JPS6030565A - Method for stabilizing surface shape of ingot with heated casting mold type continuous casting method - Google Patents

Method for stabilizing surface shape of ingot with heated casting mold type continuous casting method

Info

Publication number
JPS6030565A
JPS6030565A JP13338683A JP13338683A JPS6030565A JP S6030565 A JPS6030565 A JP S6030565A JP 13338683 A JP13338683 A JP 13338683A JP 13338683 A JP13338683 A JP 13338683A JP S6030565 A JPS6030565 A JP S6030565A
Authority
JP
Japan
Prior art keywords
ingot
mold
temperature
metal
formation position
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13338683A
Other languages
Japanese (ja)
Inventor
Atsumi Ono
大野 篤美
Hiroshi Hamada
浜田 宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
O C C KK
Original Assignee
Nippon Light Metal Co Ltd
O C C KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd, O C C KK filed Critical Nippon Light Metal Co Ltd
Priority to JP13338683A priority Critical patent/JPS6030565A/en
Publication of JPS6030565A publication Critical patent/JPS6030565A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/20Controlling or regulating processes or operations for removing cast stock

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

PURPOSE:To enable continuous casting of a casting ingot having a stable surface condition by controlling the drawing speed of the casting ingot in such a way that the position to form the initially solidified surface of the casting ingot detected by the measured value of the temp. near the inside wall at the outlet end of a heated casting mold attains a prescribed standard value. CONSTITUTION:The temp. of the molten metal 1 in a holding furnace 2 in which a molten metal is held roughly at a specified melt level by supplying the molten metal through an inflow port 3 and discharging the same through an overflow port 4 is held constant via a heater 11 by a thermocouple 10 and a temp. controller 20 and the temp. of the inside wall of a casting mold 5 is maintained at the solidifying temp. of the metal 1 or above in continuous casting for the metal by supplying the molten metal 1 in the furnace 2 into the mold 5, cooling the solidified metal drawn via a dummy casting ingot from the outlet of the mold 5 by a cooler 13 and drawing out continuously the same in the form of a casting ingot 12 by pinch rollers 18. The temp. near the inside wall at the outlet end of the mold 5 is further detected with a thermocouple 9 and the position to form the initially solidified surface of the ingot 12 is detected. The drawing speed of the ingot 12 is controlled via a driving motor 19 of the rollers 18 by a speed controller 22 in such a way that said position attains a standard value.

Description

【発明の詳細な説明】 本発明は金属の連続鋳造法、より詳しくは鋳塊引出用の
出口開口と溶湯供給のための入口開口とを有し、内壁温
度を鋳造しようとする金属の凝固温度以上に保持した鋳
型内に金属溶湯を供給し、この溶湯面に溶湯の凝固温度
以下に保持されたダミー鋳塊を接触させた後、このダミ
ー鋳塊を鋳型出口より引出すことによってダミー鋳塊の
先端に連続的に金属凝固体を形成させる金属の連続鋳造
法において、鋳塊表面状態を安定させるだめの鋳造速度
にかかわる諸因子の制御に関するものでらる0 従来、この種の金属の連続鋳造法には特許第10491
46号で提案さ扛ているが、こf′L、を行なうには非
常に厳密な速度コントロールが必要であった。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for continuous casting of metals, more particularly having an outlet opening for withdrawing the ingot and an inlet opening for supplying the molten metal, the inner wall temperature being adjusted to the solidification temperature of the metal to be cast. Molten metal is supplied into the mold held in the above manner, and a dummy ingot kept at a temperature below the solidification temperature of the molten metal is brought into contact with the surface of the molten metal, and then this dummy ingot is pulled out from the mold outlet to form a dummy ingot. Concerning the control of various factors related to the casting speed to stabilize the surface condition of the ingot in a continuous metal casting method in which a metal solidified body is continuously formed at the tip. The law has Patent No. 10491
Although proposed in No. 46, very strict speed control was required to perform this f'L.

その上、鋳造速度は金属の種類及び鋳塊の断面形状によ
って異なる外、鋳塊冷却能力、給湯温度、鋳型内壁温度
及び鋳型出口端il?−かがる溶湯圧によっても鋳造速
度は影響され、しかもこれらの因子は常に一定ではなく
、成る範囲内で変動した値を取っている。従ってこれら
因子の変動を考慮せずに鋳塊の定速引出しを行なった場
合には、得られた鋳塊の表面状態は常に一定とはならず
表面に引き吊り傷が見られたシ、階段上の縞が見られた
りするばかりか、場合によってはブレークアウトを起し
たり、鋳塊と鋳型とが固着したりして連続鋳造を中断せ
ざるを得なくなることもある。
Moreover, the casting speed varies depending on the type of metal and the cross-sectional shape of the ingot, as well as the ingot cooling capacity, hot water supply temperature, mold inner wall temperature, and mold outlet end il? - The casting speed is also influenced by the molten metal pressure, and these factors are not always constant, but take values that fluctuate within a certain range. Therefore, if the ingot is drawn at a constant speed without taking into account the fluctuations of these factors, the surface condition of the obtained ingot will not always be constant, and there will be cases where there are hanging scratches on the surface or stairs. In addition to visible stripes, breakouts may occur or the ingot and mold may stick together, forcing continuous casting to be interrupted.

そのため発明者は鋭意努力して研究を重ねた結果、鋳塊
の初期凝固面形取位eを成る範囲内とするように制御す
れば安定した表面状態を有する鋳塊の連続鋳造が可能で
あることを見い出した。ここで鋳塊表面をどの様な状態
に保っがは、鋳塊の用途に応じて定まるものであり、成
る場合には平滑美麗な鋳塊を必要とすることもあり、又
他の場合には軽度の引き吊り傷があっても差し支えない
事もある。しη・し乍ら、鋳肌に亀裂が表われたシ、階
段状の縞が表われたりすると、その鋳塊は製品として使
用出来なくなり、溶解、鋳造を再び行なう必要が生じる
。そこで本発明は要求される鋳肌を持つ鋳塊を安定的に
連続鋳造するための方法を提供するものである。以下本
発明を実施例と共に詳細に説明する。
Therefore, as a result of intensive research, the inventor has found that continuous casting of an ingot with a stable surface condition is possible by controlling the initial solidification surface profile e of the ingot to be within the range specified below. I discovered that. The condition in which the surface of the ingot is maintained depends on the intended use of the ingot; in some cases, a smooth and beautiful ingot is required, and in other cases, It may not be a problem even if there are slight scratches from hanging. However, if cracks or step-like stripes appear on the casting surface, the ingot can no longer be used as a product, and it will be necessary to melt and cast it again. Therefore, the present invention provides a method for stably and continuously casting an ingot having the required casting surface. The present invention will be described in detail below along with examples.

先ず、鋳塊の表面状態を最も強く支配するのは金属種類
と鋳型材質との組み合わせであるが、その外にも鋳型内
壁面の清浄度合い、初期凝固面形成位置、溶湯温度、鋳
型内壁温度、鋳型出口端にかかる溶湯圧、鋳塊冷却能力
及び鋳塊断面形状によっても影響を受ける。従って加熱
鋳型式連続鋳造法を実施するに際しては金属種類に応じ
た鋳型材質の選定を行なうと同時に鋳塊断面形状に応じ
て各種操業因子の最適条件を実験的に見付けておく必要
がある。ここで鋳型材質の選定に当っては平滑美麗な鋳
塊が得らnる初期凝固面形成位置範囲の広いものを選ぶ
必要がある。
First of all, what most strongly controls the surface condition of the ingot is the combination of metal type and mold material, but there are also other factors such as the degree of cleanliness of the mold inner wall surface, the initial solidification surface formation position, the molten metal temperature, the mold inner wall temperature, It is also affected by the molten metal pressure applied to the mold outlet end, the ingot cooling capacity, and the ingot cross-sectional shape. Therefore, when carrying out the heated mold continuous casting method, it is necessary to select the mold material according to the type of metal and at the same time to experimentally find the optimal conditions for various operating factors according to the cross-sectional shape of the ingot. When selecting the mold material, it is necessary to select one that allows a smooth and beautiful ingot to be obtained and that has a wide range of initial solidification surface formation positions.

例えば918% アルミニウムに鋳型材質として炭化珪
素を使用した場合、平滑美麗な鋳塊が得られる初期凝固
面形成位置は鋳型出口端と鋳型内1.5閣との間である
。初期凝固面形成位置が1.5 rm以上鋳型内に入る
と鋳肌には軽度の引き吊り傷が表われ、更に3膿以上鋳
型内に入ると鋳肌の引き吊り傷が強くなり、鋳肌の金属
光沢が失なわn、1.5園以上鋳型内に入ると鋳肌に亀
裂を生ずる。逆に初期凝固面形成位置が鋳型外となると
鋳肌には階段上の縞が表われ1闘以上鋳型出口端よp外
に出ると、この縞が強くなったり、場合によってはブレ
ークアウトを起して連続鋳造を中断せざるを得なくなる
。これに対して998%アルミニウムに鋳型材質として
アルミナを使用した場合には初期凝固面形成位置が少し
モも鋳型内に入ると鋳肌には深い亀裂が生じ、逆に初期
凝固面形成位置が鋳型外になると階段状の縞が鋳肌に表
われるO従って99.8φアルミニウムに対して鋳型材
質としてアルミナを使用すると良好な表面状態を持つ鋳
塊は得られない。ちなみに99t8%アルミニウムでは
ボロンナイトライド、1チ珪素を含むアルミニウム合金
では炭化珪素、99邸鋼では黒鉛を鋳型材質に選ぶと、
良好な表面状態を持つ鋳塊が得らる初期凝固面形成位置
範囲が広くなる○更に99罪錫及び10チ鉛を含む錫合
金に(はステンレスが鋳型として適する0 次に、鋳塊表面状態と溶湯温度並びに鋳型出口端内壁温
度との関係について示す0例えば999%銅で黒鉛鋳曳
を使用した場a・、溶湯温度(は1530℃からIJ5
0℃の範囲、鋳型用[1端内壁温度は1520℃力・ら
1,140℃の範囲とすれば良好な鋳肌を持つ鋳塊が得
られるが、溶湯温度は1200℃として@整向壁温度を
1,130℃としても引き吊り傷がなく、而も階段状の
縞のない鋳塊は得らnない0 そこで、鋳塊の初期凝固面形成位置を成る範囲内とする
様に制御するためには、金属種類、g型材質、鋳型構造
及び鋳塊断面形状に応じて、溶湯温度、鋳型加熱用発熱
体の発熱量及び鋳塊冷却能力が鋳塊凝固速度に与える影
響を定量的に把握しておく必要がある。発明者による研
究の結果、これら鋳塊凝固速度に影響を及ばず諸因子の
定量化を行なった0 第1図は99.99チアルミニウムで、直径20mの丸
棒を鋳造した際の鋳塊凝固速度と溶湯温度との関係を示
す。図中曲線Aは鋳型出口端より40m離れた位置で冷
却水を毎分12/、鋳塊に当てた際のもので、Bは60
闘、Cは80酬、Dは100朧の位置で毎分127の冷
却水を用いた際の曲線である。第1図より明らかな様に
鋳塊凝固速度は溶湯温度の変化に応じてほぼ直線的に変
化している0第2図は9999チアルミニウムで伯径2
0間の丸棒′f:鋳造した際の鋳型加熱用ヒーター出力
と鋳塊凝固速度との関係を示す0図中曲線Eは浴湯温度
680℃の場合を示し、Fは700’C,Gは720℃
、■は740℃の溶湯温度の際の曲線である。第2図よ
り明らかな様に鋳型加熱用ヒーター出力が100Wから
250Wの間で1jvJ塊凝固速度との「トリにほぼ直
線的な関係があろう 第3図は99.99%アルミニウムで直径20咽の丸棒
を鋳造した際の鋳塊冷却用冷却水の水量と鋳塊凝固速度
との関係を示す0図中曲線■は鋳現出ロ端エリ40閣離
れた位置で冷却水金鋳塊に当てた際の4ので、Jは60
 rtas Kは80瓢、Llは100咽の位置で冷却
水を鋳塊に当てた際の曲線である0第3図より明らかな
様に鋳塊凝固速度(ζ冷却水量の変化よりも冷却位置の
変化が鋳塊凝固速度に与える影響が大きいことも分る0 次に、第4図は999チ銅で厚さ3mm、@20mの板
fr、鋳造した際の鋳塊凝固速度と溶湯温度との関係を
示す0図中曲線Mは鋳型出口端より60調離れた位置で
毎分150t の冷却用空気を鋳塊に当てたものである
0又Nは80m5Oは100闇離れた位置で毎分150
t の冷却用空気を鋳塊に当てた際の曲線である。
For example, when silicon carbide is used as a mold material for 918% aluminum, the initial solidification surface formation position at which a smooth and beautiful ingot is obtained is between the mold outlet end and 1.5 holes inside the mold. If the initial solidification surface formation position enters the mold more than 1.5 rm, slight hanging scratches will appear on the casting surface, and if it enters the mold more than 3 rms, the pulling scratches on the casting surface will become stronger, causing the casting surface to deteriorate. The metallic luster of the metal will be lost, and if it enters the mold for more than 1.5 degrees, cracks will occur on the casting surface. On the other hand, if the initial solidification surface formation position is outside the mold, step-like stripes will appear on the casting surface, and if it moves beyond the mold outlet end for more than one stroke, these stripes will become stronger, and in some cases breakout may occur. Continuous casting would have to be interrupted. On the other hand, when alumina is used as the mold material for 998% aluminum, deep cracks will occur in the casting surface if the initial solidification surface formation position is even slightly inside the mold; On the outside, step-like stripes appear on the casting surface. Therefore, if alumina is used as the mold material for 99.8φ aluminum, an ingot with a good surface condition cannot be obtained. By the way, if you choose boron nitride as the mold material for 99t8% aluminum, silicon carbide for aluminum alloy containing 1t silicon, and graphite for 99t steel,
The initial solidification surface formation position range is widened to obtain an ingot with a good surface condition. Furthermore, for tin alloys containing 99 tin and 10 titanium lead (stainless steel is suitable as a mold). For example, when graphite casting is used with 999% copper, the molten metal temperature (from 1530℃ to IJ5
If the temperature of the inner wall at one end is in the range of 1,140°C from 1,520°C, an ingot with a good casting surface can be obtained, but if the temperature of the molten metal is 1,200°C, Even if the temperature is set to 1,130°C, it is not possible to obtain an ingot with no hanging scratches or step-like stripes.Therefore, the initial solidification surface formation position of the ingot is controlled to be within the range. In order to do this, it is necessary to quantitatively evaluate the effects of the molten metal temperature, the calorific value of the heating element for heating the mold, and the ingot cooling capacity on the ingot solidification rate according to the metal type, g-type material, mold structure, and ingot cross-sectional shape. You need to understand it. As a result of research conducted by the inventor, these factors were quantified without affecting the solidification rate of the ingot. Figure 1 shows the solidification of an ingot when a round bar with a diameter of 20 m was cast using 99.99 thialuminum. The relationship between speed and molten metal temperature is shown. Curve A in the figure is when cooling water is applied to the ingot at a rate of 12/min at a position 40m away from the mold outlet end, and curve B is 60m/min.
C is the curve when cooling water is used at 127 per minute at a position of 80° and D is 100°. As is clear from Figure 1, the ingot solidification rate changes almost linearly with changes in molten metal temperature.
Round bar 'f' between 0 and 0: Curve E in the 0 figure showing the relationship between the heater output for mold heating and the solidification rate of the ingot during casting indicates the case where the bath water temperature is 680°C, F is 700'C, G is 720℃
, ■ is a curve at a molten metal temperature of 740°C. As is clear from Figure 2, there is an almost linear relationship between the 1jvJ block solidification rate and the solidification rate of the 1jvJ lump when the heater output for heating the mold is between 100W and 250W. The curve ■ in Figure 0, which shows the relationship between the amount of cooling water used to cool the ingot and the solidification rate of the ingot when casting a round bar, shows the relationship between the amount of cooling water used to cool the ingot and the solidification rate of the ingot. J is 60 because it was 4 when I guessed it.
rtas K is the curve when cooling water is applied to the ingot at the 80° position, and Ll is the curve when cooling water is applied to the ingot at the 100° position.As is clear from Figure 3, the ingot solidification rate (ζ It can also be seen that the change has a large effect on the solidification rate of the ingot.0 Next, Figure 4 shows the relationship between the solidification rate of the ingot and the temperature of the molten metal when casting a plate fr of 999-chip copper with a thickness of 3 mm and @20 m. The curve M in the diagram showing the relationship is when cooling air is applied to the ingot at a rate of 150 tons per minute at a position 60 tons away from the mold outlet end.
This is the curve when cooling air of t is applied to the ingot.

第5図は、99郭銅で厚さ3卿、幅20闇の板金鋳造し
た際の鋳塊凝固速度と鋳型加熱用ヒーター出力との関係
を示す0図中曲糺Pは溶湯温度IJ20℃の隙の関係を
示し、Qは溶湯温度1,140’C,RU溶湯温度1,
160℃の際の関係?示す0第6図は99.9elj 
銅で厚さ3mm、幅20+mの板を鋳造した際の鋳塊引
出速度と冷却用空気風量との関係を示す0図中si!:
鋳型出ロ端より60目離れた位置で毎分150t の冷
却用空気を鋳塊に当てた際の曲線1゛、Tは8O−1U
は100謂離れた位置で毎分150t の冷却用空気を
鋳塊に当てた際の曲線である0 以上より溶湯温度、vj型加熱用ヒーター出力及び冷却
水量又は風景の変化に応じて鋳塊6〒同速度は、はぼ直
線的に変化することが明らかでを)る。
Figure 5 shows the relationship between the solidification rate of the ingot and the output of the heater for heating the mold when casting a sheet metal of 99 mm copper with a thickness of 3 mm and a width of 20 mm. Indicates the gap relationship, Q is molten metal temperature 1,140'C, RU molten metal temperature 1,
What is the relationship at 160℃? The 0 figure shown is 99.9elj
si! in Figure 0 shows the relationship between the ingot withdrawal speed and the cooling air volume when casting a copper plate with a thickness of 3 mm and a width of 20+ m. :
Curve 1゛, T is 8O-1U when cooling air is applied to the ingot at a rate of 150 tons per minute at a position 60 stitches away from the mold exit end.
is the curve when cooling air is applied to the ingot at a rate of 150 tons per minute at a position 100 meters away. It is clear that the same speed changes almost linearly.

このζを実から鋳塊の初只」1凝固面形成位12成る範
囲内に制御する場合、鋳塊引出速度そのものを変化させ
る方法と、鋳造凝固速度そのもの全変化させる方法とが
可能である事を示すと同時に、溶湯温度及び鋳塊冷却能
力の多少の変化全外乱として吸収することが可能である
事を示している0更に、発明者は鋳型出口端に力・かる
溶湯圧と診1j塊凝固速度との関係についても調査を行
なったところ、溶湯圧の変化に対して鋳塊凝固速度は殆
んど影響されない事が分った0この事実は溶、湯圧の変
動は下引きや、横引きに於てブレークアウトを起さず、
鋳型の湯回りを悪化させない範囲内であれば、外乱とし
て吸収する事が可能である事を示している。
When controlling this ζ within the range of 1 solidification surface formation position 12 from the beginning of the ingot, it is possible to change the ingot drawing speed itself or completely change the casting solidification speed itself. At the same time, it shows that it is possible to absorb some changes in the molten metal temperature and ingot cooling capacity as a total disturbance.Furthermore, the inventor investigated the molten metal pressure and the force exerted at the mold outlet end. We also investigated the relationship with the solidification rate and found that the solidification rate of the ingot was hardly affected by changes in molten metal pressure. No breakout occurs when pulling horizontally,
This shows that it is possible to absorb the disturbance as long as it does not deteriorate the flow of the mold.

そこで、鋳塊初期凝固面形成位置を成る範囲内で制御す
る為には、その変化を検知する必要がらる0これには鋳
型内壁温度を検知する方法、鋳型出口端における金属鋳
塊の表面温度を検知する方法、鋳型自溶湯温度を検知す
る方法及び鋳型と鋳塊との摩擦力を検知する方法がある
Therefore, in order to control the initial solidification surface formation position of the ingot within a certain range, it is necessary to detect the change in the ingot. There are two methods: a method of detecting the temperature of self-molten metal in the mold, and a method of detecting the frictional force between the mold and the ingot.

しかし、鋳型内壁温度を検知する事は実際上至難である
。そこで発明者は実際に実行可能な方法として次の3通
り全見出した0即ち、鋳型内蔵ヒーター出力が一定とな
る様に保ちつつ鋳型内壁近傍温度を検知する方法、@型
内壁近傍温度が一定となる様に鋳型内蔵ヒーター出力を
制御しつつ、その発熱量を検知する方法、そして鋳型用
口端近傍の露出部における鋳型温度を非接触式温度計等
で検知する方法であるofiお、鋳型内壁近傍温度の測
定に当っては通常熱電対を鋳型出口端内壁近傍に埋め込
む方法が採用さnる0 第7図囚は99.99%アルミニウムにおいて直径20
闘の丸棒を連続鋳造した際の鋳型内壁近傍温度と鋳塊初
期凝固面形成位置との関係を示す0この時の鋳型内壁近
傍温度は第7図([3)に示す鋳型5の出口端より5鑓
鋳型内で、その内壁より3餌の位16゜にクロメルアル
メル熱電対9を配置し2、鋳型加熱用ヒーター6の出力
Il″11.100W となる様に保った・。
However, it is actually extremely difficult to detect the temperature of the inner wall of the mold. Therefore, the inventor found the following three methods that are actually practicable: 0, a method to detect the temperature near the inner wall of the mold while keeping the output of the built-in heater constant in the mold; There is a method of controlling the output of the built-in heater in the mold and detecting its calorific value, and a method of detecting the temperature of the mold at the exposed part near the end of the mold using a non-contact thermometer. When measuring nearby temperature, a method is usually adopted in which a thermocouple is embedded near the inner wall of the mold outlet end.
This shows the relationship between the temperature near the mold inner wall and the initial solidification surface formation position of the ingot during continuous casting of round bars. A chromel-alumel thermocouple 9 was placed at a distance of 16 degrees from the inner wall of the five-ring mold, and the output of the heater 6 for heating the mold was maintained at 11.100 W.

なお、12は鋳塊を示す0第7図(ト)より明らかな様
に鋳塊初期凝固面形成位置が鋳型内に入るにつれて鋳型
内壁近傍温度が下降している0なお、この曲線は鋳塊凝
固速度や溶湯温度によっては大きく影響されないが、鋳
型材質や温度検知位置には犬きく左右される。従って、
この方法で鋳塊初期凝固面形成位置を検知する場合、特
に鋳型内蔵ヒーターから鋳型内壁迄の熱抵抗を考慮した
上で温度検知位置を決める必要があるQ 第8図は99.99%アルミニウムにおいて直径20瓢
の丸棒を鋳造した際の鋳型内蔵ヒーターの発熱量と鋳塊
初期凝固面形取位11との関係を示す。この時の鋳型内
蔵ヒーメーの発熱量は、鋳型出口端より511IIm鋳
型内で、その内壁よシ3圓離れた位置に設置されたクロ
メルアルメル熱電対を設置してその熱電対温度が700
±1℃の範囲内になる様に微分積分比例制御がされてい
る。第8図より明らかな様に、鋳塊初期凝固面形成位置
が鋳型内に入るにつれて鋳型加熱用ヒーターの発熱量が
増加する。
Note that 12 indicates the ingot. As is clear from Figure 7 (G), as the initial solidification surface formation position of the ingot moves into the mold, the temperature near the inner wall of the mold decreases. Although it is not greatly affected by the solidification rate or molten metal temperature, it is greatly affected by the mold material and the temperature detection position. Therefore,
When detecting the initial solidification surface formation position of an ingot using this method, it is necessary to decide the temperature detection position by taking into consideration the thermal resistance from the built-in heater of the mold to the inner wall of the mold. The relationship between the calorific value of the heater built into the mold and the initial solidification surface shape position 11 of the ingot is shown when a round bar with a diameter of 20 gourds is cast. At this time, the heat generation value of the built-in mold heater is 511 II m from the mold outlet end. A chromel alumel thermocouple is installed at a position 3 circles away from the inner wall of the mold, and the temperature of the thermocouple is 700 IIm.
Differential-integral proportional control is performed to keep the temperature within ±1°C. As is clear from FIG. 8, the amount of heat generated by the mold heater increases as the initial solidification surface forming position of the ingot moves into the mold.

第9図は99.9%銅で、厚さ3悶、幅20m+の板を
鋳造した際の非接触式温度計を用いて得た鋳型露出部温
度と鋳塊初期凝固面形成位置との関係を示す。図より明
らかな様に鋳塊初期凝固面形成位置が鋳型内に入るにつ
れて鋳型露出部温度が下降している。なお、鋳型内壁温
度を検知するには鋳型内の鋳塊初期凝固面形成位置に近
い溶湯の部分に熱電対を設置すnば良い0但し鋳型自溶
湯温度は鋳型に供給さ扛る溶湯温度によって大きく左右
されるため、この給湯温度が大きく変動する場合には給
湯温度と組み会わせて初期凝固面形成もI−置を検出し
なければならない。又この方法は鋳型内に温度検出端子
が設置可能な場合のみ実施可能である。
Figure 9 shows the relationship between the temperature of the exposed part of the mold obtained using a non-contact thermometer and the initial solidification surface formation position of the ingot when a plate of 99.9% copper, 3mm thick and 20m+ wide was cast. shows. As is clear from the figure, as the initial solidification surface formation position of the ingot moves into the mold, the temperature of the exposed mold part decreases. In addition, to detect the temperature of the inner wall of the mold, it is sufficient to install a thermocouple in the part of the molten metal near the position where the initial solidification surface of the ingot is formed in the mold. However, the temperature of the self-molten metal in the mold depends on the temperature of the molten metal supplied to the mold. Therefore, if the hot water supply temperature fluctuates greatly, the initial solidification surface formation must also be detected at I-position in combination with the hot water supply temperature. Further, this method can only be implemented if a temperature detection terminal can be installed within the mold.

第10図は99.99%アルミニウムで直径30門の丸
棒を鋳造した際の鋳型自溶湯温度と鋳塊初期凝固面形成
位置との関係を示す。この時の熱電対は高さ22III
11の鋳型の出口端より12跡鋳型内に入った位置に設
置した。図中曲線Vは給湯温度740℃、Wは720℃
 の際のものである。図より明らがな様に鋳塊初期凝固
面形成位置が鋳型内に入るにつ扛て鋳型自溶湯温度が下
降している。なお、鋳型出口端における鋳塊温度を検知
するのは至難である。
FIG. 10 shows the relationship between the mold self-molten metal temperature and the initial solidification surface formation position of the ingot when a round bar with a diameter of 30 holes was cast using 99.99% aluminum. The thermocouple at this time has a height of 22III
It was installed at a position that entered the mold 12 from the outlet end of the mold 11. Curve V in the figure shows the hot water supply temperature at 740°C, and W shows the hot water temperature at 720°C.
This is the case. As is clear from the figure, as the initial solidification surface forming position of the ingot enters the mold, the temperature of the mold self-molten metal decreases. Note that it is extremely difficult to detect the ingot temperature at the mold outlet end.

そこで、発明者は非接触式温度計を用いて鋳型用口端近
傍における防塊表面温度を検知する事によジ鋳塊初期凝
固面形成位置全検出する方法を見出した。この方法は鋳
鉄や鋼等の高融点金属において有効な方法である0又最
近では測温体が動作時にも測定可能な接触式温度計も市
販されている。
Therefore, the inventors have discovered a method for detecting all the initial solidification surface formation positions of ingots by detecting the surface temperature of the ingot preventer near the mouth end of the mold using a non-contact thermometer. This method is effective for high-melting point metals such as cast iron and steel.Recently, contact thermometers that can measure temperature even when the temperature sensing element is in operation have been commercially available.

第11図は3.5チ炭素及び2.1%珪素を含む鋳鉄で
、直径12+mの丸棒を鋳造した際の鋳型出口端より2
0m離れた位置での鋳塊表面温度と鋳塊初期凝固面形成
位置との関係を示す。図中曲線Xは分速24謹で鋳造し
た場合で、Yは分速26mの場合を示′r。図より明ら
かな様に鋳塊凝固位置が鋳型内に入るにつ扛て鋳塊表面
温度も下降している。
Figure 11 shows a cast iron containing 3.5% carbon and 2.1% silicon, which is 2 mm from the mold outlet end when a round bar with a diameter of 12+ m is cast.
The relationship between the ingot surface temperature and the initial solidification surface formation position of the ingot at a distance of 0 m is shown. Curve X in the figure shows the case where the casting speed is 24 m/min, and curve Y shows the case where the casting speed is 26 m/min. As is clear from the figure, as the ingot solidifies into the mold, the ingot surface temperature also decreases.

第12図は99.99%アルミニウムにおいて、直径2
0mの丸棒を連続鋳造した際の鋳型と鋳塊との摩擦力と
、鋳塊初期凝固面形成位置との関係を示す。図中曲線a
は鋳型材質に炭化珪素を用いた際のもので、曲線すは鋳
型材質にボロンナイトライドを用いた際のものでおる。
Figure 12 shows a diameter of 2 mm in 99.99% aluminum.
The relationship between the frictional force between the mold and the ingot and the initial solidification surface formation position of the ingot is shown when a 0 m round bar is continuously cast. Curve a in the figure
The curved line is when silicon carbide is used as the mold material, and the curved line is when boron nitride is used as the mold material.

この様に摩擦力は金属種類と鋳型材質との組み合わせに
よって異なる数値となる。図よp明らかな様に、鋳塊初
期凝固面形成位置が鋳型内に入るにつれて鋳型と鋳塊と
の摩擦力が増加している。なお、第12図の値を測定す
るに当っては、鋳型固定機構の鋳型と鋳塊との摩擦力が
加わる位置に歪ゲージを取付けた口取上より鋳型加熱用
ヒーターの発熱量を0を含めて一定となる様に保つ場合
には、鋳塊の初期凝固面形成位置Pと鋳型内壁近傍温度
t1との間には P=F1(tl ン (1) なる関係が存在する。9こでFlは鋳込むべき金属種類
、鋳型の構造及び測温体設置位置に応じて足壕る関数で
必る0 次に、鋳型内壁近傍温度t2が一定となる様に鋳型加熱
用ヒーターの発熱量を制御している場合には、鋳塊の初
期凝固面形成位置Pと鋳型加熱用ヒーターの発熱量q2
との間には P = F 2 (q 2 、t 2 ) (2)なる
関係が存在する。
In this way, the frictional force has different values depending on the combination of metal type and mold material. As is clear from the figure, the frictional force between the mold and the ingot increases as the initial solidification surface formation position of the ingot moves into the mold. In addition, when measuring the values shown in Figure 12, the amount of heat generated by the heater for heating the mold was set to 0 using a strain gauge installed on the mouth of the mold fixing mechanism at the position where the frictional force between the mold and the ingot is applied. If the initial solidification surface formation position P of the ingot and the temperature t1 near the inner wall of the mold are kept constant, there exists a relationship P=F1(tl n (1)). Fl is a function that depends on the type of metal to be cast, the structure of the mold, and the installation position of the temperature sensor.Next, the amount of heat generated by the heater for heating the mold is determined so that the temperature t2 near the inner wall of the mold is constant. When controlling, the initial solidification surface formation position P of the ingot and the calorific value q2 of the mold heater
There is a relationship between P = F 2 (q 2 , t 2 ) (2).

又鋳塊の初期凝固面形成位置Pと鋳型自溶湯温度t3及
び鋳型に供給される溶湯温度ta/ との間には p=F3 (t3. t3’ ) (3)なる関係が存
在する〇 又鋳塊の初期凝固面形成位置Pと鋳塊表面温度t4との
間には P=F4(t4) (4) なる関係が存在する0 更に鋳塊の初期凝固面形成位置Pと鋳型と鋳塊との摩擦
力tq、5との間には p = F 5 (tq s ) (5)なる関係が存
在する0 (1)式から(5)式をまとめて鋳塊の初期凝固面形成
位置Pは P=Fi(αi ) ’ (6) と表わすことができる0但しi = 1.2.3.4.
5さて、鋳塊が安定的に成る範囲内の表面状態を有する
様にするためには、鋳塊の初期凝固面形成位置Pが鋳込
むべき金属の種類、鋳型材質及び鋳塊断面形状に応じて
経験的に定まる範囲内と彦る様に鋳塊引出速度又は鋳塊
凝固速度を制御すわばよい0 ここで鋳塊凝固速度を制御するに当っては、溶湯温度を
変化させる方法、鋳型加熱用ヒーターの発熱量全変化さ
せる方法及び鋳塊冷却能力を変化させる方法が考えら詐
る。しかし乍ら溶湯温度を1ハ塊初期凝固面形成位置の
変化に応じて変化させる方法は、通常大きな熱容量を有
する溶湯の温度全変化させねばならないため、応答遅1
.が生じ、その結果、鋳塊初期凝固面形成位置を充分に
制御できなくなる危険性が強い0又鋳塊冷却用の冷却水
量乃至は冷却風量を変化させる方法についても同様であ
る。
Furthermore, there is a relationship p=F3 (t3. t3') (3) between the initial solidification surface formation position P of the ingot, the mold self-molten metal temperature t3, and the molten metal temperature ta/ supplied to the mold. There is a relationship between the initial solidification surface formation position P of the ingot and the ingot surface temperature t4 as follows: P=F4(t4) (4) 0 Furthermore, the initial solidification surface formation position P of the ingot, the mold and the ingot The relationship p = F 5 (tq s ) (5) exists between the frictional force tq and 5.0 Putting equations (1) to (5) together, the initial solidification surface formation position P of the ingot can be expressed as P=Fi(αi)' (6)0where i=1.2.3.4.
5 Now, in order for the ingot to have a stable surface condition, the initial solidification surface formation position P of the ingot must be determined depending on the type of metal to be cast, the mold material, and the cross-sectional shape of the ingot. It is only necessary to control the ingot withdrawal speed or ingot solidification rate so that the ingot solidification rate is within a range determined empirically. The method of changing the total calorific value of the heater and the method of changing the cooling capacity of the ingot are difficult to think of. However, the method of changing the molten metal temperature according to the change in the initial solidification surface formation position of the molten metal requires a complete change in the temperature of the molten metal, which usually has a large heat capacity, resulting in a slow response.
.. The same applies to the method of changing the amount of cooling water or the amount of cooling air for cooling the ingot, which has a strong risk of not being able to sufficiently control the initial solidification surface formation position of the ingot.

そこで研究の結果、溶湯温度及び鋳塊冷却能力は予め鋳
込むべき金属種類、鋳型材質及び鋳塊断面形状等を考慮
して経験的にめられる標準値となる様に独立して制御し
ておき、これが多少変化しても、その変化は外乱として
鋳塊引出し速度又l′:r、鋳型加熱用ヒーターの発熱
量を変化させる小により吸収させれば、鋳塊の初期凝固
面形成位置を精度よく制御する手が可能となり、その結
果、安定的に良好な鋳肌を有する鋳塊が得られるとの結
論に達したの更にもう一つの方法として鋳塊内壁近傍温
度を予め定められた標準値に保つための鋳型加熱用ヒー
ターの発熱in“が予め鋳込むべき金属0fjIl類、
鋳塊断面形状及び鋳型構造等を考慮して経験的にめらn
る上限値と下限値との範囲内に入っている間は鋳塊引出
速度を変化させず、発熱骨がこの範囲外となった時に、
発熱量がこの範囲内となる様に鋳塊引出速度を変化させ
る方法が非常に有効でおる事を見出した。この方法は鋳
塊凝固速度の変化幅が広くても鋳塊の初期凝固面形取位
uを精度よく制御する事が可能であるため、ダミー鋳塊
を鋳型内溶湯に接触させた後、ダミー鋳塊を引出し、こ
のダミー鋳塊に綬いて金属凝固体を得る初期の鋳塊凝固
速度が犬きく変動する状態においても適用可能である0 更に、制御の精度を向上する目的で溶湯温度の変化及び
鋳塊冷却能力の変化を検知して、そ扛らの変化幅が鋳塊
8同速度に与える影響を考慮しつつ、上記三つの方法で
鋳塊の初期凝固面形取位(叉を制御する事が有効でらる
As a result of our research, we have found that the molten metal temperature and ingot cooling capacity are independently controlled in advance to standard values determined empirically, taking into account the type of metal to be cast, the material of the mold, the cross-sectional shape of the ingot, etc. Even if this changes slightly, if the change is absorbed as a disturbance by changing the ingot drawing speed, l':r, and the amount of heat generated by the mold heater, the initial solidification surface formation position of the ingot can be accurately adjusted. The conclusion was reached that it is possible to control the temperature well, and as a result, an ingot with a stable and good casting surface can be obtained.Another method is to set the temperature near the inner wall of the ingot to a predetermined standard value. The heat generated by the heater for heating the mold in order to keep the metals that should be cast in advance,
Based on experience, we consider the cross-sectional shape of the ingot, the mold structure, etc.
The ingot withdrawal speed is not changed while the ingot is within the range of the upper and lower limits, and when the exothermic bone is outside this range,
It has been found that a method of varying the ingot withdrawal speed so that the calorific value falls within this range is very effective. This method makes it possible to accurately control the initial solidification surface shape u of the ingot even if the ingot solidification rate varies widely, so after bringing the dummy ingot into contact with the molten metal in the mold, It can be applied even in situations where the initial solidification rate of the ingot, which is obtained by drawing out the ingot and passing it through this dummy ingot to obtain a metal solidified body, fluctuates considerably. By detecting changes in the ingot cooling capacity and ingot cooling capacity, and controlling the initial solidification surface shape of the ingot using the above three methods, while considering the influence that the range of change has on the ingot 8 speed. It is effective to do so.

ここで鋳塊凝固速度■と溶湯温度t7との間には V=F7(t7) (7) なる関係がらジ、又鋳塊凝固速度Vとa5塊冷却能力C
8との間には V = F 8 (CB ) (81 なる関係がある。
Here, the relationship between the ingot solidification rate ■ and the molten metal temperature t7 is V = F7 (t7) (7), and the ingot solidification rate V and a5 ingot cooling capacity C
8 has the following relationship: V = F 8 (CB) (81).

更に鋳塊凝固速度Vと鋳型加熱用ヒーターの発熱量q9
との間には V = F 9(q g ) (9) なる関係がある。
Furthermore, the ingot solidification rate V and the calorific value of the heater for heating the mold q9
There is a relationship between V = F 9 (q g ) (9).

以上に述べて来た関係全整理して鋳塊の初期凝固面形成
位置を制御する方法を以下に記す。
A method for controlling the initial solidification surface formation position of an ingot by organizing all the relationships described above will be described below.

第1の方法は鋳型加熱用ヒーターの発熱(分を、O?含
めて予め鋳込むべき金M劇類、鋳塊材質及び鋳塊断面形
状等を考慮して経験的にめられる標準値となる様に制御
しつつ、鋳型内壁近傍温度を検知して、弱塊の初期縁固
面形取位i、’7. Th 4文出し、鋳塊引出速度を
変化させることにより初期凝固面形成位置を制御する方
法である。
The first method is to determine the heat generated by the heater for heating the mold (including O?), a standard value determined empirically, taking into account the metal to be cast in advance, the material of the ingot, the cross-sectional shape of the ingot, etc. While controlling the temperature in the vicinity of the mold inner wall, the initial solidification surface formation position is determined by controlling the initial solid surface formation position of the weak ingot by changing the ingot withdrawal speed. It is a method of control.

ここで鋳塊引出速度υを変化させて1初期凝li!・1
面形成位置Pが予め定められた標準値poとなる様にす
るための1つの方法を述べる。即ち(1)式よりp−F
l(tl)であるからΔT時間内に初期凝固面形成位置
Pを標準値POに Δp=c(po−p) αq だけ近付ける方法がある。ここでC(0(c )は比例
定数である。
Here, by changing the ingot withdrawal speed υ, 1 initial solidification li!・1
One method for setting the surface forming position P to a predetermined standard value po will be described. That is, from equation (1), p-F
l(tl), there is a method of bringing the initial solidification surface formation position P closer to the standard value PO by Δp=c(po-p) αq within the time ΔT. Here, C(0(c)) is a proportionality constant.

この際の鋳塊引出速度τは鋳塊凝固速度v金剛いて ΔP −(v−V ) ts T (I+)を満足すれ
ばよいから ?+ = V + c (P OP ) / △T (
12とすれば良い0なお、鋳塊凝固速度Vは鋳塊冷却能
力、給湯温度によって変化し、鋳型出口端にかかる溶湯
圧によってもほんの僅かではあるが変化する。
In this case, the ingot withdrawal speed τ should satisfy the ingot solidification rate v Kongo and ΔP − (v−V ) ts T (I+)? + = V + c (POP) / △T (
The ingot solidification rate V varies depending on the ingot cooling capacity and the hot water supply temperature, and also varies slightly depending on the molten metal pressure applied to the mold outlet end.

しかしながら、初期凝固面形成位置Pが精度よく標準値
POとなる様に鋳塊引出し速度りを制御しつつ連続鋳造
が行なわれてい扛ば、成る時間TにおけるT1時間内の
鋳塊#!同速度Vはv=/T、ydt/ll Q3 として鋳造速度υの平均値で捕えることができる。
However, if continuous casting is performed while controlling the ingot withdrawal speed so that the initial solidification surface formation position P becomes accurately the standard value PO, the ingot # within time T1 at time T will be ! The same speed V can be captured by the average value of the casting speed υ as v=/T, ydt/ll Q3.

更に鋳塊凝固速度Vに与える溶扮温度t7及び(0塊冷
却能力C8の影響全考慮すれば、T7及びT8を各々成
る時開TにおけるT1時間内の溶湯温度t7及び鋳塊冷
却能力c8の平均値として鋳塊凝固速度Vは v=/T、Jt/’rx+(p7(t7)−F7(t7
))+(F8(c8)−F8(c8)) (141で捕
える事ができる。
Furthermore, if we consider all the effects of the melt temperature t7 and the ingot cooling capacity C8 on the ingot solidification rate V, T7 and T8 can be expressed as As an average value, the ingot solidification rate V is v=/T, Jt/'rx+(p7(t7)-F7(t7
)) + (F8 (c8) - F8 (c8)) (Can be caught at 141.

ここで鋳塊引出速度v2急激に変化させないためには、
03式の比例定数Cと時定数△Tf:適宜経験的に定ま
る成る値とする必要がある。更に03式及び03式の時
定数T1は@塊凝固速度■を算出するに充分な時間とす
ればよい。
Here, in order to prevent the ingot withdrawal speed v2 from changing suddenly,
Proportionality constant C and time constant ΔTf of Equation 03: It is necessary to take values determined empirically as appropriate. Further, the time constant T1 of Equation 03 and Equation 03 may be set to a time sufficient to calculate @clump solidification rate (■).

第2の方法は鋳型内壁近傍温度を予め鋳込むべき金属の
種類、鋳型の材質及び鋳塊断面形状等を考慮して経験的
に定められた標準値となる様に鋳型加熱用ヒーターの発
熱量全制御しつつ、それに要する発熱量を検知して鋳塊
の初期凝固面形成位置を検出し、鋳塊引出速度を変化さ
せることによ)、この初期凝固面形取位Bを制御する方
法である0なお一鋳塊の初期凝固面形成位置は(2)式
にて与えらnるから、第1の方法と同様に03式又は0
4式を用いて鋳塊凝固速度を算出し、H式を用いて鋳塊
引出速度υが与えらnる。
The second method is to set the temperature near the inner wall of the mold to a standard value determined empirically in consideration of the type of metal to be cast, the material of the mold, the cross-sectional shape of the ingot, etc., and calculate the amount of heat generated by the mold heater. In this method, the initial solidification surface shape position B is controlled by controlling the total amount of heat generated, detecting the initial solidification surface formation position of the ingot, and changing the ingot withdrawal speed. Since the initial solidification surface formation position of a certain 0 ingot is given by equation (2), similarly to the first method, equation 03 or 0
The ingot solidification rate is calculated using Equation 4, and the ingot withdrawal speed υ is given using Equation H.

第3の方法は鋳型用口端直外における鋳塊表面温度を検
知して鋳塊の初期凝固面形成位置を検出し、鋳塊引出速
度を変化させることにより、この初期凝固面形成位置を
制御する方法である。即ち(4)式よりP−p’4(+
4)であるから第1の方法と同様に時定数△Tと比例定
数Cを用いて02式より鋳塊引出速度τが与えられる。
The third method is to detect the initial solidification surface formation position of the ingot by detecting the ingot surface temperature just outside the mold mouth end, and control this initial solidification surface formation position by changing the ingot withdrawal speed. This is the way to do it. That is, from equation (4), P-p'4(+
4) Therefore, similarly to the first method, the ingot withdrawal speed τ is given by equation 02 using the time constant ΔT and the proportionality constant C.

なお、鋳塊凝固速度Vはu式又は(141式を用いて与
えられる。
Note that the ingot solidification rate V is given using the u equation or the (141 equation).

第4の方法は鋳型自溶湯温度を検知して鋳塊の初期凝固
面形成位置を検出し、鋳塊引出速度を変化させることに
より、この初期凝固面形成位置を制御する方法である。
The fourth method is to detect the temperature of the self-molten metal in the mold to detect the initial solidification surface formation position of the ingot, and to control this initial solidification surface formation position by changing the ingot withdrawal speed.

なお、鋳塊の初期凝固面形成位置は(3)式にて与えら
れるから第1の方法と同様に03式又は1式を用いて鋳
塊凝固速度を算出しO3式上用いて鋳塊引出速度τが与
えられる。
Note that the initial solidification surface formation position of the ingot is given by equation (3), so similarly to the first method, the ingot solidification rate is calculated using equation 03 or equation 1, and the ingot is pulled out using equation 03. The velocity τ is given.

第5の方法は鋳型固定機構にかかる応力を検知して鋳塊
と鋳型との摩擦力を算出し、鋳塊の初期凝固面形成位置
を検出して、鋳塊引出速度を変化させることにより、こ
の初期凝固面形底位置を制御する方法である。なお、鋳
塊の初期凝固面形式位置な(5)式で与えられる〃・ら
、第1の方法と同様に03式又は04式を′用いて鋳塊
凝固速度を算出し、(12式を用いて鋳塊引出速度υが
与えられる。
The fifth method is to detect the stress applied to the mold fixing mechanism, calculate the frictional force between the ingot and the mold, detect the initial solidification surface formation position of the ingot, and change the ingot withdrawal speed. This is a method of controlling the bottom position of this initial solidification surface shape. In addition, the initial solidification surface type position of the ingot is given by equation (5), and as in the first method, the ingot solidification rate is calculated using equation 03 or 04, and equation (12) is The ingot withdrawal speed υ is given using

第6の方法は、鋳型用口端直外における鋳塊表面温度を
検知して鋳塊の初期凝固面形成位置を検出し、鋳型加熱
用ヒーターの発熱量を変化させることにより、この初期
凝固面形成位置を制御する方法で、鋳塊引出速度τは一
定となる様に独立してコントロールされる。
The sixth method is to detect the initial solidification surface formation position of the ingot by detecting the ingot surface temperature just outside the mold mouth end, and to change the amount of heat generated by the heater for heating the mold. By controlling the forming position, the ingot withdrawal speed τ is independently controlled to be constant.

又鋳塊の初期凝固面形取位@Pは(4)式よりp=F4
(+4)で与えられる。ここで鋳型加熱用発熱体の発熱
量qk変化させて鋳塊の初期凝固面形成位置Pが予め定
められた標準値POとなる様にするための1つの方法を
述べる。
Also, the initial solidification surface shape @P of the ingot is p=F4 from equation (4).
It is given by (+4). Here, one method for changing the calorific value qk of the mold heating heating element so that the initial solidification surface formation position P of the ingot becomes a predetermined standard value PO will be described.

今)初期凝固面形成位置Pが精度よく標準値POとなる
様に鋳型加熱用ヒーターの発熱量qt制御しつつ連続鋳
造が行なわれていれば、鋳塊凝固速度vit鋳塊引出速
度τに等しい。ここで比例定数C(0<c)金剛いて6
1時間内に初期凝固面形取位[G、 P Th標準値P
Oに△P=c(PG−P)だけ近付けるためには鋳塊凝
固速度vt−V=v−c(POP)/△T 69 とす扛ばよい。このa[有]式は(9)式を用いてF9
(q)=t’−c(PG−P)/△T Hと表わされる
から、これを鋳型加熱用ヒーターの発熱量qについて示
すと q=F9Cυ−c (PO−P)/6 T ) LJn
を得る。ここで溶湯温度t7及び鋳塊冷却能力c8の影
471Ik考慮すれば、+7及び78を各々成る時間T
におけるT1時間内の溶湯温度t7及び鋳塊冷却能力C
&の平均値としてαり式の代りにV−’1l−e(PG
 P)/6T−F(F7(+7)−F’7(T7))+
(F’8(e8)−F8(c8)) (+8となるよう
VC鋳型加熱用ヒーターqをq=F9 (y−c(PO
−P)AT−1−(F7(+7)−F?(T7))+(
F8(c8)−F8(’;’8))) α■とすnばよ
い0 第7の方法は、m型内溶湯温度を検知して鋳塊の初期凝
固面形成位置を検出し、鋳型加熱用ヒーターの発熱量を
変化させることにより、この初期凝固面形成位置を制御
する方法で、鋳塊引出速度は一定となる様に独立してコ
ントロールする0鋳塊の初期凝固面形成位置は(3)式
にて与えられるから、第6の方法と同様に071式又は
1式を用いて鋳型加熱用ヒーターの発熱量が与えら牡る
Now) If continuous casting is performed while controlling the calorific value qt of the mold heater so that the initial solidification surface formation position P becomes accurately the standard value PO, the ingot solidification rate vit is equal to the ingot withdrawal rate τ. . Here, the proportionality constant C (0<c) Kongo is 6
Initial solidification surface shape alignment [G, P Th standard value P
In order to approach O by ΔP=c(PG-P), the ingot solidification rate should be set to vt-V=v-c(POP)/ΔT 69 . This a [exist] formula is F9 using formula (9).
Since it is expressed as (q)=t'-c(PG-P)/△TH, this can be expressed in terms of the calorific value q of the heater for heating the mold: q=F9Cυ-c (PO-P)/6T) LJn
get. Here, if we consider the shadow 471Ik of the molten metal temperature t7 and the ingot cooling capacity c8, the time T
Molten metal temperature t7 and ingot cooling capacity C within T1 time in
As the average value of &, V-'1l-e(PG
P)/6T-F(F7(+7)-F'7(T7))+
(F'8(e8)-F8(c8))
-P) AT-1-(F7(+7)-F?(T7))+(
F8(c8)-F8(';'8))) α■ and n 0 The seventh method is to detect the initial solidification surface formation position of the ingot by detecting the temperature of the molten metal in mold m, and This method controls the initial solidification surface formation position by changing the calorific value of the heating heater, and the initial solidification surface formation position of the zero ingot is controlled independently so that the ingot withdrawal speed is constant. Since it is given by equation 3), the calorific value of the mold heating heater can be given using equation 071 or equation 1, as in the sixth method.

第8の方法は、鋳型固定機構にかかる応力を検知して、
鋳塊と鋳型との摩擦力を算出し、鋳塊の初期凝固面形成
位置を検出して鋳型加熱用ヒーターの発熱量を変化させ
ることにより、この初期凝固面形成位置を制御する方法
で、鋳塊引出速度は一定となる様に独立してコントロー
ルする0鋳塊の初期凝固面形成位置は、(5)式で与え
らnるから第6の方法と同様にan式又は(19式を用
いて鋳型加熱用ヒーターの発熱量が与えられる。
The eighth method is to detect the stress applied to the mold fixing mechanism,
This method controls the initial solidification surface formation position by calculating the frictional force between the ingot and the mold, detecting the initial solidification surface formation position of the ingot, and changing the amount of heat generated by the mold heater. Since the initial solidification surface formation position of the ingot, which is independently controlled so that the ingot drawing speed is constant, is given by equation (5), the an equation or (19 equation) is used as in the sixth method. The calorific value of the heater for heating the mold is given by

第9の方法は、前述第6〜8の方法において、鋳塊の初
期凝固面形成位置を標準値とするために必要な鋳型加熱
用ヒーターの発熱量が、予め鋳型構造によって定められ
た上限値と下限値との範囲内に入らない場合には、鋳塊
引出速[を変化させて、発熱量がこの範囲内となる様に
する方法である。
The ninth method is that in the above-mentioned methods 6 to 8, the calorific value of the heater for heating the mold necessary for setting the initial solidification surface formation position of the ingot to a standard value is set to an upper limit predetermined by the mold structure. If it does not fall within the range between and the lower limit, the method is to change the ingot withdrawal speed so that the calorific value falls within this range.

即ち鋳塊の初期凝固面形成位置Pは(3)式又は(4)
式又は(5ン式によって与えら扛る0ここで鋳塊の凝固
速度Vが定常状態である場合、即ち凝固速度Vが溶湯温
度L7、鉄塊冷却能力C8及び鋳型出口端に力・かる溶
湯圧等の変動のみによって変化している場合には、鋳型
加熱用ヒーターの発熱量を予め定められた上限値q1と
下限値q2との中間値qgとしり際の成る時間T1にお
けるT1時間内のfA’5塊の凝固速度■は鋳塊引出速
度τ及び(9)式を用いて ■−fT−1□fτ+(F9(q)−F9(qO)))
dT/TI O■と表わさjLる。ここに1塊引出速度
τ及び鋳型加熱用ヒーターの発熱景qVi時間TKよっ
て変化した値を取っている0更に、溶湯温度t7及び鋳
塊冷却能力C8の変化を考慮に入れるならば、T7及び
百8を各々T1時間内における溶湯n12リニL7及び
鋳塊冷却能力c8の平均値として鋳塊の凝固速度Vは V=/T、□[V+(F9(q)−F9(QO)))d
T/TI+(F7(t7)−F7(t7))+(FB(
c8)FB(c8)) (21)と表わざ扛る。211
式においてt7及びc8は時間Tにおける瞬間値である
In other words, the initial solidification surface formation position P of the ingot is determined by equation (3) or (4).
Here, when the solidification rate V of the ingot is in a steady state, that is, the solidification rate V is given by the molten metal temperature L7, the iron ingot cooling capacity C8, and the force applied to the mold outlet end. If the change is due only to fluctuations in pressure, etc., the calorific value of the heater for heating the mold is set to the intermediate value qg between the predetermined upper limit value q1 and lower limit value q2, and the time T1 within T1 time when the limit is reached. The solidification rate ■ of fA'5 ingot is calculated using the ingot withdrawal speed τ and equation (9): ■ - fT - 1 □ fτ + (F9 (q) - F9 (qO)))
It is expressed as dT/TI O■. Here, the value changes depending on the one lump withdrawal speed τ and the heat generation profile qVi of the mold heating heater time TK. Furthermore, if changes in the molten metal temperature t7 and the ingot cooling capacity C8 are taken into account, T7 and 100 8 as the average value of the molten metal n12liniL7 and the ingot cooling capacity c8 within T1 time, the solidification rate V of the ingot is V=/T, □[V+(F9(q)-F9(QO)))d
T/TI+(F7(t7)-F7(t7))+(FB(
c8) FB (c8)) (21). 211
In the formula, t7 and c8 are instantaneous values at time T.

ここで比例定数c (0<c )t−用いて時定数61
時間内に鋳塊の初期凝固面形成位置Pを標準値POに△
p=c(po−p)だけ近付けるためには鋳型加熱用ヒ
ーターの発PIVEc qを 1 q=Fq 〔V−C(PQ−P)/ΔT)匈す扛ば良い
0ここでVは00式でめた鋳塊の幌固速11Eである。
Here, using the proportionality constant c (0<c)t-, the time constant 61
Set the initial solidification surface formation position P of the ingot to the standard value PO within the time△
In order to bring p=c (po-p) closer, the heater for heating the mold should be set to 1 q=Fq [V-C(PQ-P)/ΔT]. Here, V is the formula 00. The solidification speed of the ingot was 11E.

@式V(てめられた鋳型加熱用ヒーターの発熱fkqが
予め定められた上限値q□と下限値q2との間におる場
合にはrυ塊引出速肛υは変化させずにqのみを変化さ
せる。これに対してq>Q□又はq<Q 2の場合にけ
鋳塊引出速度でを △υ−F9 (、q )−F9 (q O) (ハ)だ
け変化させ、鋳型加熱用ヒーターの発熱量qはq = 
q 6 C!4 とすればよい〇 次に、鋳塊の凝固速度Vが非定常状態となっている場合
、即ち鋳造開始直後の状態では、■の変化を検出する必
要がある0これには09式を用いて得た時間Tにおける
凝固速度v1と、時定数T2を用いて時間T−72にお
ける凝固速度V2i用いて V = V 1 + [(Vl−V2)/(T−T2)
 )(Tl/2) @にて時間Tにおける凝固速度V’
i求めれば良い。
@Formula V (If the heat generation fkq of the heater for heating the mold is between the predetermined upper limit q□ and lower limit q2, then only q is changed without changing the rυ lump withdrawal speed υ. On the other hand, when q>Q□ or q<Q2, the ingot withdrawal speed is changed by △υ−F9 (,q)−F9 (qO) (c), and the mold heating The amount of heat generated by the heater q is q =
q 6 C! 4 〇Next, when the solidification rate V of the ingot is in an unsteady state, that is, immediately after the start of casting, it is necessary to detect the change in ■.0For this, use formula 09. Using the solidification rate v1 at time T obtained from , and the solidification rate V2i at time T-72 using the time constant T2, V = V 1 + [(Vl-V2)/(T-T2)
)(Tl/2) @ Solidification rate V' at time T
All you have to do is find i.

この理由は09式を用いてめられた時間Tにおける凝固
速度v1は時定数T五時間内の平均値であるので、(ハ
)式を用いて■の一次微係数全補正する必要があるため
である。続いて@式?用いて鋳型加熱用ヒーターの発熱
量qを算出し、定常状態の場合と同様にq又は鋳塊引出
速度v=2変化させて鋳塊初期凝固面形成位置Pが標準
値POとなる様に制御することができる。
The reason for this is that the solidification rate v1 at time T determined using formula 09 is the average value within five hours of time constant T, so it is necessary to fully correct the first-order differential coefficient of ■ using formula (c). It is. Next is the @ style? Calculate the calorific value q of the heater for heating the mold using can do.

以上の例は基本的には比例動作であるが、この他に比例
、積分、微分(PID)動作をさせることにより制御の
精度を高めることが可能で、その結果、鋳塊の初期凝固
面形成位置Pの変化幅を狭くすることができるため、鋳
塊の表面状態をより安定的に平滑美麗に保つことが可能
である◇なお、鋳塊の初期凝固面形成位置Pが予め経験
的に定められた上限値P1又は下限値P2を越えた場合
には竹報によシ作秦者に知らせると同時にコントロール
を手動に切替える回路を設は扛ばよい。
The above example is basically a proportional operation, but it is also possible to increase the accuracy of control by performing a proportional, integral, and differential (PID) operation, and as a result, the initial solidification surface of the ingot is formed. Since the range of change in the position P can be narrowed, it is possible to keep the surface condition of the ingot more stable and smooth.◇The initial solidification surface formation position P of the ingot is determined empirically in advance. If the upper limit value P1 or lower limit value P2 is exceeded, a circuit may be installed to notify the farmer through a bamboo report and at the same time switch the control to manual mode.

次に、本発明の内容を更に明らかにする目的で図面に基
く説明を加える。
Next, a description based on the drawings will be added for the purpose of further clarifying the content of the present invention.

第13図は本発明加熱鋳型式連続鋳造法における鋳塊表
面形状の安定法の第1の実施例、特に垂直上引き方式に
て鋳型内壁近傍温度全検知して鋳塊引出速度を制御する
構成図である。図中、1は金属溶湯で保持炉2内に溶湯
流人口3から流入し溢流口4から流出さnる。このため
湯面レベル蝶はぼ一定となり鋳型出口焔にかかる溶湯圧
もはl’!一定に保たれる。5は鋳型で、ヒーター6を
内蔵し、固定機構7に接続されている。8は湯面よりの
輻射熱を遮蔽するボードで、9は鋳型内壁近傍温度測温
用の熱電対である。10は溶扮温度測温用の熱電対で、
溶湯温度調節器20によって保持炉加熱用ヒーター11
をコントロールすることにより溶湯温度を制御している
012は金属鋳塊である013は鋳塊冷却装置で冷却水
は調節パルプ14にて流量調整され、流入口15よジ冷
却水用水溜めに流入し、溢流口16より排出さnる01
7は冷却装置面足機構、18はピンチローラ−119は
ピンチローラ−駆動用モーターでちる0ここで鋳型加熱
用ヒーター6は出力調節器21によって出力が一定とな
る様にコントロールさnている。
FIG. 13 shows a first embodiment of the method for stabilizing the surface shape of an ingot in the heated mold continuous casting method of the present invention, in particular, a configuration in which the entire temperature near the inner wall of the mold is detected in the vertical upward drawing method to control the ingot withdrawal speed. It is a diagram. In the figure, molten metal 1 flows into the holding furnace 2 from a molten metal flow port 3 and flows out from an overflow port 4. As a result, the molten metal level remains almost constant, and the molten metal pressure applied to the mold outlet flame also decreases to l'! remains constant. 5 is a mold, which has a built-in heater 6 and is connected to a fixing mechanism 7. 8 is a board that shields radiant heat from the hot water surface, and 9 is a thermocouple for measuring the temperature near the inner wall of the mold. 10 is a thermocouple for measuring the melt temperature,
The heater 11 for heating the holding furnace is controlled by the molten metal temperature regulator 20.
The temperature of the molten metal is controlled by controlling the molten metal temperature. 012 is a metal ingot. 013 is an ingot cooling device. The flow rate of cooling water is adjusted by a regulating pulp 14, and flows into a cooling water reservoir through an inlet 15. , n01 discharged from the overflow port 16
Reference numeral 7 denotes a cooling device face leg mechanism, 18 a pinch roller, and 119 a pinch roller driving motor.The mold heating heater 6 is controlled by an output regulator 21 so that its output is constant.

22はモーター回転速度調節器で鋳型内壁近傍温度測温
用熱電対9の熱起電力を検知して、こnを温度に変換し
、(1)式、(13式及び(Lの式の演算を行ないモー
ター19の回転数を制御する0 第14図は本発明方法の第2の実施例で、垂直上引き式
のもう1つの例を示す構成図で以下第13図と同一の機
能部品及び装置には同一の参照符号を付した。図中23
は鋳塊空冷装置で、冷却用空気は流入口24より入り、
スリット25よシ鋳塊12に沿って上方に吹き上けられ
るoR型加熱用ヒーター6は温度調節器26及び電力調
整ユニット27により鋳型内壁近傍温度測温用熱電対9
によって検知された温度が一定となる様に電圧コントロ
ールさnている。28は電力計で、モータ速度調節器2
2によジこの温度全一定とするに要した電力を検知し、
(2)式、a温式及び03式の演算を行ないモーター1
90回転数を制御する。
22 is a motor rotation speed regulator that detects the thermoelectromotive force of the thermocouple 9 for temperature measurement near the inner wall of the mold, converts this n into temperature, and calculates equations (1), (13) and (L). Figure 14 is a second embodiment of the method of the present invention, and is a block diagram showing another example of the vertical upward pull type. The devices are given the same reference numerals. 23 in the figure.
is an ingot air cooling device, in which cooling air enters from the inlet 24,
The oR type heating heater 6, which is blown upward along the slit 25 and the ingot 12, is connected to a thermocouple 9 for measuring the temperature near the inner wall of the mold by a temperature controller 26 and a power adjustment unit 27.
The voltage is controlled so that the temperature detected by the sensor remains constant. 28 is a wattmeter, motor speed regulator 2
2. Detect the power required to keep the temperature constant,
Calculate equation (2), a-temperature equation, and 03 equation, and motor 1
Controls the number of revolutions at 90.

第15図は同じく本発明方法の第3の実施例で水平横引
き式における構成図を示す。即ち非接触式温度計29に
より鋳塊表面温度を検知し、モータ速度調節器22にて
(4)式、09式及びa2式の演算を行ないモーター1
90回転数″!を制御する。なお30は冷却水遮蔽板を
示す。
FIG. 15 is a third embodiment of the method of the present invention, which is a block diagram of a horizontal horizontal drawing method. That is, the surface temperature of the ingot is detected by the non-contact thermometer 29, and the motor speed regulator 22 calculates equations (4), 09, and a2, and the motor 1
90 rotation speed''! is controlled. Note that 30 indicates a cooling water shielding plate.

第16図は同じく本発明方法の第4の実施例で垂直下引
き式における構成図を示す。図に示すように@型内溶湯
温度は熱電対31によって生じた熱起電力を変換器32
にて温度変換さ扛、モーター速度調節器22に温度デー
タとして送られる。
FIG. 16 is a fourth embodiment of the method of the present invention, which is a block diagram of the vertical subtraction type. As shown in the figure, the temperature of the molten metal in the mold is determined by converting the thermoelectromotive force generated by the thermocouple 31 into the converter 32.
The temperature is converted and sent to the motor speed regulator 22 as temperature data.

一方、溶湯温度は熱電対10によって生じた熱起電力を
温度調節器20にて保持炉ヒーター11をコントロール
して一定になる様に制御されると同時に、温度データを
速反調節器22に送る0速度調節器22では(3)式、
03式及び0′IJ式の演算を行ないモーター19の回
7転数を制御する0第17図は同じく本発明方法の第5
の実施例でサイフオン管を用いた垂直下引き式の構成図
を示す。図に示すように、鋳型同定機構7に取付けら扛
た歪ゲージ33から送られた起電力全アナログデジタル
変換器34で鋳型5と鋳塊12との摩擦力に変換し、モ
ータ速度調節器22にて(5)式、03式及び03式の
演算を行ないモーター19の回転数を制御する0なお、
35は給湯管、36はヒーター、37は熱電対、38は
温度調節器を示す0次に、本発明に基〈実施例を例示す
る0実施例−1 垂直上引き式連続鋳造装@を用いて99.9チ銅で厚さ
3団、幅20mの板を連続鋳造した0鋳型には黒鉛全使
用し、こf′Lを溶湯中に浸漬して、鋳型加熱用ヒータ
ーは使用しなかった。溶湯温度は白金−白金ロジウム熱
電対を保護管に入社て測温体とし、温度調節器にてPI
D動作させ、1,140℃±2℃に保った0@塊冷却装
置はシJ型上端より80闘離扛た位置に空冷装置を取伺
け、毎分150土5t の冷却用空気を使用した。鋳型
内壁近傍温度測定用の白金−白金ロジウム熱電対を鋳型
上端より3#I下で内壁より2+IIII+離れた位置
に設置して、この温度がID75℃となる様に鋳塊引出
し速度全コントロールすることにより、鋳塊の初期凝固
面形成位置の標準値を鋳呈上端!90.5ran低くし
た。この際(1)式は P Cm)’ = 0.25 t 、 (”L 2 (
39,25を用いた。又θ温式における鋳塊凝固速度V
2求めるための時定数Tlは60秒とした。更に、03
式にオイて鋳塊引出速度v2算出するための比例定数C
#′i0.4とじ時定数ΔTに30秒とした0この結果
、鋳塊引出速度υは毎分505±2Ω間に制御さ扛、得
ら牡た鋳塊の鋳肌は良好でちった0鋳肌観おlの結果、
鋳塊の初期凝固面形成位置H−標準イ1[1に対して±
0.5囚の範囲内となっていた。
On the other hand, the temperature of the molten metal is controlled to be constant by controlling the thermoelectromotive force generated by the thermocouple 10 with the temperature regulator 20 and the holding furnace heater 11. At the same time, temperature data is sent to the fast reaction regulator 22. In the 0 speed regulator 22, the formula (3) is
03 formula and 0'IJ formula are calculated to control the number of rotations of the motor 19.0 Figure 17 shows the fifth method of the present invention method as well.
A configuration diagram of a vertical downward pull type using a siphon tube is shown in the embodiment. As shown in the figure, the electromotive force sent from the strain gauge 33 attached to the mold identification mechanism 7 is converted into a frictional force between the mold 5 and the ingot 12 by the all-analog-to-digital converter 34, and the motor speed controller 22 0 to control the rotation speed of the motor 19 by calculating equations (5), 03, and 03.
35 is a hot water supply pipe, 36 is a heater, 37 is a thermocouple, and 38 is a temperature regulator.Next, based on the present invention (example 1 illustrating an example) using a vertical upward drawing type continuous casting equipment@ Three sheets of 99.9-inch copper and 20 m wide were continuously cast into the mold. All graphite was used in the mold, and the mold was immersed in the molten metal, and no heater was used to heat the mold. . The temperature of the molten metal is determined by using a platinum-platinum rhodium thermocouple in a protection tube as a temperature measuring element, and using a temperature controller as a PI.
The mass cooling system was operated in D and kept at 1,140℃±2℃, and the air cooling system was installed at a position 80cm away from the top of the J-type, using 150 tons of cooling air per minute. did. A platinum-platinum rhodium thermocouple for measuring the temperature near the inner wall of the mold is installed at a position 3 #I below the upper end of the mold and 2 + III + away from the inner wall, and the ingot withdrawal speed is fully controlled so that this temperature is ID 75 ° C. The standard value for the initial solidification surface formation position of the ingot is the upper end of casting! It was lowered by 90.5ran. In this case, equation (1) is P Cm)' = 0.25 t, ("L 2 (
39,25 were used. In addition, the ingot solidification rate V in the θ temperature type
The time constant Tl for calculating 2 was set to 60 seconds. Furthermore, 03
Proportionality constant C for calculating the ingot withdrawal speed v2 according to the formula
#'i0.4 The stapling time constant ΔT was set to 30 seconds. As a result, the ingot withdrawal speed υ was controlled within 505 ± 2 Ω per minute, and the resulting ingot had a good and fine casting surface. As a result of looking at cast skin,
Initial solidification surface formation position of ingot H - Standard A1 [± for 1
It was within the range of 0.5 prisoners.

実施例−2 垂直上引き式連続鋳造装置を用いて3.5%炭素及び2
.1チ珪素を含む鋳鉄で直径12間の丸棒を鋳造した。
Example-2 3.5% carbon and 2
.. A round bar with a diameter of 12 mm was cast from cast iron containing 1 h of silicon.

鋳型にはジルコニアを用い、ヒーターにモリブデンを使
用して、その出力’i 250Wに保った0なお、溶湯
温度に測定せず、保持炉ヒーターの発熱量を一定とした
。冷却は空冷で毎分300土20t の風量全使用し、
鋳型上端より60mmの位置で冷却用空気が鋳塊に当た
り、鋳塊に沿って上方へ吹き上げる方式とした。そして
光高温計を用いて鋳型上端より20圏上方の鋳塊温度を
観察しつつ、この温度が780’C7)−ら785℃の
範囲内となる様に手動で鋳塊引出速度を操作した。この
結果、鋳塊引出速度は毎分22±1頭となり、得らルた
鋳塊の表面状態は一部に薄い段階状の波が見られたもの
の概ね良好となり、鋳塊の初期凝固面形成位置が鳩型上
端±1m+の範囲内であったことが分った。
Zirconia was used for the mold, molybdenum was used for the heater, and the output 'i was kept at 250 W. Note that the molten metal temperature was not measured, and the calorific value of the holding furnace heater was kept constant. Cooling is done by air cooling, using the full air volume of 300 tons per minute and 20 tons per minute.
Cooling air hit the ingot at a position 60 mm from the upper end of the mold and was blown upward along the ingot. Then, while observing the temperature of the ingot 20 degrees above the upper end of the mold using an optical pyrometer, the ingot withdrawal speed was manually controlled so that the temperature was within the range of 780'C7) to 785°C. As a result, the ingot drawing speed was 22 ± 1 head per minute, and the surface condition of the obtained ingot was generally good, although thin step-like waves were observed in some parts, and the initial solidification surface of the ingot was formed. It was found that the location was within ±1m+ of the top of the dove shape.

実施例−3 垂直下引き式連続鋳造装@金用いて、9999%;フル
ミニラムで直径20m1の丸棒全作製L7たOf:!5
型には炭化珪素を使用L−1t;5型加熱用ヒーターと
してニッケルクUム線を使用した。鋳塊冷却には毎分1
2J:0.5t の冷却水を用い、鋳型出口端より60
問下の鋳塊に冷却水が当たる様にした。fr5型下唱よ
シ10 mm上の鋳型内に鋳波内済湯濤匹測温体として
クロメルアルメル熱電対を保暎管に入れて設置した0又
溶沿温度はクロメルアルメル熱電対を使用して温度調節
器にて溶湯温度が720土3℃ となる様に保持炉ヒー
タ・−の発熱量をコントロールした。
Example-3 A round bar with a diameter of 20 m1 was manufactured using a vertical down-drawing continuous casting machine (9999%) using a full mini ram (L7). 5
Silicon carbide was used for the mold L-1t; Nickel comb wire was used as the type 5 heater. 1 per minute for ingot cooling
2J: Using 0.5t of cooling water, 60cm from the mold outlet end.
Cooling water was made to hit the ingot below. A chromel-alumel thermocouple was installed in a thermostatic tube as a thermometer in the mold 10 mm above the mold. The calorific value of the holding furnace heater was controlled using a temperature controller so that the molten metal temperature was 720°C and 3°C.

ここで、鋳塊引出し速匹は毎分48間Vt−保ち、Gi
型加熱用ヒーターの発熱量を変化させる方式とした。そ
して鋳塊初期n同面形成位置は鋳型自溶湯温度にて検出
した。この際(3)式は p”’==10(t’ 3−2t3+660 )、/(
t’3−j3 )を用いた0又(9)式は v′R/分=−OJ)4qW+ 54 を用いた。又測成において比例定数Cは0.5とし、時
定数△Tは1分とし、た〇 この結果、鋳型加熱用ヒーターの出力は70V/から2
50Wの間でコントロールさまた0又得られた鋳塊の表
面状態Fi薄い引き吊り傷が見られたものの概ね良好で
あった0鋳塊の鋳肌観察の結果、銃塊初期絣固面形取位
Pに標準値2.0前鋳型内に入った位げに対して1.5
膿から2.5 m @型内に入った位置に制御さjてい
たことが分った0笑施例−4 水平横引き式連続鋳造装置を用いて99B’l;フルミ
ニラムで厚さ5a+i、幅100N の板を連続鋳造し
た0この際ETJKはボロンナイトライドを使用し1鋳
型加熱用ヒークーとしてニッケルクロム紳ヲ用いた0溶
湯温Uは710土3℃に保ち、鋳塊冷却水を鋳型出ロ端
Jシ4〇−離れた位置で毎分12±1を使用し、た0又
r1型内位近0浪度Ij:鋳型出ロ端より5闘、内壁よ
り3悶の位置にクロメルアルメル熱電対を設置した。更
に鋳型固定機構に歪ゲージを取付は鋳塊と鋳型との摩擦
力を検知した。この際、(5)式%式% を用いた0(9)式には v tm /分= 0.03qw+106金用いた0又
鋳型加熱用ヒーターの出力の上限値q1は300VJ、
下限値q2は100W中間値q。は、200Wとした0
更に(ト)式において鋳塊凝固速度Vをめるための時定
数T1は60秒とした。又(イ)式において鋳型加熱用
ヒーターの出力qをめるための比例定数Cは0.3、時
定数ΔTは30秒とし、鋳塊初期凝固面形成位置Pの標
準値は一2D mとしたリモして鋳型内壁近傍温度ヲ7
00±1℃に保ちつつ最初は手動で鋳塊引出速度をコン
トロールし、速度が毎分90mに達したところで、@塊
引出速度を鋳型加熱用ヒーターの出力qが上限値又は下
限値を越えた際に(ハ)式を用いて自動調整したOこの
結果鋳塊引出速疲社毎分90問から110−の間でコン
トロールさ牡、得られた@塊の鋳肌は非常に平滑美麗で
あった0鋳肌観察により鋳塊の初期凝固面形成位置は標
準値POにはt了等しい値となったことが分った0
Here, the ingot drawing speed is maintained at Vt- for 48 minutes per minute, and Gi
The system uses a method that changes the amount of heat generated by the heater for heating the mold. The initial n-coplanar formation position of the ingot was detected based on the mold self-molten metal temperature. In this case, equation (3) is p”'==10(t' 3-2t3+660), /(
t'3-j3) or equation (9) used v'R/min=-OJ)4qW+54. In addition, in the measurement, the proportional constant C was set to 0.5, the time constant △T was set to 1 minute, and as a result, the output of the mold heating heater was changed from 70 V/ to 2
The surface condition of the ingot that was controlled between 50W and 0 was generally good although some thin hanging scratches were observed.As a result of the observation of the casting surface of the ingot, it was found that the initial katted solid surface shape of the gun ingot was The standard value for position P is 2.0, and it is 1.5 for the position P that entered the mold before.
It was found that the mold was controlled at a position 2.5 m from the pus into the mold.0 LOL Example-4 Using a horizontal horizontal drawing type continuous casting machine, 99B'l; full mini ram with a thickness of 5a + i, A plate with a width of 100N was continuously cast.At this time, ETJK used boron nitride and nickel chrome metal as a heater for heating the mold.The molten metal temperature U was kept at 710℃ and 3℃, and the ingot cooling water was poured into the mold. Use 12±1 per minute at a position 40-away from the bottom end, and place chromel alumel at a position 5 degrees from the bottom end of the mold and 3 degrees from the inner wall. A thermocouple was installed. Furthermore, a strain gauge was attached to the mold fixing mechanism to detect the frictional force between the ingot and the mold. At this time, the equation (9) using the formula (5) is as follows: v tm /min = 0.03qw + 106 The upper limit q1 of the output of the heater for heating the mold using gold is 300VJ,
The lower limit value q2 is the 100W intermediate value q. is 0 with 200W
Furthermore, in equation (g), the time constant T1 for increasing the ingot solidification rate V was set to 60 seconds. In addition, in equation (a), the proportionality constant C for calculating the output q of the heater for heating the mold is 0.3, the time constant ΔT is 30 seconds, and the standard value of the initial solidification surface formation position P of the ingot is -2D m. The temperature near the inner wall of the mold was 7.
Initially, the ingot drawing speed was controlled manually while maintaining the temperature at 00±1°C, and when the speed reached 90 m/min, the output q of the mold heating heater exceeded the upper or lower limit. As a result, the ingot drawing speed was automatically adjusted using formula (c) and was controlled between 90 and 110 points per minute.The cast surface of the obtained ingot was very smooth and beautiful. By observing the casting surface, it was found that the initial solidification surface formation position of the ingot was equal to the standard value PO.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は99991%9991%アルミニウム+w+の
丸棒を鋳造した際の鋳塊凝固速度と溶湯温度との特性曲
線、第2図は同じく鋳型加熱用ヒーター出力と鋳塊凝固
速度との特性曲線、第3図は同じく鋳塊冷却用冷却水の
水量と鋳塊凝固速度との特性曲線、第4図は999%鋼
で厚さaws幅20園の板を鋳造した際の鋳塊凝固速度
と溶湯温度との特性曲線、第5図は同じく鋳塊凝固速度
と鋳型加熱用ヒーター出力との特性曲線、第6図は同じ
く凝固速度と冷却用空気It量との特性曲線、第7滴量
は9999%アルミニウムで直径20I+II+の丸棒
全連続鋳造した際の鋳型内壁近傍温度と釧塊初期gH面
形成位置との関係曲線、第7図色)は第7図に)におけ
る携型内壁近傍温度点の説明図、@8図は同じく鋳型内
蔵ヒーターの発熱量と鋳塊初期凝固面形成位置との関係
曲線、fs9図は999ヴ銅で厚さ3■、1ダ20日の
板を鋳造した際の鋳型自溶湯温度と鋳塊凝固面形成位置
との関係曲線、第10図は99.99チアルξニウムで
直径30關の丸棒を鋳造した際の鋳型自溶湯温度と鋳塊
初期凝固面形成位置との関係曲線、第11図は3.5%
炭素及び2.1%珪素を含む鋳鉄で直径12鴫の丸棒を
@造した際の鋳塊表面温度と鋳塊初期凝固面形成位置と
の関係曲線、第12図は9999チアルミニウムで直径
20m+の丸棒を連続鋳造した際の鋳型と鋳塊とのP擦
カと鋳塊初期凝固面形成位置との関係曲線、第13図、
第14図、第15図、第16図及び第37図は夫々本発
明加熱鋳型式連続鋳造法における鋳塊表面形状の安定法
の実施例を示す構5V、図である。 1・・・溶% 2・・・保持炉 3・・・溶湯流人口4
・・・溶湯溢流口 5・・・鋳型 6・・鋳型加熱用ヒ
ーター 7・・・fl、i型固定機構 8・・湯面遮蔽
ボード 9・・・鋳型内壁近傍温度測定用熱電対 1o
・・・溶湯温度測定用熱電対 11・・・保持炉加熱用
ヒーター J2・・・鋳塊J3・鋳塊冷却装置 14・
・冷却水調節バルブ 15・・・冷却水流入口 16・
・冷却水溢流口 17・・・冷却装置用足機構 18・
−・ピンチローラ−19・・・モーター 2o・・・溶
湯温度調節器 21・・・鋳型加熱用ヒーター出力調節
器 −22・・・モータ回転速度調節器23・・・鋳塊
空冷装置 24・・・冷却用空気の流入口 25・・・
ヌリット 26・・・温度調節器27・・電力調整ユニ
ット 28・・・電力計29・・・非接触式温度計 3
0・・・冷却水遮蔽板31・・熱電対 32・・変換器
 33・・・負荷検出端 34・・・アナログデジタル
変換器35・・・給湯管 36・・・ヒーター 37・
・・熱電対 38・・・温度調節器 特許出願人 株式会社 オー、シー、シー同 日本軽金
属株式会社 糖 4 図 第5 図 第6 図
Figure 1 shows the characteristic curve of ingot solidification rate and molten metal temperature when casting a 99991% 9991% aluminum + w + round bar, and Figure 2 shows the characteristic curve of mold heating heater output and ingot solidification rate. Figure 3 shows the characteristic curve of the amount of cooling water for cooling the ingot and the solidification rate of the ingot, and Figure 4 shows the solidification rate of the ingot and the molten metal when casting a plate of 999% steel with a thickness of AW and a width of 20mm. Figure 5 shows the characteristic curve of the solidification rate of the ingot and the output of the heater for heating the mold. Figure 6 shows the characteristic curve of the solidification rate and the amount of cooling air It. The seventh droplet amount is 9999. The relationship curve between the temperature near the mold inner wall and the initial gH surface formation position of the g The explanatory diagram, Figure @8, is the relationship curve between the calorific value of the heater built into the mold and the initial solidification surface formation position of the ingot, and the fs9 diagram shows the relationship curve when a plate of 999V copper with a thickness of 3cm and 1 da 20 days is cast. Relationship curve between mold self-molten metal temperature and ingot solidification surface formation position, Figure 10 shows the mold self-molten metal temperature and ingot initial solidification surface formation position when a round bar with a diameter of 30 mm was cast with 99.99 thialium. The relationship curve in Figure 11 is 3.5%.
The relationship curve between the surface temperature of the ingot and the initial solidification surface formation position of the ingot when a round bar with a diameter of 12 mm is made from cast iron containing carbon and 2.1% silicon. Figure 13 shows the relationship curve between the P friction between the mold and the ingot and the initial solidification surface formation position of the ingot when continuously casting a round bar.
FIGS. 14, 15, 16, and 37 are diagrams showing a structure 5V, respectively, of an embodiment of the method for stabilizing the surface shape of an ingot in the heated mold continuous casting method of the present invention. 1... Molten % 2... Holding furnace 3... Molten metal flow population 4
... Molten metal overflow port 5 ... Mold 6 ... Heater for heating the mold 7 ... fl, I-type fixing mechanism 8 ... Molten metal surface shielding board 9 ... Thermocouple for measuring temperature near the inner wall of the mold 1o
... Thermocouple for measuring molten metal temperature 11 ... Heater for heating the holding furnace J2 ... Ingot J3, ingot cooling device 14.
・Cooling water adjustment valve 15...Cooling water inlet 16・
・Cooling water overflow port 17... Leg mechanism for cooling device 18・
- Pinch roller - 19... Motor 2o... Molten metal temperature regulator 21... Mold heating heater output regulator - 22... Motor rotational speed regulator 23... Ingot air cooling device 24...・Cooling air inlet 25...
Nurit 26... Temperature controller 27... Power adjustment unit 28... Power meter 29... Non-contact thermometer 3
0... Cooling water shielding plate 31... Thermocouple 32... Converter 33... Load detection end 34... Analog-digital converter 35... Hot water pipe 36... Heater 37...
...Thermocouple 38...Temperature controller Patent applicant O.C.C. Co., Ltd. Nippon Light Metal Co., Ltd. Sugar 4 Figure 5 Figure 6

Claims (1)

【特許請求の範囲】 1、鋳塊引出用の出口開口と溶湯供給のための入口開口
とを有し、内壁温度を鋳造しようとする金属の凝固温度
以上に保持した鋳型内に金属溶湯を供給し、この溶湯面
に溶湯の凝固温度以下に保持されたダミー鋳塊を接触さ
せた後、このダミー鋳塊を鋳型出口、Cり引出すことに
よってダミー鋳塊の先端に連続的に金属凝固体を形成さ
せる金属の連続鋳造において、W、1型加熱用発熱体の
発熱量を一定としつつ鋳型出口端内壁近傍温度を検知す
ることにより、この金属凝固体の初期凝固面形成位置を
検出し、この初期凝固面形成位置が予め鋳込むべき金属
の種類及び鋳型の材質によって定めら牡た標準値となる
ように鋳塊引出速度全制御することを特徴とする加熱鋳
型式連続鋳造法における鋳塊表面形状の安定法。 2、鋳型出口端内壁近傍温度が予め鋳込むべき金属の種
類及び鋳型の材質によって定められた標準値となる様に
鋳型加熱用発熱体の発熱量を制御しつつ、それに要する
この発熱量を検知することにより金属凝固体の初期凝固
面形成位置を検出する特許請求の範囲第1項記載の鋳塊
表面形状の安定法0 3、@型出口端直外における金属凝固体の表面温度を検
知することにより、この金属凝固体の初期凝固面形成位
置を検出する特許請求の範囲第1項記載の鋳塊表面形状
の安定法o = 4、鋳型自溶湯温度を検知することにより金属凝固体の
初期凝固面形成位置を検出する特許請求の範囲第1項記
載の鋳塊表面形状の安定法05、鋳型固定機構にかかる
応力を検知することにより金属凝固体の初期凝固面形成
位置を検出する特許請求の範囲第1項記載の鋳塊表面形
状の安定法。 6、検出さnた初期凝固面形成位置が、予め鋳込むべき
金属の種類及び鋳型の材質によって定められた標準値と
なるように鋳型加熱用発熱体の発熱量を制御する特許請
求の範囲第3〜5項記載の鋳塊表面形状の安定法。 7、検出された初期凝固面形成位置が1予め鋳込むべき
金属の種類及び鋳型の材質によって定められた標準値と
なる様に鋳型加熱用発熱体の発熱量を制御し、この発熱
量が予め鋳型加熱用発熱体の構造によって定められた上
限値と下限値との範囲内になる様に鋳塊引出速度を制御
する特許請求の範囲第3〜5項記載の鋳塊表面形状の安
定法。
[Scope of Claims] 1. Molten metal is supplied into a mold having an outlet opening for drawing out an ingot and an inlet opening for supplying molten metal, and whose inner wall temperature is maintained at a temperature higher than the solidification temperature of the metal to be cast. Then, a dummy ingot kept at a temperature below the solidification temperature of the molten metal is brought into contact with the surface of the molten metal, and then the dummy ingot is pulled out from the mold outlet, thereby continuously depositing a solidified metal at the tip of the dummy ingot. In continuous casting of the metal to be formed, the initial solidification surface formation position of the metal solidified body is detected by detecting the temperature near the inner wall of the mold outlet end while keeping the calorific value of the W, type 1 heating element constant. An ingot surface in a heated mold continuous casting method characterized by fully controlling the ingot withdrawal speed so that the initial solidification surface formation position is a standard value determined in advance according to the type of metal to be cast and the material of the mold. Shape stabilization method. 2. While controlling the amount of heat generated by the heating element for heating the mold so that the temperature near the inner wall at the end of the mold becomes a standard value determined in advance according to the type of metal to be cast and the material of the mold, the amount of heat required for this is detected. Method for stabilizing the surface shape of an ingot according to claim 1, which detects the initial solidification surface formation position of the solidified metal by detecting the surface temperature of the solidified metal just outside the outlet end of the mold. The method for stabilizing the surface shape of an ingot according to claim 1, which detects the initial solidified surface formation position of the solidified metal, o = 4, detects the initial solidified surface formation position of the solidified metal by detecting the temperature of the self-molten metal in the mold. A method for stabilizing the surface shape of an ingot according to claim 1 which detects the solidification surface formation position 05, a patent claim which detects the initial solidification surface formation position of the metal solidified body by detecting the stress applied to the mold fixing mechanism. A method for stabilizing the surface shape of an ingot according to item 1. 6. Controlling the amount of heat generated by the heating element for heating the mold so that the detected initial solidification surface formation position becomes a standard value determined in advance according to the type of metal to be cast and the material of the mold. The method for stabilizing the surface shape of an ingot according to items 3 to 5. 7. The amount of heat generated by the heating element for heating the mold is controlled so that the detected initial solidification surface formation position becomes a standard value predetermined according to the type of metal to be cast and the material of the mold. A method for stabilizing the surface shape of an ingot according to claims 3 to 5, wherein the ingot drawing speed is controlled to be within a range between an upper limit value and a lower limit value determined by the structure of the heating element for heating the mold.
JP13338683A 1983-07-21 1983-07-21 Method for stabilizing surface shape of ingot with heated casting mold type continuous casting method Pending JPS6030565A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13338683A JPS6030565A (en) 1983-07-21 1983-07-21 Method for stabilizing surface shape of ingot with heated casting mold type continuous casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13338683A JPS6030565A (en) 1983-07-21 1983-07-21 Method for stabilizing surface shape of ingot with heated casting mold type continuous casting method

Publications (1)

Publication Number Publication Date
JPS6030565A true JPS6030565A (en) 1985-02-16

Family

ID=15103521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13338683A Pending JPS6030565A (en) 1983-07-21 1983-07-21 Method for stabilizing surface shape of ingot with heated casting mold type continuous casting method

Country Status (1)

Country Link
JP (1) JPS6030565A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6333164A (en) * 1986-07-29 1988-02-12 Furukawa Electric Co Ltd:The Continuous casting method using heating mold
JPS6475149A (en) * 1987-09-16 1989-03-20 Furukawa Electric Co Ltd Method for preventing oxidation of graphite mold for continuous casting
JPH02263548A (en) * 1989-04-05 1990-10-26 Furukawa Electric Co Ltd:The Method for continuously casting copper single crystal cast billet
EP0625388A1 (en) * 1993-05-17 1994-11-23 DANIELI &amp; C. OFFICINE MECCANICHE S.p.A. Method for the controlled pre-rolling of thin slabs leaving a continuous casting plant, and relative device
JP2015188911A (en) * 2014-03-28 2015-11-02 トヨタ自動車株式会社 Upward continuous casting method and upward continuous casting machine
JP2018075592A (en) * 2016-11-08 2018-05-17 トヨタ自動車株式会社 Molded body production method and molded body production device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4834027A (en) * 1971-09-03 1973-05-15
JPS50104131A (en) * 1974-01-25 1975-08-16
JPS5546265A (en) * 1978-09-28 1980-03-31 Furukawa Battery Co Ltd:The Manufacturing method of battery plate
JPS5797857A (en) * 1980-12-10 1982-06-17 Kobe Steel Ltd Method for controlling drawing speed of horizontal and continuous casting plant
JPS5897464A (en) * 1981-12-02 1983-06-09 Atsumi Ono Continuous casting method for eutectic composite material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4834027A (en) * 1971-09-03 1973-05-15
JPS50104131A (en) * 1974-01-25 1975-08-16
JPS5546265A (en) * 1978-09-28 1980-03-31 Furukawa Battery Co Ltd:The Manufacturing method of battery plate
JPS5797857A (en) * 1980-12-10 1982-06-17 Kobe Steel Ltd Method for controlling drawing speed of horizontal and continuous casting plant
JPS5897464A (en) * 1981-12-02 1983-06-09 Atsumi Ono Continuous casting method for eutectic composite material

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6333164A (en) * 1986-07-29 1988-02-12 Furukawa Electric Co Ltd:The Continuous casting method using heating mold
JPS6475149A (en) * 1987-09-16 1989-03-20 Furukawa Electric Co Ltd Method for preventing oxidation of graphite mold for continuous casting
JPH02263548A (en) * 1989-04-05 1990-10-26 Furukawa Electric Co Ltd:The Method for continuously casting copper single crystal cast billet
EP0625388A1 (en) * 1993-05-17 1994-11-23 DANIELI &amp; C. OFFICINE MECCANICHE S.p.A. Method for the controlled pre-rolling of thin slabs leaving a continuous casting plant, and relative device
JP2015188911A (en) * 2014-03-28 2015-11-02 トヨタ自動車株式会社 Upward continuous casting method and upward continuous casting machine
JP2018075592A (en) * 2016-11-08 2018-05-17 トヨタ自動車株式会社 Molded body production method and molded body production device

Similar Documents

Publication Publication Date Title
US7549797B2 (en) Temperature measurement system
WO2006130941A1 (en) Device for continuous temperature measurement of molten steel in the undish using optical fiber and infra-red pyrometer
JP3231601B2 (en) Electric furnace temperature control method and apparatus
JPS6030565A (en) Method for stabilizing surface shape of ingot with heated casting mold type continuous casting method
US3570713A (en) Pouring of melts
PL168911B1 (en) Method and device for regulating liquid material flow rate in a conduit
Miehe et al. Modelling of heat transfer and solidification processes in horizontal twin-roll casting of magnesium AZ31
JP2005509530A5 (en)
JPH01267426A (en) Method and apparatus for temperature measurement of molten metal
JP4501892B2 (en) Method and apparatus for estimating molten metal temperature in continuous casting mold
JP5707844B2 (en) Breakout detection method and apparatus in continuous casting
JPH0259629A (en) Continuous temperature measuring instrument for molten metal
JPH0238932A (en) Continuous temperature measuring method for molten metal
JPH04178525A (en) Velocity of flow measuring device for molten steel
KR920000415A (en) Production process of directional solidified casting
JPH0417944A (en) Production of semi-solidified metal
Weidinger et al. Measurement of the Heat Transfer in the Primary Cooling Area of a Laboratory Direct Chill Casting Plant for Alloy Design
Anisimov et al. Influence of mold flux on the thermal processes in the mold
RU2080208C1 (en) Method of continuous casting of blanks in mold with porous shaping member
JPH0819844A (en) Method for controlling casting in continuous casting machine
TWI364334B (en)
JPH0421713A (en) Method for correcting steel tapping temperature with reserving heat quantity in ladle
APS et al. Sensors, Sampling, and Simulation for Process Control A
JPH1190589A (en) Automatic starting method of continuous casting
JPS58119450A (en) Measuring method of surface temperature of ingot in continuous casting