JPH08136159A - Heating device of vessel having refractory inside lining, and its heating temperature controlling method - Google Patents

Heating device of vessel having refractory inside lining, and its heating temperature controlling method

Info

Publication number
JPH08136159A
JPH08136159A JP6271610A JP27161094A JPH08136159A JP H08136159 A JPH08136159 A JP H08136159A JP 6271610 A JP6271610 A JP 6271610A JP 27161094 A JP27161094 A JP 27161094A JP H08136159 A JPH08136159 A JP H08136159A
Authority
JP
Japan
Prior art keywords
temperature
refractory
container
pattern
predetermined value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6271610A
Other languages
Japanese (ja)
Other versions
JP3416297B2 (en
Inventor
Masatoshi Tsukamoto
正利 塚本
Ryuichi Odawara
隆一 小田原
Yuji Ochiai
勇司 落合
Morikazu Hatoguchi
守一 波戸口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHINKO METSUKUSU KK
Chugai Ro Co Ltd
Kobe Steel Ltd
Original Assignee
SHINKO METSUKUSU KK
Chugai Ro Co Ltd
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHINKO METSUKUSU KK, Chugai Ro Co Ltd, Kobe Steel Ltd filed Critical SHINKO METSUKUSU KK
Priority to JP27161094A priority Critical patent/JP3416297B2/en
Publication of JPH08136159A publication Critical patent/JPH08136159A/en
Application granted granted Critical
Publication of JP3416297B2 publication Critical patent/JP3416297B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Abstract

PURPOSE: To contrive improvement of a fuel efficiency, a prevention of rupture of refractory material and improvement of quality, by heating an inner section of a vessel so that a radiation temperature of a vessel surface follows a refractory temperature pattern in a low temperature region of an atmospheric temperature in a vessel, and executing a heating so that an atmospheric temperature follows a refractory temperature pattern, in a high temperature region. CONSTITUTION: A heating device is provided with a programme setting device 3 executing a storing of a refractory temperature pattern 2 indicating, in a lapse of time, a temperature history of a refractory inner face of a vessel 1, and temperature indication regulators 4, 5. The temperature indication regulator 4 controls a flow quantity indication regulator 8 so that a measured value TA of a radiation temperature sensor 6 follows the refractory temperature pattern 2, and the temperature indication regulators 5 controls the flow quantity indication regulator 8 so that a measured value TB of an atmospheric temperature sensor 7 follows the refractory temperature pattern 2. A switch driving means 20 executes a change- over of switches 17, 18 to the temperature indication regulator 4 side, in a low temperature region wherein an atmospheric temperature is equal to a predetermined value T1 or lower in an inside of the vessel and executes a change-over of switches 17, 18 to the temperature indication regulator 5 side, when an atmospheric temperature exceeds the predetermined value T1 .

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、耐火物内張り容器の加
熱装置とその加熱温度制御方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heating device for a refractory lined container and a heating temperature control method thereof.

【0002】[0002]

【従来の技術】転炉から鋳造設備へ溶鋼を運搬する場合
等に用いる耐火物内張り容器(取り鍋等)は、軟鋼等の
鍋外皮部の内面に耐火物を内張りしたものである。この
種の内張り容器では、転炉での出鋼時における熱衝撃や
溶鋼との連続的な接触により耐火物が破損または溶損す
るので、当該耐火物を定期的に補修する必要があり、こ
の補修には、耐火物の破損の度合いや溶損の度合いによ
り、小修理、中修理、大修理及び耐火物を全面的に張り
替える全修理がある。
2. Description of the Related Art A refractory lining container (such as a ladle) used for transporting molten steel from a converter to a casting facility is one in which a refractory is lined on the inner surface of a pot outer skin of mild steel or the like. In this type of lined container, the refractory is damaged or melted due to thermal shock or continuous contact with molten steel during tapping in the converter.Therefore, it is necessary to repair the refractory regularly. There are small repairs, medium repairs, large repairs and full repairs of refractory materials depending on the degree of damage or melting of the refractory material.

【0003】この耐火物の補修作業は、当初からブロッ
ク状等の所定形状に形成された定形耐火物を用い、これ
を容器の外皮部内面に張り詰めるのが通常であったが、
かかる作業は熟練を要しかつ重労働であるため、最近で
は粘土状または泥土状をした不定形耐火物を外皮部の内
側に施工するようにして、もって補修作業の合理化を図
る傾向にある。
[0003] For the repair work of this refractory, it was usual to use a fixed refractory formed in a predetermined shape such as a block from the beginning, and to fix this to the inner surface of the outer skin of the container.
Since such work requires skill and is a heavy labor, recently, a clay-like or mud-like unshaped refractory material is applied to the inside of the outer skin to tend to rationalize the repair work.

【0004】しかし、上記不定形耐火物は、予め乾燥し
ている定形耐火物とは異なり、その未乾燥時(補修作業
時)に6〜7%程度の水分を含んでいるので、定形耐火
物の場合と同じようにいきなり急加熱を行うと爆裂する
おそれがある。そこで、従来では、不定形耐火物の水分
が抜けきるまでは容器内を緩やかに段階的に乾燥昇温
し、その水分が抜けた後で容器内を一気に1000°C
以上に昇温するようにしている。
However, unlike the standard refractory which has been dried in advance, the irregular refractory contains 6 to 7% of water when it is undried (at the time of repair work). As with the case above, sudden heating may cause an explosion. Therefore, in the past, the temperature inside the container was gradually and gradually dried and raised until the moisture of the amorphous refractory was completely drained, and after the moisture was drained, the temperature of the container was changed to 1000 ° C at a stretch.
The temperature is raised above the above.

【0005】ところで、上記不定形耐火物の爆裂を防止
しつつ最速の昇温経過を実施するための最適な耐火物温
度パターンは、当該耐火物の種類ごとに、一定時間経過
後における耐火物自体の温度として予め定められてい
る。従って、実際の容器加熱過程においても、耐火物内
面に接着した温度センサによって耐火物自体の温度を計
測し、この計測値が前記耐火物温度パターンに一致する
ように加熱手段を制御することが望ましいが、この場
合、耐火物内面に接着した温度センサは一回限りしか使
用できないので、補修の度に新しい温度センサを接着せ
ねばならず、その作業時間と材料コストが高くなる。
By the way, the optimum refractory temperature pattern for carrying out the fastest temperature rise progress while preventing the explosion of the above-mentioned irregular-shaped refractory is the refractory itself after a certain time has passed for each kind of the refractory. Is predetermined as the temperature. Therefore, even in the actual container heating process, it is desirable to measure the temperature of the refractory itself by the temperature sensor adhered to the inner surface of the refractory and control the heating means so that the measured value matches the refractory temperature pattern. However, in this case, since the temperature sensor adhered to the inner surface of the refractory material can be used only once, a new temperature sensor must be adhered each time the repair is performed, which increases the working time and material cost.

【0006】そこで、従来では、例えば図4及び図5に
示すように、耐火物自体の温度の代わりに、容器内部の
雰囲気温度パターンやバーナの燃料流量パターンに基づ
いて容器内を加熱制御するようにしている。すなわち、
図4の加熱装置では、不定形耐火物が内張りされた容器
25に、同容器25内を加熱するバーナ26と、同容器
25内の雰囲気温度を計測する雰囲気温度センサ27が
設けられ、プログラム設定器28には雰囲気温度の温度
変化を経時的に表した雰囲気温度パターン29が記憶さ
れている。
Therefore, conventionally, as shown in FIGS. 4 and 5, for example, instead of the temperature of the refractory itself, the inside of the container is heated and controlled based on the atmospheric temperature pattern inside the container and the fuel flow rate pattern of the burner. I have to. That is,
In the heating device of FIG. 4, a container 25 lined with an irregular refractory material is provided with a burner 26 for heating the inside of the container 25 and an atmosphere temperature sensor 27 for measuring the atmosphere temperature in the container 25, and the program setting is performed. The vessel 28 stores an ambient temperature pattern 29 that represents the temperature change of the ambient temperature over time.

【0007】プログラム設定器28が記憶する雰囲気温
度パターン29は、何回かの加熱実験によって最適な耐
火物温度パターン30に対応して関連づけられたもので
あり、雰囲気温度センサ27による計測値がかかる雰囲
気温度パターン29に追従するよう、温度指示調節計3
1によってバーナ26の調節弁32が制御される。他
方、図5の加熱装置では、燃料流量の変化を経時的に表
した流量パターン33を記憶しているプログラム設定器
34が備えられ、この設定器34が記憶する流量パター
ン33は、何回かの加熱実験によって最適な耐火物温度
パターン30に対応して関連づけられたもので、流量セ
ンサ35による計測値がかかる流量パターン33に追従
するよう、流量指示調節計36によってバーナ26の調
節弁32が制御される。
The ambient temperature pattern 29 stored in the program setter 28 is associated with the optimum refractory temperature pattern 30 by several heating experiments, and the measured value by the ambient temperature sensor 27 is applied. Temperature indicating controller 3 so as to follow the ambient temperature pattern 29
1 controls the regulating valve 32 of the burner 26. On the other hand, the heating device of FIG. 5 is provided with a program setter 34 that stores a flow rate pattern 33 that represents changes in the fuel flow rate over time, and the flow rate pattern 33 stored by the setter 34 is stored several times. It is associated with the optimum refractory temperature pattern 30 by the heating experiment of 1. and the control valve 32 of the burner 26 is controlled by the flow rate indicator controller 36 so that the measured value by the flow rate sensor 35 follows the flow rate pattern 33. Controlled.

【0008】[0008]

【発明が解決しようとする課題】上記雰囲気温度パター
ン29や流量パターン33がすべての時点において常に
耐火物温度パターン30と傾きが同じで相似関係にある
なら、それらのパターン29,33に既知の補正量を考
慮すれば、上記した雰囲気温度や燃料流量による制御法
によっても耐火物自体の温度を正確に再現できる。
If the ambient temperature pattern 29 and the flow rate pattern 33 always have the same inclination and similar relationship with the refractory temperature pattern 30 at all times, known corrections to those patterns 29 and 33 are made. If the amount is taken into consideration, the temperature of the refractory itself can be accurately reproduced by the control method based on the ambient temperature and the fuel flow rate described above.

【0009】しかし、実際には、例えば図2で示すよう
に、特に不定形耐火物の乾燥期にあたる低温域では、そ
の時の温度や昇温速度及び燃焼量などにより容器25内
の雰囲気温度と耐火物内面温度との温度差が約50°C
〜250°Cの間で変化することが判明している。従っ
て、かかる低温域においていくら上記した雰囲気温度に
よる制御(図4)を実施しても、耐火物表面の温度自体
を正確には把握できず、このため、不定形耐火物の爆裂
を防止しつつ最速の昇温経過を実施するのは困難であ
る。このことは燃料流量による制御(図5)の場合にも
同様である。
However, in practice, as shown in FIG. 2, for example, especially in the low temperature region corresponding to the dry period of the irregular refractory material, the ambient temperature and the fire resistance in the container 25 depend on the temperature, the temperature rising rate and the combustion amount at that time. The temperature difference from the internal surface temperature is about 50 ° C
It has been found to vary between ~ 250 ° C. Therefore, no matter how much the above-mentioned control by the ambient temperature (Fig. 4) is carried out in such a low temperature region, the temperature itself of the refractory cannot be accurately grasped, and therefore, the explosion of the amorphous refractory is prevented while being prevented. It is difficult to carry out the fastest temperature rise process. This also applies to the control based on the fuel flow rate (FIG. 5).

【0010】一方、かかる不都合を回避すべく、耐火物
内面に接着した温度センサによって耐火物温度パターン
を実施しようとすれば、前述のように補修の度に新しい
温度センサが必要となって作業時間と材料コストが高く
なる。本発明は、このような実情に鑑み、特に不定形耐
火物の水分が抜けきるまでの低温域において、耐火物内
面に温度センサを接着しなくても耐火物自体の温度パタ
ーンを正確に実施できるようにして、燃料効率の向上と
不定形耐火物の爆裂防止及び品質向上を図ることを目的
とする。
On the other hand, in order to avoid such an inconvenience, if an attempt is made to carry out a refractory temperature pattern by a temperature sensor adhered to the inner surface of the refractory, a new temperature sensor is required for each repair as described above, and the working time is increased. And the material cost becomes high. In view of such circumstances, the present invention can accurately implement the temperature pattern of the refractory itself without bonding the temperature sensor to the inner surface of the refractory, particularly in the low temperature range until the water content of the irregular refractory is completely drained. Thus, the object is to improve fuel efficiency, prevent explosion of irregular-shaped refractory materials, and improve quality.

【0011】[0011]

【課題を解決するための手段】上記目的を達成するため
に、本発明は次の技術的手段を講じた。即ち、本発明方
法は、不定形耐火物が内張りされた容器の内部を、その
耐火物内面の温度変化を経時的に表した耐火物温度パタ
ーンに基づいて加熱するようにした耐火物内張り容器の
加熱温度制御方法において、前記容器内の雰囲気温度が
所定値以下の低温域では、前記容器表面の放射温度が前
記耐火物温度パターンに追従するよう当該容器の内部を
加熱するとともに、前記容器内の雰囲気温度が所定値を
超える高温域では、当該雰囲気温度が前記耐火物温度パ
ターンに追従するよう当該容器の内部を加熱することを
特徴とする(請求項1)。
In order to achieve the above object, the present invention takes the following technical means. That is, the method of the present invention is a refractory lined container in which an irregular shaped refractory is lined, and the inside of the refractory liner is heated on the basis of a refractory temperature pattern representing the temperature change of the refractory inner surface with time. In the heating temperature control method, in the low temperature range where the atmospheric temperature in the container is a predetermined value or less, while heating the inside of the container so that the radiation temperature of the container surface follows the refractory temperature pattern, In a high temperature range in which the ambient temperature exceeds a predetermined value, the inside of the container is heated so that the ambient temperature follows the refractory temperature pattern (claim 1).

【0012】この場合、後述の理由により、容器内の雰
囲気温度が所定値を超える高温域においては、その雰囲
気温度が耐火物温度パターンよりも一定温度だけ高い値
と一致するよう当該雰囲気温度を前記耐火物温度パター
ンに追従させるようにし(請求項2)、また、昇温時に
おける所定値よりも降温時における所定値の方を低い値
に設定しておくこと(請求項3)が好ましい。
In this case, for a reason to be described later, in a high temperature range where the atmosphere temperature in the container exceeds a predetermined value, the atmosphere temperature is set to a value higher than the refractory temperature pattern by a certain temperature. It is preferable that the refractory temperature pattern be made to follow (claim 2), and that the predetermined value when the temperature is lowered is set lower than the predetermined value when the temperature is raised (claim 3).

【0013】また、容器内の雰囲気温度が放射温度を計
測するための温度センサに影響を与えるおそれのある第
二の所定値を超えたときに、この温度センサを当該容器
の熱放射から遮蔽しておくようにすることもできる(請
求項4)。この場合、後述の理由により、昇温時におけ
る第二の所定値よりも降温時における第二の所定値の方
を低い値に設定しておくことが好ましい(請求項5)。
When the ambient temperature in the container exceeds a second predetermined value which may affect the temperature sensor for measuring the radiation temperature, the temperature sensor is shielded from the heat radiation of the container. It is also possible to set it (Claim 4). In this case, for the reason described below, it is preferable to set the second predetermined value when the temperature is lower than the second predetermined value when the temperature is raised (claim 5).

【0014】また、本発明装置は、不定形耐火物が内張
りされた容器の耐火物内面の温度経過を経時的に表した
耐火物温度パターンを記憶するプログラム設定器と、前
記容器内を前記耐火物温度パターンに基づいて温度設定
する温度指示調節計と、を備えた耐火物内張り容器の加
熱装置において、前記容器表面の放射温度を計測する放
射温度センサと、この放射温度センサの計測値が前記耐
火物温度パターンに追従するよう温度設定する第一温度
指示調節計と、前記容器内の雰囲気温度を計測する雰囲
気温度センサと、この雰囲気温度センサの計測値が前記
耐火物温度パターンに追従するよう温度設定する第二温
度指示調節計と、前記第一及び第二指示調節計のいずれ
か一方を選択的に作動させるスイッチ手段と、を備えた
ものである(請求項6)。
Further, the apparatus of the present invention comprises a program setter for storing a refractory temperature pattern, which shows a temperature profile of the refractory inner surface of a container lined with an amorphous refractory with time, and the refractory inside the container. A temperature indicating controller for setting the temperature based on the object temperature pattern, and a heating device for a refractory lined container provided with, a radiation temperature sensor for measuring the radiation temperature of the container surface, and the measured value of this radiation temperature sensor is A first temperature indicating controller that sets the temperature so as to follow the refractory temperature pattern, an atmosphere temperature sensor that measures the atmosphere temperature in the container, and a measurement value of this atmosphere temperature sensor so as to follow the refractory temperature pattern. A second temperature indicating controller for setting a temperature, and a switch means for selectively activating one of the first and second indicating controllers (claim 1) 6).

【0015】この場合、容器内の雰囲気温度が所定値以
下の低温域では第一温度指示調節計が作動し、かつ、前
記容器内の雰囲気温度が所定値を超える高温域では第二
温度指示調節計が作動するようスイッチ手段を切り替え
るスイッチ駆動手段が前記第一温度指示調節計に設けら
れる(請求項7)。また、放射温度センサを容器の熱放
射から遮蔽しておく開閉自在な遮蔽手段を設けることが
好ましい(請求項8)。
In this case, the first temperature indicating controller operates in a low temperature range where the atmosphere temperature in the container is below a predetermined value, and the second temperature indicating adjustment operates in a high temperature range where the atmosphere temperature in the container exceeds a predetermined value. Switch driving means for switching the switch means to operate the meter is provided in the first temperature indicating controller (claim 7). Further, it is preferable to provide an openable / closable shielding means for shielding the radiation temperature sensor from heat radiation of the container (claim 8).

【0016】[0016]

【作用】本発明では、不定形耐火物1Aの水分が抜けき
らない低温域において、なるべくその耐火物1A自体の
温度を間接的かつ正確に計測できる手段として、容器1
の外部に非接触式の放射温度センサ6を設置してみた。
しかして、このセンサ6の計測値TA と耐火物温度パタ
ーン2とを比較してみたところ、図2に示すようにその
計測値TA を耐火物温度パターン2に一致させることが
できた。
In the present invention, the container 1 is a means for indirectly and accurately measuring the temperature of the refractory 1A itself in the low temperature range where the water content of the irregular refractory 1A cannot be completely removed.
A non-contact type radiation temperature sensor 6 was installed outside the.
Then, when the measured value T A of the sensor 6 and the refractory temperature pattern 2 were compared, the measured value T A could be matched with the refractory temperature pattern 2 as shown in FIG.

【0017】しかし、かかる放射温度センサ6は、その
内部の焦電素子等の関係から、0°Cから800°C程
度の範囲で計測可能な低温用センサと、500乃至60
0°C以下では計測できない高温用センサとがあり、こ
の種の加熱装置に必要な0°Cから1000°C以上の
幅広い範囲に渡って計測できるものがなく、しかも、当
該放射温度センサ6は高価であるため、低温用と高温用
の双方を設けるとコスト高となる。
However, the radiation temperature sensor 6 has a low temperature sensor capable of measuring in the range of 0 ° C. to 800 ° C. and 500 to 60 because of the internal pyroelectric element and the like.
There is a sensor for high temperature that cannot be measured at 0 ° C or lower, and there is no sensor that can measure over a wide range from 0 ° C to 1000 ° C or higher required for this type of heating device. Moreover, the radiation temperature sensor 6 is Since it is expensive, provision of both low temperature and high temperature leads to high cost.

【0018】他方、雰囲気温度センサ7は、耐火物2の
水分が抜けきらない低温域では耐火物温度パターン2と
あまり正確に適合しないが、0°Cから1000°C以
上の幅広い範囲に渡って計測できる。そこで、本発明
は、雰囲気温度TB が耐火物温度パターン2に適合しな
い低温域では、低温用の放射温度センサ6を採用して、
放射温度TA が耐火物温度パターン2に追従するよう容
器1の内部を加熱する放射温度制御を行い、放射温度セ
ンサ6を適用できない高温域では、雰囲気温度センサ7
を採用して、雰囲気温度TB が耐火物温度パターンに追
従するよう容器1の内部を加熱する雰囲気温度制御を行
うことにした。
On the other hand, the ambient temperature sensor 7 does not exactly match the refractory temperature pattern 2 in the low temperature range where the moisture content of the refractory 2 is not completely exhausted, but over a wide range from 0 ° C to 1000 ° C or higher. Can be measured. Therefore, the present invention adopts the radiation temperature sensor 6 for low temperature in a low temperature range where the ambient temperature T B does not conform to the refractory temperature pattern 2.
The radiation temperature control is performed to heat the inside of the container 1 so that the radiation temperature T A follows the refractory temperature pattern 2, and the ambient temperature sensor 7 is used in a high temperature range where the radiation temperature sensor 6 cannot be applied.
Adopted, ambient temperature T B is decided to perform the atmospheric temperature control for heating the interior of the container 1 so as to follow the refractory temperature pattern.

【0019】これにより、耐火物1Aの乾燥加熱に要す
るすべての温度域において、不定形耐火物1Aに直接温
度センサを接着させることなく、耐火物1A自体の温度
パターンが正確に実施できるようになる。
As a result, the temperature pattern of the refractory 1A itself can be accurately executed in all temperature ranges required for heating and drying the refractory 1A without directly bonding the temperature sensor to the irregular-shaped refractory 1A. .

【0020】[0020]

【実施例】以下、図面に基づいて本発明の実施例を説明
する。図1は、本発明に係る耐火物内張り容器1の加熱
装置を示している。同図において、この加熱装置は、不
定形耐火物1Aが内張りされた容器1の耐火物内面の温
度経過を経時的に表した耐火物温度パターン2を記憶す
るプログラム設定器3と、その容器1内を上記耐火物温
度パターン2に基づいて温度設定するための二つの独立
した温度指示調節計4,5とを備えている。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a heating device for a refractory lined container 1 according to the present invention. In the figure, this heating device includes a program setter 3 for storing a refractory temperature pattern 2 showing a temperature profile of a refractory inner surface of a container 1 lined with an irregular refractory 1A with time, and a container 1 for the program. Two independent temperature indicating controllers 4 and 5 for setting the temperature of the inside based on the refractory temperature pattern 2 are provided.

【0021】なお、耐火物温度パターン2は、不定形耐
火物1Aの材質や水分量によって異なり、実際の補修作
業に先立って予め行う実験等によって定められている。
前記容器1には、同容器1表面の放射温度を計測する放
射温度センサ6と、同容器1内の雰囲気温度を計測する
雰囲気温度センサ7が設けられていて、放射温度センサ
6には前記第一温度指示調節計4が接続され、雰囲気温
度センサ7には前記第二温度指示調節計5が接続されて
いる。
The refractory temperature pattern 2 differs depending on the material and water content of the amorphous refractory 1A, and is determined by an experiment or the like performed prior to the actual repair work.
The container 1 is provided with a radiation temperature sensor 6 for measuring a radiation temperature on the surface of the container 1 and an atmosphere temperature sensor 7 for measuring an atmosphere temperature in the container 1, and the radiation temperature sensor 6 includes the first One temperature indicating controller 4 is connected, and the ambient temperature sensor 7 is connected to the second temperature indicating controller 5.

【0022】第一温度指示調節計4は放射温度センサ6
の計測値TA が耐火物温度パターン2に追従するよう、
後述する流量指示調節計8を制御するものであり、他
方、第二温度指示調節計5は、雰囲気温度センサ7の計
測値TB が耐火物温度パターン2に追従するよう同流量
指示調節計8を制御するものである。なお、上記放射温
度センサ6は放射率学習機能付きの低温用のもので、こ
れには例えばサーミスタボロメータ検出素子を採用でき
る。また、雰囲気温度センサ7としてはR熱電対または
K熱電対を採用できる。
The first temperature indicating controller 4 is a radiation temperature sensor 6
Of the measured value T A of the refractory temperature pattern 2
The second temperature indicating controller 5 controls the flow rate indicating controller 8 to be described later, while the second temperature indicating controller 5 controls the flow rate indicating controller 8 so that the measured value T B of the ambient temperature sensor 7 follows the refractory temperature pattern 2. Is to control. The radiation temperature sensor 6 is for low temperature with an emissivity learning function, and a thermistor bolometer detection element can be used for this, for example. Further, as the ambient temperature sensor 7, an R thermocouple or a K thermocouple can be adopted.

【0023】前記容器1の天蓋1Bの中央にはバーナ9
が挿通されており、このバーナ9は、中間に燃料流量を
調節する流量調節弁10が設けられた配管11によって
燃料供給手段12に接続されている。前記流量指示調節
計8は、いずれかの温度指示調節計4,5からの信号1
3に基づいて調節弁10の開度を調節するもので、各温
度指示調節計4,5のうちいずれか一方が、プログラム
設定器3からの温度信号14を流量設定信号15,16
に変換し、この信号15,16を当該流量指示調節計8
に伝達する。
A burner 9 is provided at the center of the canopy 1B of the container 1.
This burner 9 is connected to the fuel supply means 12 by a pipe 11 in the middle of which a flow rate adjusting valve 10 for adjusting the fuel flow rate is provided. The flow rate indicating controller 8 is a signal 1 from any of the temperature indicating controllers 4 and 5.
3, the opening degree of the control valve 10 is adjusted based on 3, and one of the temperature indicating controllers 4 and 5 changes the temperature signal 14 from the program setting device 3 into the flow rate setting signals 15 and 16.
And the signals 15 and 16 are converted into
To communicate.

【0024】すなわち、各温度指示調節計4,5はそれ
ぞれ第一スイッチ17を介して流量指示調節計8に接続
されており、前記プログラム設定器3と第一及び第二温
度指示調節計4,5との間には、同設定器3からの温度
信号14をいずれか一方に選択的に伝達する第二スイッ
チ18が設けられている。なお、19は配管11内を通
過する燃料の流量を計測するための流量センサである。
That is, each of the temperature indicating controllers 4 and 5 is connected to the flow rate indicating controller 8 via the first switch 17, and the program setting device 3 and the first and second temperature indicating controllers 4 and 5 are connected. A second switch 18 for selectively transmitting the temperature signal 14 from the setting device 3 to either one is provided between the second switch 18 and the switch 5. Reference numeral 19 is a flow rate sensor for measuring the flow rate of the fuel passing through the pipe 11.

【0025】一方、第二温度指示調節計5内には、第一
温度指示調節計4と第二温度指示調節計5のいずれか一
方のみが機能するよう、前記第一及び第二スイッチ1
7,18を切り替えるスイッチ駆動手段20が設けられ
ている。このスイッチ駆動手段20は、容器1内の雰囲
気温度TB が予め実験等により明らとなっている所定値
(センサ切替え温度)T1 以下の低温域では、第一温度
指示調節計4側に第一及び第二スイッチ17,18を切
り替え、かつ、容器1内の雰囲気温度TB がその所定値
1 を超える高温域では、第二温度指示調節計5側に第
一及び第二スイッチ17,18を切り替える。
On the other hand, in the second temperature indicating controller 5, the first and second switches 1 are so arranged that only one of the first temperature indicating controller 4 and the second temperature indicating controller 5 functions.
Switch driving means 20 for switching between 7 and 18 is provided. The switch driving means 20 is provided on the first temperature indicating controller 4 side in a low temperature range where the ambient temperature T B in the container 1 is equal to or lower than a predetermined value (sensor switching temperature) T 1 which has been clarified beforehand by experiments or the like. In the high temperature range in which the first and second switches 17 and 18 are switched and the ambient temperature T B in the container 1 exceeds the predetermined value T 1 , the first and second switches 17 are provided on the second temperature indicating controller 5 side. , 18 are switched.

【0026】また、本実施例では、放射温度センサ6と
容器1の間には開閉自在な遮蔽手段21が設けられてい
て、この遮蔽手段21は高温域において放射温度センサ
6を容器1の熱放射から遮蔽して、同センサ6の焦電素
子が壊れるのを防止する。更に、第二温度指示調節計5
は、容器1内の雰囲気温度TB に基づいて遮蔽手段21
の開閉を制御する遮蔽駆動手段(図示せず)も内蔵して
いる。
Further, in the present embodiment, an openable / closable shielding means 21 is provided between the radiation temperature sensor 6 and the container 1, and the shielding means 21 keeps the radiation temperature sensor 6 from heat of the container 1 in a high temperature range. Shielding from radiation prevents the pyroelectric element of the sensor 6 from breaking. Furthermore, the second temperature indicating controller 5
Is the shielding means 21 based on the ambient temperature T B in the container 1.
A shield drive means (not shown) for controlling the opening and closing of is also incorporated.

【0027】すなわち、この遮蔽駆動手段は、容器1内
の雰囲気温度TB が放射温度センサ6の焦電素子に影響
を与えるおそれのある第二の所定値(遮蔽切替え温度)
2以下の低温域では遮蔽手段21を開放し、かつ、容
器1内の雰囲気温度TB がその第二の所定値T2 を超え
たときは遮蔽手段21を閉鎖するよう、駆動信号22を
発する。
That is, the shield driving means uses the second predetermined value (shield switching temperature) at which the ambient temperature T B in the container 1 may affect the pyroelectric element of the radiation temperature sensor 6.
The drive signal 22 is set so that the shielding means 21 is opened in the low temperature region of T 2 or lower, and the shielding means 21 is closed when the ambient temperature T B in the container 1 exceeds the second predetermined value T 2. Emit.

【0028】ところで、上記センサ切替え温度T1 を一
つの値に固定すると、その設定温度T1 近傍において放
射温度による制御と雰囲気温度による制御とが頻繁に切
り替わり、ハンチングが増幅されて不安定な燃焼となる
場合がある。そこで、本実施例では、図3(a)に示す
ように、昇温過程におけるセンサ切替え温度T1uよりも
降温過程におけるセンサ切替え温度T1dをやや低く設定
しておくことで両制御間の切替え頻度を減少させ、これ
によって上記不都合を解消している。
When the sensor switching temperature T 1 is fixed at one value, the control by the radiation temperature and the control by the ambient temperature are frequently switched in the vicinity of the set temperature T 1 , and the hunting is amplified and unstable combustion occurs. May be Therefore, in this embodiment, as shown in FIG. 3A, the sensor switching temperature T 1d in the temperature lowering process is set to be slightly lower than the sensor switching temperature T 1u in the temperature rising process to switch between the two controls. The frequency is reduced, thereby eliminating the inconvenience.

【0029】また、遮蔽切替え温度T2 を一つの値に固
定すると、その設定温度T2 近傍において遮蔽手段21
の開閉が頻繁に行われ、このため駆動系統に故障を来す
おそれがある。そこで、本実施例では、図3(b)に示
すように、昇温過程における遮蔽切替え温度T2uよりも
降温過程における遮蔽切替え温度T2dをやや低く設定し
ておくことで遮蔽手段21の開閉頻度を減少させ、これ
によって上記不都合を解消している。 (実験例)図2は、約250tonの溶鋼を運搬する容
器(溶鋼取鍋)1に上記加熱装置を適用し、この加熱装
置によって実際に容器1内を加熱したときの温度パター
ンの検証結果を示している。
If the shielding switching temperature T 2 is fixed to one value, the shielding means 21 near the set temperature T 2 is set.
Are frequently opened and closed, which may cause a failure in the drive system. Therefore, in the present embodiment, as shown in FIG. 3B, the shielding switching temperature T 2d in the temperature lowering process is set to be slightly lower than the shielding switching temperature T 2u in the temperature rising process to open / close the shielding means 21. The frequency is reduced, thereby eliminating the inconvenience. (Experimental example) FIG. 2 shows verification results of temperature patterns when the above heating device is applied to a container (molten steel ladle) 1 that conveys molten steel of about 250 tons and the inside of the container 1 is actually heated by this heating device. Shows.

【0030】この図2から分かるように、650°C以
下の低温域では放射温度制御が耐火物温度パターンによ
く一致しており、650°C以上の高温域では雰囲気温
度制御が耐火物温度パターンによく追従しており、すべ
ての温度域において耐火物温度パターンに従った温度制
御が精度よく行われている。また、この実験例によれ
ば、650°C以上の高温域では、容器1内の燃焼過程
における時間遅れ等のため、ある時点における雰囲気温
度TB が耐火物温度パターンよりも約50°C程度高め
に計測されることが明らかになった。
As can be seen from FIG. 2, the radiation temperature control is in good agreement with the refractory temperature pattern in the low temperature region of 650 ° C. or lower, and the atmospheric temperature control is in the refractory temperature pattern in the high temperature region of 650 ° C. or higher. The temperature control according to the refractory temperature pattern is performed accurately in all temperature ranges. Further, according to this experimental example, in a high temperature range of 650 ° C. or higher, the atmospheric temperature T B at a certain point is about 50 ° C. higher than the refractory temperature pattern due to a time delay in the combustion process in the container 1. It became clear that it would be measured higher.

【0031】そこで、実際には、容器1内の雰囲気温度
B が650°C(センサ切替え温度T1 )を超える高
温域では、その雰囲気温度TB が耐火物温度パターンよ
りも50°Cだけ高い値と一致するよう、当該雰囲気温
度TB を耐火物温度パターンに追従させるようにしてお
り、これにより、高温域においてもほぼ耐火物温度パタ
ーン通りに容器1内を温度制御することができた。
Therefore, in reality, in a high temperature range where the atmospheric temperature T B in the container 1 exceeds 650 ° C. (sensor switching temperature T 1 ), the atmospheric temperature T B is only 50 ° C. higher than the refractory temperature pattern. The ambient temperature T B is made to follow the refractory temperature pattern so as to coincide with the high value, whereby the temperature inside the container 1 can be controlled substantially in the refractory temperature pattern even in the high temperature range. .

【0032】また、この実験例では、昇温過程のセンサ
切替え温度T1uは680°Cに、かつ降温過程のセンサ
切替え温度T1dは650°Cに設定し、昇温過程の遮蔽
切替え温度T2uは700°Cに、かつ降温過程の遮蔽切
替え温度T2dは680°に設定した。これにより、セン
サ切替え及び遮蔽切替えの際のハンチングも生じず、容
器1内の不安定燃焼や遮蔽手段21の故障を防止するこ
とができた。
Further, in this experimental example, the sensor switching temperature T 1u in the temperature increasing process is set to 680 ° C. and the sensor switching temperature T 1d in the temperature decreasing process is set to 650 ° C. 2u was set to 700 ° C, and the shield switching temperature T 2d in the temperature lowering process was set to 680 °. As a result, hunting at the time of sensor switching and shielding switching does not occur, and unstable combustion in the container 1 and failure of the shielding means 21 can be prevented.

【0033】なお、本発明は、上記実施例に限定されな
い。
The present invention is not limited to the above embodiment.

【0034】[0034]

【発明の効果】以上説明したように、本発明によれば、
不定形耐火物1Aの乾燥加熱に要するすべての温度域に
おいて、耐火物1Aに直接温度センサを接着させること
なく、耐火物1A自体の温度パターンが正確に実施でき
るので、燃料効率の向上と不定形耐火物1Aの爆裂防止
及び品質向上を図ることができる(請求項1)。
As described above, according to the present invention,
Since the temperature pattern of the refractory 1A itself can be accurately performed in all temperature ranges required for drying and heating the irregular refractory 1A without directly attaching the temperature sensor to the refractory 1A, the fuel efficiency is improved and the irregular shape is improved. It is possible to prevent explosion of the refractory 1A and improve its quality (claim 1).

【0035】また、容器1内の雰囲気温度TB が所定値
1 を超える高温域において、その雰囲気温度TB が耐
火物温度パターン2よりも一定温度だけ高い値と一致さ
せた場合、当該高温域における耐火物温度を精度よく制
御できる(請求項2)。更に、昇温時における所定値T
1uよりも降温時における所定値T1dの方を低い値に設定
すれば、センサ切替えの際のハンチングが解消され、所
定の切替え温度近傍における容器1内の不安定燃焼を回
避できる(請求項3)。
Further, in the high temperature range where the atmospheric temperature T B in the container 1 exceeds the predetermined value T 1 , when the atmospheric temperature T B is matched with a value higher than the refractory temperature pattern 2 by a constant temperature, the high temperature The refractory temperature in the area can be controlled with high precision (claim 2). Further, the predetermined value T at the time of temperature rise
By setting the predetermined value T 1d at the time of cooling to be lower than 1 u , hunting at the time of switching the sensor is eliminated, and unstable combustion in the container 1 near the predetermined switching temperature can be avoided (claim 3). ).

【0036】また、容器1内の雰囲気温度TB が第二の
所定値T2 を超えたときに放射温度センサ6を容器1の
熱放射から遮蔽しておけば、過度の放射熱によって放射
温度センサ6が故障するのを未然に防止できる(請求項
4)。この場合、昇温時における第二の所定値T2uより
も降温時における第二の所定値T2dの方を低い値に設定
すれば、遮蔽切替えの際のハンチングが解消され、遮蔽
手段21の故障を未然に防止できる(請求項5)。
Further, if the radiation temperature sensor 6 is shielded from the heat radiation of the container 1 when the atmospheric temperature T B in the container 1 exceeds the second predetermined value T 2 , the radiation temperature is caused by excessive radiation heat. It is possible to prevent the sensor 6 from breaking down (Claim 4). In this case, if the second predetermined value T 2d when the temperature is lowered is set to a value lower than the second predetermined value T 2u when the temperature is raised, the hunting at the time of switching the shield is eliminated, and the shielding means 21 operates. Failure can be prevented in advance (Claim 5).

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る耐火物内張り容器の加熱装置の制
御回路図である。
FIG. 1 is a control circuit diagram of a heating device for a refractory lined container according to the present invention.

【図2】本発明による温度パターンの検証結果を示すグ
ラフである。
FIG. 2 is a graph showing a verification result of a temperature pattern according to the present invention.

【図3】センサ切替え温度及び遮蔽切替え温度の設定方
法を示す説明図である。
FIG. 3 is an explanatory diagram showing a method for setting a sensor switching temperature and a shielding switching temperature.

【図4】従来の耐火物内張り容器の加熱装置の制御回路
図である。
FIG. 4 is a control circuit diagram of a heating device for a conventional refractory lined container.

【図5】従来の耐火物内張り容器の加熱装置の制御回路
図である。
FIG. 5 is a control circuit diagram of a heating device for a conventional refractory lined container.

【符号の説明】[Explanation of symbols]

1 容器 1A 不定形耐火物 2 耐火物温度パターン 3 プログラム設定器 4 第一温度指示調節計 5 第二温度指示調節計 6 放射温度センサ 7 雰囲気温度センサ 17 スイッチ手段(第一スイッチ) 18 スイッチ手段(第二スイッチ) 20 スイッチ駆動手段 21 遮蔽手段 1 Container 1A Irregular refractory 2 Refractory temperature pattern 3 Program setter 4 First temperature indicating controller 5 Second temperature indicating controller 6 Radiation temperature sensor 7 Ambient temperature sensor 17 Switch means (first switch) 18 Switch means ( Second switch) 20 Switch driving means 21 Shielding means

───────────────────────────────────────────────────── フロントページの続き (72)発明者 塚本 正利 大阪府大阪市西区京町堀2丁目4番7号 中外炉工業株式会社内 (72)発明者 小田原 隆一 兵庫県加古川市金沢町1番地 株式会社神 戸製鋼所加古川製鉄所内 (72)発明者 落合 勇司 兵庫県加古川市金沢町1番地 株式会社神 戸製鋼所加古川製鉄所内 (72)発明者 波戸口 守一 兵庫県加古川市金沢町1番地 神鋼メック ス株式会社加古川事業所内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Masatoshi Tsukamoto 2-4-7 Kyomachibori, Nishi-ku, Osaka City, Osaka Prefecture Chugai Furnace Industry Co., Ltd. (72) Inventor Ryuichi Odawara 1 Kanazawacho, Kakogawa-shi, Hyogo Co., Ltd. Kadogawa Steel Works Kakogawa Steel Works (72) Inventor Yuji Ochiai 1 Kanazawa-machi, Kakogawa City, Hyogo Prefecture Kadogawa Steel Works Kakogawa Steel Works (72) Inventor Morichi Hatoguchi Kanazawa-machi, Kakogawa City, Hyogo Prefecture Shinko Mec Kasukawa Works Co., Ltd.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 不定形耐火物(1A)が内張りされた容
器(1)の内部を、その耐火物(1A)内面の温度変化
を経時的に表した耐火物温度パターン(2)に基づいて
加熱するようにした耐火物内張り容器の加熱温度制御方
法において、 前記容器(1)内の雰囲気温度(TB )が所定値
(T1 )以下の低温域では、前記容器(1)表面の放射
温度(TA )が前記耐火物温度パターン(2)に追従す
るよう当該容器(1)の内部を加熱するとともに、前記
容器(1)内の雰囲気温度(TB )が所定値(T1 )を
超える高温域では、当該雰囲気温度(TB )が前記耐火
物温度パターン(2)に追従するよう当該容器(1)の
内部を加熱することを特徴とする耐火物内張り容器の加
熱温度制御方法。
1. A refractory temperature pattern (2) showing the temperature change of the inner surface of the refractory (1A) inside the container (1) lined with the irregular refractory (1A) based on time. in the heating temperature control method of the refractory lined vessel so as to heat, in the low temperature range ambient temperature (T B) is a predetermined value (T 1) following in the container (1), the radiation of the container (1) surface The inside of the container (1) is heated so that the temperature (T A ) follows the refractory temperature pattern (2), and the ambient temperature (T B ) in the container (1) is a predetermined value (T 1 ). In a high temperature range exceeding 1, the heating temperature control method for a refractory lined container is characterized in that the inside of the container (1) is heated so that the ambient temperature (T B ) follows the refractory temperature pattern (2). .
【請求項2】 容器(1)内の雰囲気温度(TB )が所
定値(T1 )を超える高温域においては、その雰囲気温
度(TB )が耐火物温度パターン(2)よりも一定温度
だけ高い値と一致するよう当該雰囲気温度(TB )を前
記耐火物温度パターン(2)に追従させることを特徴と
する請求項1に記載の耐火物内張り容器の加熱温度制御
方法。
2. In a high temperature range in which the ambient temperature (T B ) in the container (1) exceeds a predetermined value (T 1 ), the ambient temperature (T B ) is a constant temperature than the refractory temperature pattern (2). The heating temperature control method for a refractory lined container according to claim 1, characterized in that the ambient temperature (T B ) is made to follow the refractory temperature pattern (2) so as to coincide with a high value.
【請求項3】 昇温時における所定値(T1u)よりも降
温時における所定値(T1d)の方を低い値に設定してお
くことを特徴とする請求項1又は2に記載の耐火物内張
り容器の加熱温度制御方法。
3. The fire resistance according to claim 1, wherein the predetermined value (T 1d ) when the temperature is lowered is set lower than the predetermined value (T 1u ) when the temperature is raised. Method for controlling heating temperature of container lined with material.
【請求項4】 容器(1)内の雰囲気温度(TB )が放
射温度を計測するための温度センサ(6)に影響を与え
るおそれのある第二の所定値(T2 )を超えたときに、
この温度センサ(6)を当該容器1の熱放射から遮蔽し
ておくことを特徴とする請求項1,2又は3に記載の耐
火物内張り容器の加熱温度制御方法。
4. When the ambient temperature (T B ) in the container (1) exceeds a second predetermined value (T 2 ) that may affect the temperature sensor (6) for measuring the radiation temperature. To
The heating temperature control method for a refractory lined container according to claim 1, 2 or 3, wherein the temperature sensor (6) is shielded from heat radiation of the container 1.
【請求項5】 昇温時における第二の所定値(T2u)よ
りも降温時における第二の所定値(T2d)の方を低い値
に設定しておくことを特徴とする請求項4に記載の耐火
物内張り容器の加熱温度制御方法。
5. The second predetermined value (T 2d ) when the temperature is lowered is set to be lower than the second predetermined value (T 2u ) when the temperature is raised. The method for controlling the heating temperature of a refractory lined container according to.
【請求項6】 不定形耐火物(1A)が内張りされた容
器(1)の耐火物(1A)内面の温度経過を経時的に表
した耐火物温度パターン(2)を記憶するプログラム設
定器(3)と、前記容器(1)内を前記耐火物温度パタ
ーン(2)に基づいて温度設定する温度指示調節計
(4)(5)と、を備えた耐火物内張り容器の加熱装置
において、 前記容器(1)表面の放射温度を計測する放射温度セン
サ(6)と、この放射温度センサ(6)の計測値
(TA )が前記耐火物温度パターン(2)に追従するよ
う温度設定する第一温度指示調節計(4)と、前記容器
(1)内の雰囲気温度を計測する雰囲気温度センサ
(7)と、この雰囲気温度センサ(7)の計測値
(TB )が前記耐火物温度パターン(2)に追従するよ
う温度設定する第二温度指示調節計(5)と、前記第一
及び第二指示調節計(4)(5)のいずれか一方を選択
的に作動させるスイッチ手段(17)(18)と、を備
えていることを特徴とする耐火物内張り容器の加熱装
置。
6. A program setting device (2) for storing a refractory temperature pattern (2) showing a temperature profile of a refractory (1A) inner surface of a container (1) lined with an irregular refractory (1A) over time. 3) and a temperature indicating controller (4) (5) for setting the temperature inside the container (1) based on the refractory temperature pattern (2), the heating device for the refractory lined container, wherein the container (1) radiation temperature sensor (6) for measuring the radiation temperature of the surface, the temperature set to the measured value of the radiation temperature sensor (6) (T a) to follow the refractory temperature pattern (2) a first temperature indicating controller (4), the ambient temperature sensor (7) for measuring the ambient temperature of the container (1), wherein the refractory temperature pattern measurements (T B) of the ambient temperature sensor (7) Second temperature instruction to set temperature to follow (2) And a switch means (17) (18) for selectively activating one of the first and second indicating controllers (4) (5). A device for heating refractory lined containers.
【請求項7】 容器(1)内の雰囲気温度(TB )が所
定値(T1 )以下の低温域では第一温度指示調節計
(4)が作動し、かつ、前記容器(1)内の雰囲気温度
(TB )が所定値(T1 )を超える高温域では第二温度
指示調節計(5)が作動するようスイッチ手段(17)
(18)を切り替えるスイッチ駆動手段(20)が前記
第一温度指示調節計(4)に設けられている請求項6に
記載の耐火物内張り容器の加熱装置。
7. The first temperature indicating controller (4) operates in a low temperature range where the ambient temperature (T B ) in the container (1) is a predetermined value (T 1 ) or less, and the inside of the container (1) Switch means (17) so that the second temperature indicating controller (5) operates in a high temperature range in which the ambient temperature (T B ) exceeds a predetermined value (T 1 ).
The heating device for a refractory lined container according to claim 6, wherein a switch driving means (20) for switching (18) is provided in the first temperature indicating controller (4).
【請求項8】 放射温度センサ(6)を容器(1)の熱
放射から遮蔽しておく開閉自在な遮蔽手段(21)を設
けた請求項6又は7に記載の耐火物内張り容器の加熱装
置。
8. The heating device for a refractory lined container according to claim 6 or 7, further comprising openable / closable shielding means (21) for shielding the radiation temperature sensor (6) from heat radiation of the container (1). .
JP27161094A 1994-11-04 1994-11-04 Apparatus for heating refractory-lined vessel and method for controlling heating temperature Expired - Fee Related JP3416297B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27161094A JP3416297B2 (en) 1994-11-04 1994-11-04 Apparatus for heating refractory-lined vessel and method for controlling heating temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27161094A JP3416297B2 (en) 1994-11-04 1994-11-04 Apparatus for heating refractory-lined vessel and method for controlling heating temperature

Publications (2)

Publication Number Publication Date
JPH08136159A true JPH08136159A (en) 1996-05-31
JP3416297B2 JP3416297B2 (en) 2003-06-16

Family

ID=17502474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27161094A Expired - Fee Related JP3416297B2 (en) 1994-11-04 1994-11-04 Apparatus for heating refractory-lined vessel and method for controlling heating temperature

Country Status (1)

Country Link
JP (1) JP3416297B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018119700A (en) * 2017-01-23 2018-08-02 中外炉工業株式会社 Heating device inside refractory vessel and heating method
KR102074365B1 (en) * 2018-11-16 2020-02-06 주식회사 포스코 Molten material processing method and apparatus thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018119700A (en) * 2017-01-23 2018-08-02 中外炉工業株式会社 Heating device inside refractory vessel and heating method
KR20190056444A (en) * 2017-01-23 2019-05-24 쥬가이로 고교 가부시키가이샤 Heating device and heating method inside refractory container
CN110249195A (en) * 2017-01-23 2019-09-17 中外炉工业株式会社 Heating device and heating means inside refractory material container
CN110249195B (en) * 2017-01-23 2020-12-01 中外炉工业株式会社 Heating device and heating method for interior of refractory container
TWI729207B (en) * 2017-01-23 2021-06-01 日商中外爐工業股份有限公司 Heating apparatus for inside of refractory vessel and heating method
KR102074365B1 (en) * 2018-11-16 2020-02-06 주식회사 포스코 Molten material processing method and apparatus thereof
WO2020101359A1 (en) * 2018-11-16 2020-05-22 주식회사 포스코 Molten material treatment method and molten material treatment apparatus

Also Published As

Publication number Publication date
JP3416297B2 (en) 2003-06-16

Similar Documents

Publication Publication Date Title
JP3231601B2 (en) Electric furnace temperature control method and apparatus
JP3416297B2 (en) Apparatus for heating refractory-lined vessel and method for controlling heating temperature
US5981917A (en) Ladle preheat indication system
JPH07153550A (en) Method for controlling temperature of electric heater
US5926390A (en) Programmed temperature controller
JP2927686B2 (en) Heating device for refractory-lined container and heating control method thereof
JP3416298B2 (en) Heating device for refractory lined container and heating control method
JPH05200519A (en) Method for controlling temperature of die
JPS5842708A (en) Blast furnace operation
EP3687666A1 (en) Controlling operation and position of a lance and nozzle assembly in a molten metal bath in a vessel
JP2587521B2 (en) Batch type annealing furnace temperature control method
JP3074933B2 (en) Alloying control device
JPH0527683B2 (en)
JPH0228416B2 (en)
JPH0275463A (en) Temperature managing method for molten steel
JPS63307217A (en) Method for controlling temperature of stepped shaft in heating furnace
JPS6027405B2 (en) temperature control device
JP3646367B2 (en) Combustion device control device
JPH01205020A (en) Method for operating steel manufacturing furnace
KR20060072650A (en) Apparatus for preheating mudgun using surplus heat of blast furnace and method of the same
JP2692118B2 (en) Temperature control method for crucible type molten metal holding furnace
JPH0238932A (en) Continuous temperature measuring method for molten metal
JPH06341774A (en) Temperature measuring method for induction heating element
SU1640175A1 (en) Method of control of metal melting process in induction crucible furnace
JPH05237629A (en) Automatical temperature controller for induction heating type vacuum melting furnace

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080404

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090404

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees