JPH0238932A - Continuous temperature measuring method for molten metal - Google Patents

Continuous temperature measuring method for molten metal

Info

Publication number
JPH0238932A
JPH0238932A JP63189919A JP18991988A JPH0238932A JP H0238932 A JPH0238932 A JP H0238932A JP 63189919 A JP63189919 A JP 63189919A JP 18991988 A JP18991988 A JP 18991988A JP H0238932 A JPH0238932 A JP H0238932A
Authority
JP
Japan
Prior art keywords
temperature
molten metal
molten steel
tip
radiant energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63189919A
Other languages
Japanese (ja)
Other versions
JPH0569454B2 (en
Inventor
Etsuo Morimoto
悦央 森本
Kazuyo Ibuki
伊吹 一代
Tomoyoshi Koyama
小山 朝良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP63189919A priority Critical patent/JPH0238932A/en
Publication of JPH0238932A publication Critical patent/JPH0238932A/en
Publication of JPH0569454B2 publication Critical patent/JPH0569454B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Radiation Pyrometers (AREA)

Abstract

PURPOSE:To measure temperature continuously with high accuracy by detecting radiant energy from the molten metal by an optical temperature measuring meter while bubbling inert gas in the molten metal. CONSTITUTION:The tip of a hollow pipe 9 is dipped partially in the molten steel M and then the argon gas is supplied into the hollow pipe 9 under constant pressure at a constant flow rate and bubbled from the tip. In this state, the radiant energy from the molten steel M is sampled by the radiation thermometer 6 and led out as a temperature signal. In this case, variation of the radiant energy is grasped at a sampling period shorter than the waving period of the bubbling to extract only maximum values, which are averaged to obtain a temperature value.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、溶融金属、たとえばタイデイツシュ内の溶鋼
の連続測温方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for continuous temperature measurement of molten metal, such as molten steel in a tie dish.

〔従来の技術と発明が解決しようとする課題〕連続鋳造
設備のタンデイツシュ内における/$w4温度は、鋳造
中、種々の外乱により変動する。
[Prior Art and Problems to be Solved by the Invention] The /$w4 temperature in the tundish of continuous casting equipment fluctuates due to various disturbances during casting.

般に取鍋より一定量の溶鋼をタンデイツシュへ注入し、
タンデイツシュより数基のモールドへと分配注入され、
急冷凝固が完了する連続鋳造プロセスにおいて、タンデ
イツシュは中間プラントに位置する。そもそもタンデイ
ツシュの主な役割は、■溶鋼の一時的な保持としての役
割、■介在物を浮上分離させる役割、■複数モールドへ
の分配の役割を受けもつ。いずれにおいても温度条件が
支配的なプロセスであり、効率的な操業を確保するため
には、もとよりタンデイツシュ内溶鋼温度を把握するこ
とが重要である。タンデイツシュ内の溶鋼温度は鋳造初
期に炉壁レンガまたは溶鋼表面からの抜熱が大きく、さ
らに連続プロセスの中間に位置するゆえ、取鍋からの注
入溶鋼量とモールドへの吐出溶鋼量のアンバランスによ
り、溶鋼容量変動が激しく、温度変動が大きくなる。ま
た、鋳造末期へと、加熱、冷却等の手を加えない場合、
徐々に温度降下するが、使用タンデイツシュの鋳造回数
や、鋳造前の予熱バラツキにより、その温度下降速度が
異なる。タンデイツシュ内溶鋼温度が低下すると、介在
物浮上効果が減少するとともに、鋳造ノズル詰りか発生
するため、タンデイツシュ内溶鋼温度を正確に把握する
ことはきわめて重要である。
Generally, a certain amount of molten steel is poured from a ladle into a tundish,
It is distributed and injected into several molds from the tundish,
In the continuous casting process, where rapid solidification is completed, the tandai is located at an intermediate plant. In the first place, the main roles of the tundish are: ■ temporarily holding molten steel, ■ floating and separating inclusions, and ■ distributing to multiple molds. In either case, temperature conditions are the dominant process, and in order to ensure efficient operation, it is important to understand the molten steel temperature in the tundish. The temperature of the molten steel in the tundish is determined by the large amount of heat removed from the furnace wall bricks or the surface of the molten steel in the early stages of casting, and because it is located in the middle of the continuous process, there is an imbalance between the amount of molten steel injected from the ladle and the amount of molten steel discharged into the mold. , the molten steel capacity fluctuates sharply, and the temperature fluctuates widely. In addition, if no heating, cooling, etc. are added to the final stage of casting,
Although the temperature gradually decreases, the rate of temperature decrease varies depending on the number of castings of the tundish used and variations in preheating before casting. If the molten steel temperature in the tundish is lowered, the effect of floating inclusions is reduced and the casting nozzle is clogged, so it is extremely important to accurately grasp the molten steel temperature in the tundish.

以上のような問題を解決するために最近では、特開昭6
1−249655号公報に開示されているタンデイツシ
ュ内溶鋼加熱装置の採用が試みられている。
In order to solve the above problems, recently, Japanese Patent Application Publication No. 6
Attempts have been made to employ a molten steel heating device in a tundish shell disclosed in Japanese Patent No. 1-249655.

これは、溶鋼温度を測定した結果を誘導加熱装置の電力
制御部へフィードバックし、鋳造初期から末期の間、温
度低下を補償するというものである。
This is to feed back the results of measuring the molten steel temperature to the power control section of the induction heating device to compensate for the temperature drop from the initial stage to the final stage of casting.

ところで、この種の溶鋼温度測定方法として現在量も広
く使用されているのは、消耗型浸漬熱電対を使用するも
のである。しかし、これは、不連続な測温であるため、
約3分間隔以下のピッチでは計測不可能となり、その結
果、鋳造初期にみられる数十秒周期で約±10℃変動す
る溶鋼温度の制御には到底使用できない、また、消耗型
浸漬熱電対のランニングコストに鑑みればその都度の測
温は到底実現不可能である。そこで、ランニングコスト
低減を考慮した方法として、市販品として、溶融金属に
対し耐熱性の高い保護管(ジルコニア系セラミックスや
アルミナカーボン質等)の内側に、白金−白金ロジウム
熱電対を挿入したプローブがある。しかし、これは熱電
対のコストが若干高く、かつ約10時間程の寿命は確保
されているといえども、熱電対は、保護管自身より発生
するCOガスにより、浸炭等の影響を受け、経時再現性
が劣化し、最悪断線する事態ヲ招くことがあるなどの問
題が残されている。
By the way, the currently widely used method for measuring the temperature of molten steel of this type uses a consumable immersion thermocouple. However, since this is a discontinuous temperature measurement,
It becomes impossible to measure at intervals of about 3 minutes or less, and as a result, it cannot be used to control the temperature of molten steel, which fluctuates by about ±10°C every few tens of seconds, which occurs in the early stages of casting. In view of running costs, it is simply not possible to measure temperature each time. Therefore, as a method to reduce running costs, a commercially available probe with a platinum-platinum rhodium thermocouple inserted inside a protective tube (made of zirconia ceramics, alumina carbon, etc.) that is highly heat resistant to molten metal is available. be. However, this is because the cost of the thermocouple is a little high, and although the lifespan of about 10 hours is ensured, the thermocouple is affected by carburization etc. due to the CO gas generated from the protective tube itself, and the thermocouple ages over time. Problems remain, such as poor reproducibility and, in the worst case, a disconnection situation.

こうした測温現状下にあって、最も要望視されているも
のは、光学式測温方法である。この例としては、特開昭
56−60323号、同60−105929号各公報記
載の技術を挙げることができ、耐熱性の導伝管を溶鋼内
に挿入し、不活性ガスを供給することにより、導伝管先
端部が開孔されているゆえ、溶鋼面が露出し、その表面
から得られる放射エネルギーを放射温度計によりサンプ
リングし、温度検出する方法である。この方法であれば
、保護管の形状がシンプルかつ必要最小限の損耗ダメー
ジしかうけない。さらに、センサ自身のランニングコス
トが測温センサ中、最も有利なものであるため、今後、
光学式測温方法が鉄鋼業界では主流になると考えられる
Under the current state of temperature measurement, the most desired method is an optical temperature measurement method. Examples of this include the techniques described in JP-A-56-60323 and JP-A-60-105929, in which a heat-resistant conduction pipe is inserted into molten steel and an inert gas is supplied. Since the tip of the conduit is perforated, the surface of the molten steel is exposed, and the temperature is detected by sampling the radiant energy obtained from the surface using a radiation thermometer. With this method, the protection tube has a simple shape and suffers only minimal wear and tear damage. Furthermore, the running cost of the sensor itself is the most advantageous among temperature sensors, so in the future,
Optical temperature measurement methods are expected to become mainstream in the steel industry.

しかし、周知の通り、不活性ガスを吹き込むと、導伝管
の開孔に臨む溶鋼表面は急冷される。実際、溶鋼表面に
Arガスを吹き付けた場合、約7℃〜10℃の温度低下
が発生するとの知見も報告されている。この場合、不活
性ガスの流量調整如何では、真価とのベースダウンの補
正は困難と想定される。
However, as is well known, when an inert gas is blown into the molten steel, the surface of the molten steel facing the opening of the conduction pipe is rapidly cooled. In fact, it has been reported that when Ar gas is sprayed onto the surface of molten steel, the temperature decreases by about 7°C to 10°C. In this case, it is assumed that it is difficult to correct the base down with the true value by adjusting the flow rate of the inert gas.

タンデイツシュでの溶鋼温度の最適管理には、溶鋼凝固
温度との差がきわめて少ないことが要求されており、こ
れは前工程の温度ベースを低下させることによる省エネ
ルギー効果のためである。
Optimum control of the molten steel temperature in the tundish requires that the difference from the molten steel solidification temperature be extremely small, and this is due to the energy-saving effect of lowering the temperature base of the previous process.

過去には、前記温度差(ΔTという)が、ΔT=30〜
40℃であったが、最近はΔT−10〜20℃を目標に
操業改善およびプラント改善が実施されている。したが
って前記ΔTの目標を達成でき、かつ低ランニングコス
トであり、消耗型浸漬熱電対の現状再現性(σ=2℃)
に対して遜色なく再現性がσ=5℃以下の連続的光学式
測温方法の開発が要請されている。
In the past, the temperature difference (referred to as ΔT) was ΔT=30~
The temperature was 40°C, but recently, operational improvements and plant improvements have been carried out with the goal of reducing ΔT to -10 to 20°C. Therefore, the target of ΔT can be achieved, the running cost is low, and the current reproducibility of consumable immersion thermocouples (σ=2℃) is achieved.
There is a need for the development of a continuous optical temperature measurement method with a reproducibility of σ = 5°C or less, which is comparable to that of the conventional method.

そこで、本発明の主たる目的は、ランニングコストが低
く、しかも測温に際して精度の高い連続測温が可能な測
温方法と装置を提供することにある。
SUMMARY OF THE INVENTION Therefore, the main object of the present invention is to provide a temperature measurement method and apparatus that have low running costs and are capable of continuously measuring temperatures with high accuracy.

〔課題を解決するための手段〕[Means to solve the problem]

上記課題を解決するだめの本発明法は、先端が開放され
た浸漬中空管の基部側にその先端を睨みその先端の放射
率に基いて測温する光学式測温計を設け、前記中空管を
溶融金属内に浸漬するとともに、前記中空管内に所定流
量で不活性ガスを吹込み開放先端から吐出させ溶融金属
中にバブリングさせながら、溶融金属からの放射エネル
ギーを光学式測温計で検出し、溶融金属との界面の波動
周期内における前記放射エネルギーの最大値の平均値に
基いて温度値とすることを特徴とするものである。
In order to solve the above problems, the method of the present invention is to provide an optical thermometer on the base side of a submerged hollow tube with an open tip, which measures the temperature based on the emissivity of the tip. While the hollow tube is immersed in the molten metal, an inert gas is blown into the hollow tube at a predetermined flow rate and discharged from the open tip to bubble into the molten metal, while measuring the radiant energy from the molten metal using an optical thermometer. The temperature value is determined based on the average value of the maximum value of the radiant energy within the wave period of the interface with the molten metal.

〔作 用〕[For production]

本発明では、消耗型浸漬熱電対とは異なり、連続的に測
温するものであるから、溶融金属の経時的温度変化を把
えることができ、これに基いて溶融金属の温度制御する
際における有効な手段となる。
Unlike a consumable immersion thermocouple, the present invention measures temperature continuously, so it is possible to grasp the temperature change of the molten metal over time, and based on this, when controlling the temperature of the molten metal. It is an effective method.

また、本発明では、先端開放の中空管に不活性ガスを所
定流量で吹込み、先端から吐出させ溶融金属にバブリン
グする。このバブリングを行うのは、バブリングによる
溶融金属の攪拌を行わないと、溶融金属の静圧つり合い
表面が常に不活性ガスにさらされるため表面温度が低下
し、真の溶鋼温度を検出することができなくなるためで
ある。
Further, in the present invention, an inert gas is blown into a hollow tube with an open tip at a predetermined flow rate, and is discharged from the tip to bubble into the molten metal. This bubbling is performed because if the molten metal is not stirred by bubbling, the static pressure balancing surface of the molten metal will be constantly exposed to inert gas, which will lower the surface temperature and make it impossible to detect the true molten steel temperature. This is because it disappears.

この意味でバブリングを行うことが有効であるが、その
反面、バブリングに伴って静圧のつり合い溶融金属表面
が定期的に凹凸波動を示し、凹時と凸時における溶融金
属表面からの放射エネルギーのベクトルが放射温度計に
対して平行に入射されなくなり、その結果、見掛は上の
放射率が経時的に変動するため、温度測定誤差を生じる
In this sense, bubbling is effective, but on the other hand, as a result of bubbling, the molten metal surface periodically exhibits uneven waves due to static pressure balance, and the radiant energy from the molten metal surface during concavity and convexity increases. The vector is no longer incident parallel to the radiation thermometer, resulting in temperature measurement errors because the apparent emissivity varies over time.

そこで、本発明に従って、溶融金属表面の波動周期以下
のサンプリング周期をもって温度検出し、放射エネルギ
ーの最大値を平均化し、これに基いて温度値とすると、
溶融金属の擬似平滑面の温度と常に相異ない精度の高い
測温ができる。
Therefore, according to the present invention, the temperature is detected with a sampling period equal to or less than the wave period of the molten metal surface, the maximum value of the radiant energy is averaged, and the temperature value is determined based on this.
It is possible to measure the temperature with high accuracy, which is always different from the temperature of a pseudo-smooth surface of molten metal.

さらに、消耗型浸漬熱電対による1回限りのものとは異
なり、連続かつ繰り返し使用が可能であるからランニン
グコストが著しく低減する。
Furthermore, unlike the one-time use of consumable immersion thermocouples, it can be used continuously and repeatedly, significantly reducing running costs.

〔発明の具体的構成〕[Specific structure of the invention]

以下本発明をさらに詳説する。 The present invention will be explained in more detail below.

第1図は第1の実施態様を示したもので、たとえばタン
デイツシュ内の溶鋼Mの温度を測定するために、その蓋
の測温孔にマンホール蓋1が設けられ、これに次述する
測温装置が固定されている。
FIG. 1 shows a first embodiment. For example, in order to measure the temperature of molten steel M in a tundish, a manhole cover 1 is provided in the temperature measurement hole of the lid, and a temperature measurement method described below is installed on the manhole cover 1. The device is fixed.

すなわち、マンホール蓋1には、フランジ付の筒状支持
金物2がボルト固定され、そのフランジにガス吹込ユニ
ット3、エアAiによる空冷ジャケット4および保護キ
ャンプ5が順に固定されている。空冷ジャケット4内に
は放射温度計6が設けられ、その信号は導路7およびA
D変換器8を介して演算器10に取り込まれ、そこで後
述の演算処理に従う温度結果は温度表示器1)に表示さ
れるようになっている。また、放射温度計6の前面には
シーリングウィンド1)が配されている。
That is, a flanged cylindrical support metal fitting 2 is bolted to the manhole cover 1, and a gas blowing unit 3, an air cooling jacket 4 using air Ai, and a protection camp 5 are fixed in this order to the flange. A radiation thermometer 6 is provided inside the air cooling jacket 4, and its signal is transmitted through the guide path 7 and the A radiation thermometer 6.
The temperature results are taken into the arithmetic unit 10 via the D converter 8 and subjected to arithmetic processing, which will be described later, and are displayed on the temperature display 1). Further, a ceiling window 1) is arranged in front of the radiation thermometer 6.

他方、支持金物2には、浸漬中空管9が配され、この中
空管9は2重合わせ構造になっており、その外側にスラ
グ保護管9A、9Aおよび先端保護管9Bを有し、内側
にステンレス等の保護管骨材9C付の溶鋼保護管9Dを
有し、これらの管9A〜9Dは、たとえばAI!203
−Cの材質とされ、金属製ソケット1)を介して支持金
物2にAj’zOz等からなるセラミックボルト12に
より取付けられている。
On the other hand, an immersion hollow tube 9 is arranged on the support hardware 2, and this hollow tube 9 has a double layered structure, and has slag protection tubes 9A, 9A and a tip protection tube 9B on the outside thereof, It has a molten steel protection tube 9D with a protection tube aggregate 9C made of stainless steel or the like inside, and these tubes 9A to 9D are made of, for example, AI! 203
-C material, and is attached to the supporting hardware 2 via a metal socket 1) with a ceramic bolt 12 made of Aj'zOz or the like.

また、前記ガス吹込ユニット3には、計等の不活性ガス
を吹き込む導管13が設けられ、その途中に定圧弁14
および流量調整弁15が配されている。導管13の先端
は、中空管9内に連通している。
Further, the gas blowing unit 3 is provided with a conduit 13 for blowing inert gas such as a meter, and a constant pressure valve 14 is provided in the middle of the conduit 13.
and a flow rate adjustment valve 15 are arranged. The tip of the conduit 13 communicates with the inside of the hollow tube 9.

かかる装置においては、中空管9の先端部を溶鋼M中に
一部浸漬した後、アルゴンガス(Arガス)を一定圧力
および一定流量で中空管9内に送給し、その先端からバ
ブリングさせる。泡を符号Bで示す。この状態で、放射
温度計6により溶鋼Mを睨み、そこからの放射エネルギ
ーをサンプリングし、温度信号として取り出す。
In such a device, after the tip of the hollow tube 9 is partially immersed in the molten steel M, argon gas (Ar gas) is fed into the hollow tube 9 at a constant pressure and a constant flow rate, and bubbling occurs from the tip. let Bubbles are designated by the symbol B. In this state, the radiation thermometer 6 looks at the molten steel M, samples the radiant energy therefrom, and takes it out as a temperature signal.

この場合、バブリングに伴って、第3図に示すように、
溶鋼の静圧つり合い表面が凹凸波動を繰り返す0本発明
では、この波動周期以下の短いサンプリング周期をもっ
て放射エネルギー変化を把え、その最大値のみを抽出し
、これを平均化処理して、温度値とする。
In this case, as shown in Figure 3, along with bubbling,
The static pressure balancing surface of molten steel repeats uneven waves. In the present invention, changes in radiant energy are grasped using a short sampling period less than this wave period, only the maximum value is extracted, and this is averaged to determine the temperature value. shall be.

ところで、中空管9の材質としては、上記の例のほか、
Mo −Zr0t系のものなどをも使用できるが、耐溶
損性および耐ヒートシヨツク性の点で、Aj!zO*−
C系のものが最適である。しかるに、この系では、溶鋼
の熱によって、主にCOガスを発生する。このCOガス
は、放射温度計に採用される波長帯域(500nm〜1
500nm)においてその波長を吸収する作用がある6
そこで、これによる精度低下を防止するために、そのC
Oガスを導管13を介してのArガス吹出しによってバ
ージするようにと、COガスの影響を排除できる効果も
ある。
By the way, as for the material of the hollow tube 9, in addition to the above examples,
Mo-Zr0t type materials can also be used, but in terms of erosion resistance and heat shock resistance, Aj! zO*-
C type ones are optimal. However, in this system, CO gas is mainly generated due to the heat of the molten steel. This CO gas has a wavelength band (500 nm to 1
500nm) has the effect of absorbing that wavelength6
Therefore, in order to prevent the accuracy from decreasing due to this, the C
Purging O gas by blowing out Ar gas through the conduit 13 also has the effect of eliminating the influence of CO gas.

ところで、光学式測温計としては、単色温度針、多波長
温度計等を用いることができる。さらに、光ファイバー
を用いて放射エネルギーのサンプリングを行うこともで
きる。
By the way, as the optical thermometer, a monochromatic temperature needle, a multi-wavelength thermometer, etc. can be used. Furthermore, sampling of radiant energy can also be performed using optical fibers.

中空管の溶@M中への浸漬深さLは、その外径をDとし
たとき、L≧2Dが好ましい、より好ましくは、2D≦
L≦3Dである。
The immersion depth L of the hollow tube into the melt@M is preferably L≧2D, more preferably 2D≦, where D is the outer diameter of the hollow tube.
L≦3D.

他方、上記の中空管は、ある時間使用したならば、損耗
があるので交換される。中空管がAj!!O。
On the other hand, the hollow tubes described above wear out and are replaced after a certain period of use. Hollow tube is Aj! ! O.

−C系のセラミックであるときは、交換コスト的に十分
見合うけれども、Mo−Zr0t系の場合にはコスト高
を招く。しかし、このコストの点を無視すれば、Mo 
 Zr0z系のものを用いることができる。
-C type ceramics are well worth the replacement cost, but Mo-Zr0t type ceramics lead to higher costs. However, if we ignore this cost point, Mo.
Zr0z-based materials can be used.

なお、本発明は、タンデイツシュ内のほか、高炉樋、ト
ーピード、取鍋、転炉、注銑鍋やモールド内等において
も適用できる。
In addition, the present invention can be applied not only inside the tundish but also inside a blast furnace gutter, torpedo, ladle, converter, iron pouring ladle, mold, etc.

〔実施例〕〔Example〕

次に実施例を示す。 Next, examples will be shown.

第1図の測温装置により、タンデイツシュ内の溶鋼の測
温を1力月にわたって行った。中空管はA1.02−C
系のセラミックとした。
The temperature of the molten steel in the tundish was measured over a period of one month using the temperature measuring device shown in FIG. Hollow tube is A1.02-C
It is made of ceramic.

測定条件は次の通りである。The measurement conditions are as follows.

外側管9の浸漬長さしを500fi 〃  外径   を60mφ 〜  内径   を20mφ アルゴンガス圧力  :3kg/aJ 〃   流量  :3kg/Hr 溶鋼温度      71510〜1570℃この場合
の溶鋼波動周期は0.3〜0.5 secであった。ア
ルゴンガス吹込流量との関係を第2図に示した。そこで
サンプリング周期は、10m5以下で設定した。これに
よるとA/D変換後のデータは生データを十分再現でき
るレベルであった。このときの関係を第3図に示す、第
3図に示す様に、バブリングによる溶鋼波動による温度
変動が完全に再現されていることが判る。
The immersion length of the outer tube 9 is 500fi. The outer diameter is 60mφ and the inner diameter is 20mφ. Argon gas pressure: 3kg/aJ. Flow rate: 3kg/Hr. Molten steel temperature: 71510~1570℃. In this case, the molten steel wave period is 0.3~0. It was .5 seconds. Figure 2 shows the relationship with the argon gas blowing flow rate. Therefore, the sampling period was set to 10 m5 or less. According to this, the data after A/D conversion was at a level that could sufficiently reproduce the raw data. The relationship at this time is shown in FIG. 3. As shown in FIG. 3, it can be seen that the temperature fluctuations caused by the molten steel waves caused by bubbling are completely reproduced.

その結果、測温装置の測定精度は、Δ=4℃をみた。そ
して、測定精度がσ=2℃と高い消耗型浸漬熱電対との
対比を試みたところ、第4図のように、高い相関をみた
As a result, the measurement accuracy of the temperature measuring device was found to be Δ=4°C. When we attempted to compare the results with a consumable immersion thermocouple, which has a high measurement accuracy of σ = 2°C, we found a high correlation as shown in Figure 4.

また、中空管の材質をMo −Zr0z系に代えて、連
結鋳造時における連続測温を試みたところ、第5図のよ
うに、今まで把え難かった鋳込初期および末期の急激な
温度変動をも把握できた。しかも、寿命は約30時間と
長時間であることも判った。
In addition, when we tried continuous temperature measurement during connected casting by changing the material of the hollow tube to a Mo-Zr0z system, we found that the temperature suddenly increased at the beginning and end of casting, which had been difficult to ascertain until now. I was also able to understand the fluctuations. Furthermore, it was found that the lifespan was as long as about 30 hours.

〔発明の効果〕〔Effect of the invention〕

以上の通り、本発明によれば、測定精度として実用的に
十分に高いものとなり、ランニングコストの低減を図り
つつ連続測温が可能となる。
As described above, according to the present invention, the measurement accuracy is sufficiently high for practical use, and continuous temperature measurement is possible while reducing running costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は測温装置例の縦断面図、第2図は溶鋼波動周期
と、Ar流量の関係図、第3図は溶鋼波動周期と溶鋼真
温度の関係図、第4図は測定精度を示すグラフ、第5図
は連続測温の結果のグラフである。 6・・・放射温度計、9・・・中空管、10・・・演算
器、13・・・不活性吹込導管。 五〇憶鵬峻恥−蔀−屑 −I棒 七 篇 − 明一
Figure 1 is a longitudinal cross-sectional view of an example of a temperature measuring device, Figure 2 is a diagram showing the relationship between the molten steel wave period and Ar flow rate, Figure 3 is a relationship diagram between the molten steel wave period and true temperature of molten steel, and Figure 4 shows the measurement accuracy. The graph shown in FIG. 5 is a graph of the results of continuous temperature measurement. 6... Radiation thermometer, 9... Hollow tube, 10... Arithmetic unit, 13... Inert blowing conduit. 50 Memory Peng Shame-Sho-Kusu-I Bo 7 Edition - Meiichi

Claims (1)

【特許請求の範囲】[Claims] (1)先端が、開放された浸漬中空管の基部側にその先
端を睨みその先端の放射率に基いて測温する光学式測温
計を設け、前記中空管を溶融金属内に浸漬するとともに
、前記中空管内に所定流量で不活性ガスを吹込み開放先
端から吐出させ溶融金属中にバブリングさせながら、溶
融金属からの放射エネルギーを光学式測温計で検出し、
溶融金属との界面の波動周期内における前記放射エネル
ギーの最大値の平均値に基いて温度値とすることを特徴
とする溶融金属の連続測温方法。
(1) An optical temperature meter is provided on the base side of the immersion hollow tube whose tip is open, and measures the temperature based on the emissivity of the tip by looking at the tip, and the hollow tube is immersed in the molten metal. At the same time, while inert gas is blown into the hollow tube at a predetermined flow rate and discharged from the open tip to bubble into the molten metal, the radiant energy from the molten metal is detected with an optical thermometer,
1. A method for continuous temperature measurement of molten metal, characterized in that the temperature value is determined based on the average value of the maximum value of the radiant energy within the wave period of the interface with the molten metal.
JP63189919A 1988-07-29 1988-07-29 Continuous temperature measuring method for molten metal Granted JPH0238932A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63189919A JPH0238932A (en) 1988-07-29 1988-07-29 Continuous temperature measuring method for molten metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63189919A JPH0238932A (en) 1988-07-29 1988-07-29 Continuous temperature measuring method for molten metal

Publications (2)

Publication Number Publication Date
JPH0238932A true JPH0238932A (en) 1990-02-08
JPH0569454B2 JPH0569454B2 (en) 1993-10-01

Family

ID=16249407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63189919A Granted JPH0238932A (en) 1988-07-29 1988-07-29 Continuous temperature measuring method for molten metal

Country Status (1)

Country Link
JP (1) JPH0238932A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5180228A (en) * 1989-09-18 1993-01-19 Asahi Glass Company Ltd. Radiation thermometer for molten iron and method for measuring the temperature of molten iron
CN107076615A (en) * 2014-01-08 2017-08-18 维苏威集团有限公司 Leucoscope
TWI640755B (en) * 2017-06-30 2018-11-11 瀋陽泰合蔚藍科技股份有限公司 Temperature measuring device and method for measuring temperature of molten metal
US11536611B2 (en) 2017-06-30 2022-12-27 Shenyang Taco Blue-Tech Co., Ltd. Temperature measuring device and temperature measuring method for measuring temperature of molten metals

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5180228A (en) * 1989-09-18 1993-01-19 Asahi Glass Company Ltd. Radiation thermometer for molten iron and method for measuring the temperature of molten iron
CN107076615A (en) * 2014-01-08 2017-08-18 维苏威集团有限公司 Leucoscope
TWI640755B (en) * 2017-06-30 2018-11-11 瀋陽泰合蔚藍科技股份有限公司 Temperature measuring device and method for measuring temperature of molten metal
CN109211412A (en) * 2017-06-30 2019-01-15 沈阳泰合蔚蓝科技股份有限公司 Temperature measuring device and temperature measuring method for measuring temperature of molten metal
US11536611B2 (en) 2017-06-30 2022-12-27 Shenyang Taco Blue-Tech Co., Ltd. Temperature measuring device and temperature measuring method for measuring temperature of molten metals

Also Published As

Publication number Publication date
JPH0569454B2 (en) 1993-10-01

Similar Documents

Publication Publication Date Title
EP1893959A1 (en) Device for continuous temperature measurement of molten steel in the undish using optical fiber and infra-red pyrometer
CN1936524A (en) Pouring-basket plug-rod with continuous temperature measuring function
US6471397B2 (en) Casting using pyrometer apparatus and method
US6176295B1 (en) Plate mold for producing steel billets
JPH01267426A (en) Method and apparatus for temperature measurement of molten metal
JPH0394129A (en) Apparatus for continuously measuring temperature of molten metal
JPH0238932A (en) Continuous temperature measuring method for molten metal
US5981917A (en) Ladle preheat indication system
JPH0259629A (en) Continuous temperature measuring instrument for molten metal
JPS6191529A (en) Temperature measuring apparatus for molten metal
JP3351120B2 (en) Measuring method of hot metal temperature at taphole with optical fiber thermometer
JPS6030565A (en) Method for stabilizing surface shape of ingot with heated casting mold type continuous casting method
RU2782714C1 (en) Ventilated stopper rod with temperature measurement function
US4146077A (en) Methods and apparatus for making cast hollows
JP4501892B2 (en) Method and apparatus for estimating molten metal temperature in continuous casting mold
JPS5935710B2 (en) Slag detection method
KR920000415A (en) Production process of directional solidified casting
JP3214234B2 (en) Temperature measuring device for high temperature liquid using optical fiber
JPS60105929A (en) Method for measuring temperature of molten metal
SU1320010A1 (en) Method and apparatus for automatic control of operation of mould of continuous casting machine
JPH0815040A (en) Temperature measuring device with optical fiber for high temperature liquid
JPH04348236A (en) Temperature detector for molten metal
SU1125096A1 (en) Device for measuring metal level in mould of metal continuous caster
JPS6117919A (en) Temperature measuring instrument of molten metal
JPH0557426A (en) Ladle for casting