 표면 온도를 획득하는 과정은, 촬영된 열영상 사진으로부터 표면 온도를 획득하는 과정을 포함할 수 있다. 이때, 열영상 카메라(60)로 내화물 표면의 열영상을 연속적으로 촬영하거나, 혹은, 소정의 시간 간격으로 주기적으로 촬영할 수 있다.Here, the status information may be varied, including thermal imaging and infrared radiation energy on the surface of the refractory. Therefore, the process of detecting the state information on the surface of the refractory material includes the process of taking a thermal image of the surface of the refractory material, and the process of obtaining the surface temperature from the detected state information is performed by the surface temperature from the captured thermal image photograph. It may include the process of obtaining a. At this time, the thermal image camera 60 may continuously photograph the thermal image of the refractory surface, or periodically photograph at a predetermined time interval.
또는, 내화물의 표면에 대한 상태 정보를 검출하는 과정은, 내화물의 표면의 적외선 방사 에너지를 계측하는 과정을 포함하고, 검출된 상태 정보로부터 내화물의 표면 온도를 획득하는 과정은, 계측된 적외선 방사 에너지의 에너지 강도 및 파장 분포 중 적어도 어느 하나를 이용하여 표면 온도를 획득하는 과정을 포함할 수 있다.Alternatively, the process of detecting the state information on the surface of the refractory material includes measuring the infrared radiation energy of the surface of the refractory material, and the process of obtaining the surface temperature of the refractory material from the detected state information is measured infrared radiation energy It may include the process of obtaining the surface temperature using at least one of the energy intensity and wavelength distribution of.
기준온도는 내화물(12)의 내부 온도가 내화물(12)에 침투한 슬래그의 스폴링을 방지할 수 있는 온도일 때, 내화물(12)의 표면 온도로 정의한다. 기준온도는 슬래그의 상전이 온도에 슬래그의 침투 깊이를 반영하여 미리 정해질 수 있고, 제어부에 입력될 수 있다. 여기서, 슬래그의 상전이 온도는 슬래그의 C2S상이 α´―C2S에서 γ―C2S로 상전이하는 온도를 의미한다. 염기도가 1.3 이상인 스테인리스 슬래그의 경우, 상전이 온도가 약 725℃ 부근의 소정 온도값일 수 있다.The reference temperature is defined as the surface temperature of the refractory 12 when the internal temperature of the refractory substance 12 is a temperature capable of preventing the spalling of the slag penetrating the refractory substance 12. The reference temperature may be determined in advance by reflecting the penetration depth of the slag in the phase transition temperature of the slag, and may be input to the control unit. Here, the phase transition temperature of the slag means a temperature at which the C 2 S phase of the slag phase changes from α´-C 2 S to γ-C 2 S. In the case of stainless slag having a basicity of 1.3 or higher, the phase transition temperature may be a predetermined temperature value around 725 ° C.
내화물(12)의 표면 온도를 측정하는 이유는, 내화물(12)의 표면 온도가 기준온도보다 높도록 제어하기 위해서이다. 여기서, 기준온도는 슬래그의 상전이 온도보다 높다. 그 이유는 다음과 같다.The reason for measuring the surface temperature of the refractory 12 is to control the surface temperature of the refractory 12 to be higher than the reference temperature. Here, the reference temperature is higher than the phase transition temperature of the slag. The reason for this is as follows.
노체(10)에 구축된 내화물(12)은 노체(10)의 내부 공간을 향하는 내부면의 온도가 높고, 노체(10)의 철피(11)를 향하는 방향으로 온도가 점차 낮아진다. 따라서, 내화물(12)의 표면 온도가 슬래그의 상전이 온도보다 높더라도, 내화물(12)의 내부 온도는 슬래그의 상전이 온도보다 낮을 수 있다. 이 경우, 내화물(12)의 내부 깊은 곳에 침투한 슬래그가 분화될 수 있다. 즉, 내화물(12)의 표면 온도가 슬래그의 상전이 온도보다 높은 기준온도 이하가 될 때, 노체(10)의 내화물(12)을 승온시키는 것이 바람직하다.The refractory material 12 built in the furnace body 10 has a high temperature on the inner surface toward the inner space of the furnace body 10, and a temperature gradually decreases in the direction toward the iron shell 11 of the furnace body 10. Therefore, even if the surface temperature of the refractory 12 is higher than the phase transition temperature of the slag, the internal temperature of the refractory 12 may be lower than the phase transition temperature of the slag. In this case, slag penetrating deep inside the refractory 12 may be differentiated. That is, when the surface temperature of the refractory material 12 becomes a reference temperature or higher than the phase transition temperature of the slag, it is preferable to heat the refractory material 12 of the furnace body 10.
따라서, 기준온도를 슬래그의 상전이 온도보다 높게 정하여, 슬래그 침투 영역의 내화물(12)의 표면 온도를 슬래그의 상전이 온도보다 높도록 제어할 수 있고, 내화물(12)의 내부에 침투한 슬래그가 슬래그의 상전이 온도보다 낮은 온도로 냉각되는 것을 억제 내지 방지할 수 있다.Therefore, by setting the reference temperature higher than the phase transition temperature of the slag, it is possible to control the surface temperature of the refractory material 12 in the slag penetration region to be higher than the phase transition temperature of the slag, and the slag penetrating inside the refractory material 12 of the slag It is possible to suppress or prevent the phase transition from being cooled to a temperature lower than the temperature.
이때, 내화물(12)의 기공을 통하여 내화물(12)의 표면으로부터 내화물(12)의 내부로 침투하는 슬래그의 침투 깊이가 깊을수록 기준온도와 상전이 온도의 차이가 클 수 있다. 슬래그의 상전이 온도가 약 725℃ 일 때, 기준온도는 725℃보다 크고, 슬래그의 침투 깊이가 깊어질수록 기준온도가 더 큰 값을 가질 수 있다. 즉, 기준온도는 내화물(12)의 기공을 통하여 내화물(12)의 표면으로부터 내화물(12)의 내부로 침투하는 슬래그의 침투 깊이와 비례할 수 있다.At this time, the deeper the penetration depth of the slag penetrating into the interior of the refractory 12 from the surface of the refractory 12 through the pores of the refractory 12, the greater the difference between the reference temperature and the phase transition temperature. When the phase transition temperature of the slag is about 725 ° C, the reference temperature is greater than 725 ° C, and the deeper the penetration depth of the slag, the greater the reference temperature. That is, the reference temperature may be proportional to the depth of penetration of the slag penetrating into the interior of the refractory 12 from the surface of the refractory 12 through the pores of the refractory 12.
정리하면, 내화물(12)에 대한 슬래그의 침투 깊이에 따라 기준온도를 정할 수 있다. 이때, 내화물(12)의 기공률이 클수록 슬래그의 침투 깊이가 깊어지고, 슬래그의 침투 깊이가 깊어질수록 기준온도를 높게 정한다. 예컨대 기공률과 침투 깊이와 기준온도는 서로 비례 관계를 갖는다.In summary, the reference temperature can be determined according to the depth of penetration of the slag to the refractory material 12. At this time, the larger the porosity of the refractory 12, the deeper the penetration depth of the slag, and the deeper the penetration depth of the slag, the higher the reference temperature. For example, porosity, penetration depth, and reference temperature are proportional to each other.
여기서, 내화물(12)의 기공률이 20% 내외이면, 슬래그가 침투하는 깊이는 내화물(12)의 표면으로부터 50mm 내외의 깊이일 수 있다. 기공률이 커지면 침투 깊이가 깊어지고, 기공률이 작아지면, 침투 깊이가 작아질 수 있다.Here, if the porosity of the refractory 12 is about 20%, the depth through which the slag penetrates may be about 50 mm from the surface of the refractory 12. As the porosity increases, the penetration depth becomes deeper, and as the porosity decreases, the penetration depth may decrease.
침투 깊이는 정련로 공정의 종료 시 노체(10)에 구축된 내화물(12)을 검사하여 획득할 수 있다. 또는, 노체(10)를 모사한 실험 장치를 이용하여 정련로 공정과 유사하게 정련 실험을 수행하고, 실험 장치의 내화물을 검사하여 슬래그의 침투 깊이를 획득할 수 있다. 혹은, 침투 깊이는 정련로 공정 시의 내화물(12)과 슬래그의 물성을 이용하여 이론적으로 구할 수 있다.The depth of penetration can be obtained by inspecting the refractory 12 built in the furnace body 10 at the end of the refining process. Alternatively, a refining experiment may be performed similarly to the refining furnace process using an experimental apparatus simulating the furnace body 10, and the depth of penetration of the slag may be obtained by inspecting the refractory of the experimental apparatus. Alternatively, the penetration depth can be theoretically determined by using physical properties of the refractory material 12 and slag during the refining process.
이러한, 슬래그의 침투 깊이를 고려하여, 기준온도는 1100℃로 정해질 수 있다. 내화물(12)의 표면 온도가 1100℃일 때, 내화물(12)의 표면에서 멀어질수록 점차 온도가 낮아져서, 내화물(12)의 표면에서 50mm 깊이인 부분의 온도가 725℃보다 높은 온도에서 725℃에 근접하여도, 결국, 725℃보다 높은 온도로 유지될 수 있다.Considering the depth of penetration of the slag, the reference temperature may be set to 1100 ° C. When the surface temperature of the refractory material 12 is 1100 ° C, the temperature gradually decreases as it moves away from the surface of the refractory material 12, and the temperature of a portion 50 mm deep from the surface of the refractory material 12 is 725 ° C at a temperature higher than 725 ° C. Even close to, it can be maintained at a temperature higher than 725 ° C.
더욱 바람직하게는, 기준온도를 1300℃로 정할 수 있다. 이에, 내화물(12)의 표면 온도가 1300℃이면, 내화물(12)의 표면에서 50mm 깊이인 부분의 온도를 725℃보다 더욱 높은 온도로 유지할 수 있다. 또한, 내화물(12)의 표면 온도가 1300℃이면, 내화물(12)의 기공률이 증가하는 등의 이유로 슬래그가 내화물(12)의 내부로 50mm 보다 더 깊이 침투하더라도, 슬래그가 침투한 부분의 온도를 725℃보다 높은 온도로 유지할 수 있다.More preferably, the reference temperature can be set to 1300 ° C. Accordingly, when the surface temperature of the refractory material 12 is 1300 ° C, the temperature of a portion 50 mm deep from the surface of the refractory material 12 can be maintained at a temperature higher than 725 ° C. In addition, if the surface temperature of the refractory 12 is 1300 ° C, even if the slag penetrates deeper into the refractory 12 than 50 mm for reasons such as an increase in porosity of the refractory 12, the temperature of the portion where the slag penetrated is increased. It can be maintained at a temperature higher than 725 ° C.
열영상 카메라(60)로 내화물(12)의 표면의 열영상을 촬영하는 과정에서 열영상 카메라(60)를 내화물(12)의 표면으로부터 20m 이내의 거리로 이격시킨다. 즉, 내화물(12)의 표면과 열영상 카메라(60) 사이의 거리를 20m 이내로 한다. 이에, 촬영된 열영상 사진의 정확도를 확보할 수 있다.In the process of photographing the thermal image of the surface of the refractory 12 with the thermal imaging camera 60, the thermal imaging camera 60 is separated from the surface of the refractory 12 by a distance within 20 m. That is, the distance between the surface of the refractory 12 and the thermal imaging camera 60 is within 20 m. Thus, it is possible to secure the accuracy of the photographed thermal image.
도 5의 (a) 및 (b)는 본 발명의 실시 예에 따른 정련 공정에서 정련로 노체 내화물을 촬영한 열영상 사진이다. 본 발명의 실시 예에 따른 용융물 처리 방법이 적용된 정련로 공정을 수행하며, 열영상 카메라(60)로 내화물(12)의 표면의 열영상을 촬영하여 도 5의 (a) 및 (b)와 같은 열영상 사진을 얻을 수 있었다.5 (a) and (b) are thermal imaging photographs of the furnace body refractory material in a refining process according to an embodiment of the present invention. Performing a smelting furnace process to which the melt processing method according to an embodiment of the present invention is applied, and taking a thermal image of the surface of the refractory 12 with a thermal imaging camera 60, as shown in FIGS. 5 (a) and 5 (b). I was able to get a thermal image.
도 5의 (a)는 용융물 배출 종료 이후에 열영상 카메라(60)로 촬영한 내화물(12)의 표면의 열영상 사진으로, 스팟 1의 온도가 1157℃ 이고, 스팟 2의 온도가 1156℃ 인 것이 나타난다.5 (a) is a thermal image of the surface of the refractory film 12 taken by the thermal imaging camera 60 after the melt discharge is finished, the temperature of spot 1 is 1157 ° C, and the temperature of spot 2 is 1156 ° C. Appears.
도 5의 (b)는 용융물 배출 이후 소정 시간이 지나고 열영상 카메라(60)로 촬영한 내화물(12)의 표면의 열영상 사진으로, 스팟 1의 온도가 822℃ 이고, 스팟 2의 온도가 822℃인 것이 나타난다. 이때, 도 5의 (b)의 a 부분(검은색 동그라미 표시)을 보면, 내화물(12)의 스폴링이 열영상 사진에 확인된다. 즉, 노체(10)의 대기 중에, 내화물(12)이 냉각되어 내화물(12)의 표면의 온도가 기준온도보다 낮아지면, 내화물(12)에 스폴링이 발생하는 것을 확인할 수 있다.FIG. 5 (b) is a thermal image of the surface of the refractory film 12 after a predetermined time has passed after discharging the melt, and the temperature of spot 1 is 822 ° C, and the temperature of spot 2 is 822 It appears that it is ℃. At this time, looking at part a (shown in black circle) of FIG. 5 (b), spalling of the refractory 12 is confirmed in the thermal image. That is, when the refractory 12 is cooled in the atmosphere of the furnace body 10 and the temperature of the surface of the refractory 12 becomes lower than the reference temperature, it can be confirmed that spalling occurs in the refractory 12.
이처럼 열영상 카메라(60)로 내화물(12)의 표면의 열영상을 촬영하여, 열영상 사진을 생성하고, 이를 제어부로 보내어 다음 과정을 수행한다.As described above, a thermal image of the surface of the refractory 12 is photographed by the thermal image camera 60 to generate a thermal image and send it to the control unit to perform the following process.
이후, 노체(10)의 내부 온도 즉, 내화물(12)의 표면 온도를 미리 정한 기준온도보다 높도록 제어하는 과정을 수행한다.Thereafter, a process of controlling the internal temperature of the furnace body 10, that is, the surface temperature of the refractory material 12 to be higher than a predetermined reference temperature is performed.
이때, 측정된 온도와 기준온도를 대비하여, 측정된 온도가 기준온도 이하인가를 판단한다(S300). 예컨대 제어부가 열영상 카메라(60)로부터 입력받은 열영상 사진의 픽셀들의 색을 판독하여, 픽셀들 중 기준온도 이하의 온도에 해당하는 색으로 표시된 픽셀이 적어도 하나 이상 있으면, 슬래그 침투 영역의 내화물(12)의 표면 온도가 기준온도 이하인 것으로 판단한다. 반면, 제어부는 열영상 사진의 픽셀들 중 기준온도 이하의 온도에 해당하는 색으로 표시된 픽셀이 없으면, 슬래그 침투 영역의 내화물(12)의 표면 온도가 기준온도보다 높은 것으로 판단한다.At this time, by comparing the measured temperature and the reference temperature, it is determined whether the measured temperature is below the reference temperature (S300). For example, the control unit reads the color of the pixels of the thermal image received from the thermal imaging camera 60, and if there is at least one pixel of a color corresponding to a temperature below a reference temperature, the refractory material of the slag penetration area ( It is judged that the surface temperature of 12) is below the reference temperature. On the other hand, if there is no pixel displayed in a color corresponding to a temperature below the reference temperature among the pixels of the thermal image, the controller determines that the surface temperature of the refractory material 12 in the slag penetration region is higher than the reference temperature.
또는, 제어부가 적외선 온도계로부터 입력받은 적외선 방사 에너지의 에너지 강도 및 파장 분포를 기준온도 이하의 온도에 해당하는 적외선 방사 에너지의 에너지 강도 및 파장 분포와 대비하여, 입력받은 적외선 방사 에너지의 에너지 강도 또는 파장 분포가 기준온도 이하의 온도에 해당하는 적외선 방사 에너지의 에너지 강도 또는 파장 분포에 포함되면, 슬래그 침투 영역의 내화물(12)의 표면 온도가 기준온도 이하인 것으로 판단한다. 반면, 제어부는 입력받은 적외선 방사 에너지의 에너지 강도 또는 파장 분포가 기준온도 이하의 온도에 해당하는 적외선 방사 에너지의 에너지 강도 또는 파장 분포에 포함되지 않으면, 슬래그 침투 영역의 내화물(12)의 표면 온도가 기준온도보다 높은 것으로 판단한다.Alternatively, the control unit compares the energy intensity and wavelength distribution of the infrared radiation energy received from the infrared thermometer with the energy intensity and wavelength distribution of the infrared radiation energy corresponding to a temperature below the reference temperature, so that the energy intensity or wavelength of the received infrared radiation energy If the distribution is included in the energy intensity or wavelength distribution of infrared radiation energy corresponding to a temperature below the reference temperature, it is determined that the surface temperature of the refractory material 12 in the slag penetration region is below the reference temperature. On the other hand, if the energy intensity or wavelength distribution of the received infrared radiation energy is not included in the energy intensity or wavelength distribution of the infrared radiation energy corresponding to a temperature below the reference temperature, the control unit may adjust the surface temperature of the refractory material 12 in the slag penetration region. It is judged that it is higher than the reference temperature.
제어부는 슬래그 침투 영역의 내화물(12)의 표면 온도가 기준온도 이하인 것으로 판단되면, 즉, 측정된 온도가 기준온도 이하이면, 기준온도보다 높은 온도로 노체(10)의 내부를 승온시킨다(S400). 이때, 노체(10)의 내부를 승온시키는 과정은, 노체(10)를 경동시키고, 노체(10) 내부에 화염을 분사하는 과정을 포함한다. 이때, 노체(10) 내부를 향하도록 열원 예컨대 버너(70)를 배치하고, 버너(70)를 이용하여 노체(10) 내부에 화염을 분사한다.If it is determined that the surface temperature of the refractory material 12 in the slag penetration region is below the reference temperature, that is, when the measured temperature is below the reference temperature, the inside of the furnace body 10 is heated to a temperature higher than the reference temperature (S400). . At this time, the process of heating the inside of the furnace body 10 includes tilting the furnace body 10 and spraying flames inside the furnace body 10. At this time, a heat source such as a burner 70 is disposed to face the inside of the furnace body 10, and a flame is injected into the furnace body 10 using the burner 70.
여기서, 화염 분사는 후속 용융물이 준비될때까지 계속될 수 있다. 이후, 후속 용융물이 준비되면, 버너(70)를 정지시켜 화염(F)의 분사를 종료한다. 이후, 노체(10)에 후속 용융물을 장입하고, 후속 용융물 처리를 개시한다. 혹은, 소정 시간동안 화염을 분사하고, 화염의 분사를 일시 정지한 후, 후속 용융물이 준비되었는지를 판단한다(S500). 후속 용융물이 준비되지 않았으면, 상술한 용기 내부의 온도 측정 과정을 반복한다. 후속 용융물이 준비되었으면, 버너(70)를 정지시켜 화염(F)의 분사를 종료한다. 이후, 노체(10)에 후속 용융물을 장입하고, 후속 용융물 처리를 개시한다(S600).Here, flame spraying may continue until the subsequent melt is ready. Thereafter, when the subsequent melt is prepared, the burner 70 is stopped to stop the injection of the flame F. Subsequently, a subsequent melt is charged to the furnace body 10, and subsequent melt processing is started. Alternatively, the flame is sprayed for a predetermined time, and the flame is temporarily stopped, and then it is determined whether the subsequent melt is ready (S500). If the subsequent melt is not ready, the above-described temperature measurement process inside the container is repeated. When the subsequent melt is ready, the burner 70 is stopped to stop spraying the flame F. Subsequently, a subsequent melt is charged to the furnace body 10 and subsequent melt processing is started (S600).
반면, 제어부는 측정된 온도가 기준온도보다 높으면 후속 용융물이 준비되었는지를 판단한다(S500). 후속 용융물이 준비되지 않았으면, 용기 내부의 온도 측정 과정을 반복한다. 후속 용융물이 준비되었으면, 버너(70)를 정지시켜 화염(F)의 분사를 종료하고, 노체(10)로 용융물을 장입하고, 후속 용융물의 처리를 개시한다(S600).On the other hand, if the measured temperature is higher than the reference temperature, the control unit determines whether a subsequent melt is prepared (S500). If the subsequent melt is not ready, the temperature measurement process inside the vessel is repeated. When the subsequent melt is ready, the burner 70 is stopped to terminate the injection of the flame F, the melt is charged into the furnace body 10, and processing of the subsequent melt is started (S600).
이에, 내화물(12)의 표면 온도를 상시 기준온도보다 높게 유지함으로써, 내화물(12)에 침투한 슬래그 분화를 억제 내지 방지할 수 있다.Thus, by maintaining the surface temperature of the refractory 12 higher than the reference temperature at all times, it is possible to suppress or prevent the slag differentiation that has penetrated into the refractory 12.
상술한 과정에 의하여, 용융물을 처리하는 과정 중에 슬래그(12)의 기공으로 침투한 슬래그가 노체(10)의 대기 중에 냉각되어 상전이되면서 부피 팽창하는 것을 억제 혹은 방지할 수 있다. 즉, 상술한 과정에 의하여 슬래그 분화를 억제 혹은 방지할 수 있다.By the above-described process, during the process of processing the melt, the slag that has penetrated into the pores of the slag 12 is cooled in the atmosphere of the furnace body 10 and can be prevented or prevented from being expanded in volume while being phase-shifted. That is, slag differentiation can be suppressed or prevented by the above-described process.
한편, 내화물(12)의 온도를 높이기 위하여, 상시 버너(70)를 가동하면, 오히려 노체(10)에서 용융물을 배출한 직후에, 내화물(12)의 냉각을 촉진시킬 수 있다. 노체(10)에서 용융물을 정련하는 중에 노체(10)는 내부 온도가 약 2000℃ 로 제어된다. 노체(10)에서 용융물을 배출한 직후 노체(10)의 온도는 약 1700℃ 내지 1800℃의 온도를 가진다. 여기서, 버너(70)에서 분사되는 화염의 온도는 약 1300℃ 전후이다. 이에, 노체(10)에서 용융물을 배출한 직후에 노체(10)의 내부에 화염을 분사하면, 노체(10)가 화염에 의해 약 1300℃ 전후의 온도로 빠르게 냉각될 수 있다. 한편, 버너(70)의 화염 온도를 약 1700℃ 내지 1800℃까지 올리기 위해 버너(70)로 공급하는 산소의 비율을 높이면, 안전상의 문제가 있고, 버너(70)의 팁이 고열에 손상될 수 있다.On the other hand, in order to increase the temperature of the refractory 12, if the burner 70 is always operated, rather than immediately after discharging the melt from the furnace body 10, cooling of the refractory 12 can be promoted. While refining the melt in the furnace body 10, the furnace body 10 is controlled to have an internal temperature of about 2000 ° C. Immediately after discharging the melt from the furnace body 10, the temperature of the furnace body 10 has a temperature of about 1700 ° C to 1800 ° C. Here, the temperature of the flame injected from the burner 70 is around 1300 ° C. Accordingly, if the flame is injected into the furnace body 10 immediately after discharging the melt from the furnace body 10, the furnace body 10 can be rapidly cooled to about 1300 ° C. by the flame. On the other hand, increasing the proportion of oxygen supplied to the burner 70 to increase the flame temperature of the burner 70 to about 1700 ° C to 1800 ° C, there is a safety problem, and the tip of the burner 70 may be damaged by high heat. have.
상술한 바와 같이, 본 발명의 실시 예에 따르면, 이번 회차에서 용융물의 처리가 완료되어 노체(10)로부터 배출된 이후부터 다음 회차의 후속 용융물이 준비되기까지 노체(10)가 대기하는 동안, 노체(10)의 내부에 구축된 내화물(12)의 온도를 기준온도보다 높도록 제어할 수 있다.As described above, according to an embodiment of the present invention, the furnace body 10 waits while the furnace body 10 waits until after the treatment of the melt is completed and discharged from the furnace body 10 at this time until a subsequent melt of the next cycle is prepared. It is possible to control the temperature of the refractory material 12 built in the interior to be higher than the reference temperature.
구체적으로, 노체(10)가 대기하는 동안, 열영상 카메라(60)를 이용하여 내화물(12)의 표면 온도를 비접촉 방식으로 실시간 측정할 수 있고, 측정 결과를 이용하여 내화물(12)의 표면 온도가 기준온도보다 항상 높도록 버너(70)의 작동을 제어할 수 있다.Specifically, while the furnace body 10 is in standby, the surface temperature of the refractory 12 may be measured in real time using a thermal imaging camera 60 in a non-contact manner, and the surface temperature of the refractory 12 may be measured using the measurement result. It is possible to control the operation of the burner 70 so that it is always higher than the reference temperature.
따라서, 노체(10)가 대기하는 동안, 내화물(12)의 온도를 스폴링이 발생하지 않는 임계온도 이상으로 상시 유지할 수 있다. 따라서, 노체(10)가 대기하는 동안, 내화물(12)의 스풀링을 억제 혹은 방지할 수 있고, 내화물(12)의 수명을 향상시킬 수 있다. 즉, 내화물 재질 및 공정 조건의 변경 없이, 노체(10)를 원활하게 사용할 수 있다.Therefore, while the furnace body 10 is in standby, the temperature of the refractory 12 can be maintained at all times above the critical temperature at which spalling does not occur. Therefore, while the furnace body 10 is in standby, spooling of the refractory 12 can be suppressed or prevented, and the life of the refractory 12 can be improved. That is, the furnace body 10 can be used smoothly without changing the refractory material and process conditions.
도 6을 참조하면, 그래프의 X 축은 정련로 노대를 지칭하고, Y 축은 정련로 수명을 지칭한다. 여기서, 용융물의 장입부터 처리된 용융물의 배출까지를 하나의 회차 공정이라고 하면, 하나의 정련로 노대는 복수회 예컨대 수백회 내지 수천회의 회차 공정으로 이루어진다. 하나의 정련로 노대가 종료되면 노체(10)의 내화물(12)을 재구축한다. 이후, 다음 정련로 노대의 복수회의 회차 공정을 수행한다. 내화물(12)의 상태가 양호하면, 정련로 노대의 회차 공정의 수가 증가한다.Referring to FIG. 6, the X-axis of the graph refers to the furnace of the refining furnace, and the Y-axis refers to the life of the refining furnace. Here, when charging from the charging of the melt to the discharge of the processed melt is a one-time process, one refining furnace furnace is made of a plurality of times, for example, several hundred to several thousand times. When the furnace is finished by one refining, the refractory 12 of the furnace body 10 is rebuilt. Subsequently, the next refining furnace performs multiple rounds of the furnace. When the condition of the refractory material 12 is good, the number of rounding steps of the refining furnace furnace increases.
그래프의 A 선은 본 발명의 실시 예에 따른 상술한 용융물 처리 방법으로 스테인리스강의 정련로 공정을 수행하고, 정련로 노대별 회차 공정의 수를 정련로 수명으로 나타낸 것이다. 그래프의 B 선은 본 발명의 비교 예에 따른 용융물 처리 방법으로 정련로 공정을 수행하면서 정련로 노대별 회차 공정의 수를 정련로 수명으로 나타낸 것이다. 본 발명의 비교 예에 따른 용융물 처리 방법은, 본 발명의 실시 예에 따른 상술한 용융물 처리 방법에서 노체(10)의 내부 온도를 측정하는 과정과, 노체(10)의 내부 온도를 기준온도보다 높도록 제어하는 과정이 제외되었다.The line A of the graph shows a smelting furnace process of stainless steel by the above-described melt treatment method according to an embodiment of the present invention, and represents the number of rounding furnace furnace furnace processes by smelting furnace life. The B line of the graph shows the number of rounding furnace processes by furnace smelt as the life of the smelter while performing the smelter process with the melt processing method according to the comparative example of the present invention. Melt processing method according to a comparative example of the present invention, the process of measuring the internal temperature of the furnace body 10 in the above-described melt processing method according to an embodiment of the present invention, the internal temperature of the furnace body 10 is higher than the reference temperature Control was excluded.
그래프의 A 선 및 B 선에 나타난 바와 같이, 본 발명의 실시 예에 따른 용융물 처리 방법으로 스테인리스강의 정련로 공정을 수행하였을 때, 정련로 노대별 회차 공정의 수가 증가함을 볼 수 있다. 즉, 실시 예의 경우 비교 예보다 내화물(12)의 수명이 10% 이상 증가함을 볼 수 있고, 내화물(12)의 수명편차가 절반 수준으로 감소함을 볼 수 있다. 따라서, 본 발명의 실시 예에 따르면 스테인리스강의 정련로 공정을 위한 노체(10)의 운용에 있어, 내화물 교체 시기를 길게 할 수 있고, 이에, 스테인리스강의 정련로 공정의 생산성을 향상시키고 원가를 절감할 수 있다.As shown in lines A and B of the graph, it can be seen that when the smelting furnace process of the stainless steel was performed by the melt treatment method according to the embodiment of the present invention, the number of rounding processes by furnace smelter is increased. That is, in the case of the embodiment, it can be seen that the life of the refractory 12 is increased by 10% or more than the comparative example, and it can be seen that the life deviation of the refractory 12 is reduced to half. Therefore, according to an embodiment of the present invention, in the operation of the furnace body 10 for the refining process of stainless steel, it is possible to lengthen the refractory replacement time, thereby improving the productivity of the process and reducing costs by refining the stainless steel. You can.
본 발명의 상기 실시 예는 본 발명의 설명을 위한 것이고, 본 발명의 제한을 위한 것이 아니다. 본 발명의 상기 실시 예에 개시된 구성과 방식은 서로 결합하거나 교차하여 다양한 형태로 변형될 것이고, 이 같은 변형 예들도 본 발명의 범주로 볼 수 있음을 주지해야 한다. 즉, 본 발명은 청구범위 및 이와 균등한 기술적 사상의 범위 내에서 서로 다른 다양한 형태로 구현될 것이며, 본 발명이 해당하는 기술 분야에서의 업자는 본 발명의 기술적 사상의 범위 내에서 다양한 실시 예가 가능함을 이해할 수 있을 것이다.The above embodiments of the present invention are for the purpose of describing the present invention and not for the limitation of the present invention. It should be noted that the configurations and methods disclosed in the above embodiments of the present invention may be modified in various forms by combining or crossing each other, and such modified examples may be viewed as the scope of the present invention. That is, the present invention will be implemented in a variety of different forms within the scope of the claims and equivalent technical spirit, and various embodiments are possible within the scope of the technical spirit of the present invention. Will be able to understand.

Claims (16)

  1. 상부가 개방된 용기에 용융물을 장입하고, 상기 용융물을 처리하는 과정;Charging a melt in a container with an open top and processing the melt;
    상기 용기로부터 처리된 용융물을 배출하는 과정;Discharging the processed melt from the container;
    상기 용기의 내부 온도를 측정하는 과정;Measuring the internal temperature of the container;
    상기 용기의 내부 온도를 미리 정한 기준온도보다 높도록 제어하는 과정;을 포함하고,Including the process of controlling the internal temperature of the container to be higher than a predetermined reference temperature; includes,
    상기 용기의 내부 온도를 측정하는 과정은,The process of measuring the internal temperature of the container,
    상기 용기의 내부에 구축된 내화물의 온도를 측정하는 과정을 포함하는 용융물 처리 방법.Melt processing method comprising the step of measuring the temperature of the refractory material built in the container.
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 용융물을 처리하는 과정에서 상기 용융물의 상부에 슬래그가 형성되고,In the process of processing the melt, a slag is formed on top of the melt,
    상기 내화물의 온도를 측정하는 과정은,The process of measuring the temperature of the refractory material,
    상기 슬래그가 형성되는 높이에서 상기 내화물의 표면 온도를 측정하는 과정을 포함하는 용융물 처리 방법.And measuring the surface temperature of the refractory material at a height at which the slag is formed.
  3. 청구항 2에 있어서,The method according to claim 2,
    상기 내화물의 표면 온도를 측정하는 과정은,The process of measuring the surface temperature of the refractory material,
    비접촉식으로 상기 내화물의 표면에 대한 상태정보를 검출하는 과정 및 상기 상태정보로부터 상기 표면 온도를 획득하는 과정을 포함하는 용융물 처리 방법.A method of processing a melt, comprising the step of detecting state information on the surface of the refractory material in a non-contact manner and obtaining the surface temperature from the state information.
  4. 청구항 2에 있어서,The method according to claim 2,
    상기 기준온도는 상기 슬래그의 상전이 온도보다 높은 용융물 처리 방법.The reference temperature is a melt processing method higher than the phase transition temperature of the slag.
  5. 청구항 4에 있어서,The method according to claim 4,
    상기 내화물에 대한 슬래그의 침투 깊이에 따라 상기 기준온도를 정하는 용융물 처리 방법.Melt treatment method for determining the reference temperature according to the depth of penetration of the slag to the refractory.
  6. 청구항 5에 있어서,The method according to claim 5,
    상기 내화물의 기공률이 클수록 상기 침투 깊이가 깊어지고,The larger the porosity of the refractory, the deeper the penetration depth,
    상기 침투 깊이가 깊어질수록 상기 기준온도가 높아지는 용융물 처리 방법.The deeper the penetration depth, the higher the reference temperature is.
  7. 청구항 3에 있어서,The method according to claim 3,
    상기 내화물의 표면에 대한 상태정보를 검출하는 과정은, 상기 내화물의 표면의 열영상을 촬영하는 과정을 포함하고,The process of detecting the state information on the surface of the refractory material includes a process of photographing a thermal image of the surface of the refractory material,
    상기 내화물 표면의 열영상을 촬영하는 과정에서 열영상 카메라를 상기 내화물 표면으로부터 20m 이내의 거리로 이격시키는 용융물 처리 방법.In the process of photographing the thermal image of the surface of the refractory material, a melt processing method of separating a thermal imaging camera at a distance within 20 m from the refractory surface.
  8. 청구항 1에 있어서,The method according to claim 1,
    상기 용기의 내부 온도를 기준온도보다 높도록 제어하는 과정은,The process of controlling the internal temperature of the container to be higher than the reference temperature,
    측정된 온도와 상기 기준온도를 대비하는 과정;Comparing the measured temperature with the reference temperature;
    상기 측정된 온도가 상기 기준온도 이하이면 상기 기준온도보다 높은 온도로 상기 용기의 내부를 승온시키는 과정;을 포함하는 용융물 처리 방법.And if the measured temperature is below the reference temperature, heating the inside of the container to a temperature higher than the reference temperature.
  9. 청구항 8에 있어서,The method according to claim 8,
    상기 용기의 내부를 승온시키는 과정은,The process of heating the inside of the container,
    상기 용기를 경동시키고, 상기 용기 내부에 화염을 분사하는 과정을 포함하고,Tilting the container, and spraying a flame inside the container,
    상기 용기의 내부를 승온시키는 과정 이후에,After the process of heating the inside of the container,
    상기 용기에 후속 용융물을 장입하고, 상기 후속 용융물을 처리하는 과정;을 포함하는 용융물 처리 방법.And charging the subsequent melt into the container and processing the subsequent melt.
  10. 청구항 1에 있어서,The method according to claim 1,
    상기 용융물은 스테인리스강 제조용의 용강을 포함하고,The melt includes molten steel for manufacturing stainless steel,
    상기 내화물은 카본 함량이 내화물 전체 중량의 5중량% 미만이고, 기공률이 20% 이하인 내화물을 포함하는 용융물 처리 방법.The refractory material has a carbon content of less than 5% by weight of the total weight of the refractory material, and a porosity of 20% or less.
  11. 상부가 개방되고, 내부에 내화물이 구축되는 용기;A container in which an upper portion is opened and a refractory material is built inside;
    상기 용기 상부에 배치되는 랜스;A lance disposed above the container;
    상기 용기의 외부에 마련되는 열원;A heat source provided on the outside of the container;
    상기 용기의 상부에 배치되거나, 상기 열원에 지지되고, 상기 내화물에서 이격되며, 상기 내화물의 온도를 측정할 수 있는 온도 측정부;A temperature measuring unit disposed on the top of the container, supported by the heat source, spaced apart from the refractory, and capable of measuring the temperature of the refractory;
    상기 내화물의 온도가 미리 정한 기준온도보다 높도록 상기 열원의 작동을 제어하는 제어부;를 포함하는 용융물 처리 장치.The control unit for controlling the operation of the heat source so that the temperature of the refractory material is higher than a predetermined reference temperature.
  12. 청구항 11에 있어서,The method according to claim 11,
    상기 용기는 입구 영역, 중간 영역 및 하부 영역을 구비하고, 상기 용융물을 처리할 때 상기 중간 영역에 슬래그가 위치하고,The container has an inlet region, an intermediate region and a lower region, and a slag is located in the intermediate region when processing the melt,
    상기 온도 측정부는, 상기 중간 영역의 내화물의 표면 온도를 측정할 수 있도록, 상기 중간 영역을 향하도록 상기 용기의 상부에 경사지게 배치되거나, 상기 열원에 지지되며 상기 열원이 연장된 방향에 대하여 경사지게 배치되는 용융물 처리 장치.The temperature measuring unit is disposed to be inclined at an upper portion of the container to face the intermediate region, or to be supported by the heat source and to be inclined with respect to the direction in which the heat source is extended, so as to measure the surface temperature of the refractory in the intermediate region. Melt processing device.
  13. 청구항 12에 있어서,The method according to claim 12,
    상기 온도 측정부는 비접촉식 온도 측정기를 포함하고,The temperature measuring unit includes a non-contact temperature measuring instrument,
    상기 제어부는 상기 비접촉식 온도 측정기에서 검출된 상기 내화물의 표면에 대한 상태정보로부터 상기 표면 온도를 획득하는 용융물 처리 장치.The control unit is a melt processing apparatus for obtaining the surface temperature from the state information on the surface of the refractory detected by the non-contact temperature meter.
  14. 청구항 13에 있어서,The method according to claim 13,
    상기 비접촉식 온도 측정기는 열영상 카메라를 포함하고,The non-contact temperature measuring device includes a thermal imaging camera,
    상기 열영상 카메라는 상기 중간 영역의 내화물의 표면으로부터 20m 이내의 거리로 이격될 수 있는 용융물 처리 장치.The thermal imaging camera is a melt processing apparatus that can be spaced apart within a distance of less than 20m from the surface of the refractory material in the intermediate region.
  15. 청구항 14에 있어서,The method according to claim 14,
    상기 열영상 카메라는 화각을 좁히도록 렌즈의 전방에 후드를 구비하는 용융물 처리 장치.The thermal imaging camera is a melt processing apparatus having a hood in front of the lens to narrow the angle of view.
  16. 청구항 11에 있어서,The method according to claim 11,
    상기 제어부는 상기 내화물의 온도가 기준온도 이하이면 상기 용기의 내부에 화염을 분사하도록 상기 열원을 작동시키는 용융물 처리 장치.The control unit melts the apparatus for operating the heat source to spray a flame into the interior of the container if the temperature of the refractory is below the reference temperature.
PCT/KR2019/015465 2018-11-16 2019-11-13 Molten material treatment method and molten material treatment apparatus WO2020101359A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180141773A KR102074365B1 (en) 2018-11-16 2018-11-16 Molten material processing method and apparatus thereof
KR10-2018-0141773 2018-11-16

Publications (1)

Publication Number Publication Date
WO2020101359A1 true WO2020101359A1 (en) 2020-05-22

Family

ID=69569333

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/015465 WO2020101359A1 (en) 2018-11-16 2019-11-13 Molten material treatment method and molten material treatment apparatus

Country Status (2)

Country Link
KR (1) KR102074365B1 (en)
WO (1) WO2020101359A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4641319A (en) * 1983-03-31 1987-02-03 Nippon Steel Corporation Method for quantitative discharge of molten material
JPH08136159A (en) * 1994-11-04 1996-05-31 Chugai Ro Co Ltd Heating device of vessel having refractory inside lining, and its heating temperature controlling method
KR19980075313A (en) * 1997-03-29 1998-11-16 김종진 Converter refractory insulation method and apparatus
JP2005262262A (en) * 2004-03-17 2005-09-29 Sanyo Special Steel Co Ltd Ladle having slag line brick for melting stainless steel
JP2018526601A (en) * 2015-07-17 2018-09-13 リフラクトリー・インテレクチュアル・プロパティー・ゲーエムベーハー・ウント・コンパニ・カーゲー Method for repairing refractory linings of metallurgical containers, especially at high temperatures

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1161219A (en) 1997-08-21 1999-03-05 Nippon Steel Corp Method for reforming slag of stainless steel
KR101092191B1 (en) 2009-08-21 2011-12-13 주식회사 포스코 Method for manufacturing stainless steel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4641319A (en) * 1983-03-31 1987-02-03 Nippon Steel Corporation Method for quantitative discharge of molten material
JPH08136159A (en) * 1994-11-04 1996-05-31 Chugai Ro Co Ltd Heating device of vessel having refractory inside lining, and its heating temperature controlling method
KR19980075313A (en) * 1997-03-29 1998-11-16 김종진 Converter refractory insulation method and apparatus
JP2005262262A (en) * 2004-03-17 2005-09-29 Sanyo Special Steel Co Ltd Ladle having slag line brick for melting stainless steel
JP2018526601A (en) * 2015-07-17 2018-09-13 リフラクトリー・インテレクチュアル・プロパティー・ゲーエムベーハー・ウント・コンパニ・カーゲー Method for repairing refractory linings of metallurgical containers, especially at high temperatures

Also Published As

Publication number Publication date
KR102074365B1 (en) 2020-02-06

Similar Documents

Publication Publication Date Title
EP1424543B1 (en) Molten metal temperature measuring instrument
EP1120618B1 (en) A method of relining a vessel and vessel suitable therefore
PT99547B (en) COPPER EXTRACTION PROCESS FOR CONTINUOUS FUSION
US3080755A (en) Metallurgical process control
WO2020101359A1 (en) Molten material treatment method and molten material treatment apparatus
CA1160836A (en) Apparatus for preheating steel scrap
WO2018026066A1 (en) Molten metal treatment apparatus and treatment method
WO2017078336A1 (en) Molten steel treatment apparatus and method
WO2012141360A1 (en) Apparatus for injecting hot air into an electric furnace
CN217324152U (en) Device for observing internal working state of blast furnace taphole
JPH02282692A (en) Electric furnace accompanied by gas for molten metal and method thereof
WO2018097499A1 (en) Device and method for measuring surface level of molten metal
WO2021149490A1 (en) Lance tip, converter internal temperature measuring equipment, and converter internal temperature measuring method
JPH0894264A (en) Refractory residual thickness detecting method for electric furnace
KR20230026109A (en) Monitoring apparatus
WO2020096390A1 (en) Deoxidizer and molten steel treatment method
CN110926619A (en) Continuous temperature measurement method for temperature of molten steel in steel ladle
WO2020101360A1 (en) Molten iron production method and apparatus therefor
WO2015080443A1 (en) Continuous temperature measuring device and rh apparatus including the same
CN210636022U (en) Tapping protection and temperature measuring device for converter and electric furnace
JP2718093B2 (en) Electric furnace with tuyere
JPS6328817A (en) Furnace body cooling method of converter
KR100488876B1 (en) Device for preventing intrusion of hydrogen gas
JPS6362812A (en) Detector for slag foaming in converter
JPH0196315A (en) Melt container provided with criterion brick

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19884194

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19884194

Country of ref document: EP

Kind code of ref document: A1