JPH0421713A - Method for correcting steel tapping temperature with reserving heat quantity in ladle - Google Patents

Method for correcting steel tapping temperature with reserving heat quantity in ladle

Info

Publication number
JPH0421713A
JPH0421713A JP12567890A JP12567890A JPH0421713A JP H0421713 A JPH0421713 A JP H0421713A JP 12567890 A JP12567890 A JP 12567890A JP 12567890 A JP12567890 A JP 12567890A JP H0421713 A JPH0421713 A JP H0421713A
Authority
JP
Japan
Prior art keywords
ladle
temp
temperature
refractory
molten steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12567890A
Other languages
Japanese (ja)
Inventor
Shinichiro Tomino
伸一郎 冨野
Masato Mazawa
正人 真沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP12567890A priority Critical patent/JPH0421713A/en
Publication of JPH0421713A publication Critical patent/JPH0421713A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

PURPOSE:To execute correction of steel taping temp. with reserving heat quantity in a ladle and to suitably control the steel tapping temp. by applying the correction under consideration of lowering of the temp. with heat dissipation of ladle refractory, based on inner temp. of the ladle refractory and distance from the inner wall of ladle to temp. measuring point. CONSTITUTION:With a temp. sensor 2 embedded into the ladle refractory 1, the temp. in the ladle refractory 1 is measured. Further, by using a thickness meter 3, the distance L from inner wall 1A of the ladle to the temp. measuring point 2A of a temp. sensor 2 is measured or estimated. Based on this measured result, the reserving heat quantity in the ladle refractory 1 is estimated. The steel tapping temp. is corrected under consideration of the lowering of temp. with the heat dissipation of the ladle refractory 1 from this reserving heat quantity. By this method, the steel tapping temp. is controlled to the desired temp. range, and unevenness of the molten steel temp. at the time of arriving to continuous casting process is reduced.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は取鍋蓄熱量による出鋼温度補正方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for correcting tapping temperature based on the amount of heat stored in a ladle.

(従来の技術) 一般に、製鋼プロセスにおいては、転炉または電気炉で
生産された溶鋼は、−旦取鍋に移され、二次精錬処理や
バブリング等の処理後、タンデインシュー鋳型を経由し
、連続鋳造により鋳片を製造するが、連続鋳造する際に
は、NtiA温度を所定の温度に管理することが重要で
ある。連続鋳造の鋳込み中の取鍋溶鋼温度が高めに外れ
ると、鋳片の表面品質が悪くなること及び、ブレークア
ウトの危険性が増大すること、そして鋳片の内部欠陥で
ある中心偏析が悪化するため、鋳造速度を下げねばなら
ず、工程能力が低下する。一方、連続鋳造の鋳込み中の
取鍋溶鋼温度が低めに外れると、溶鋼中に存在するアル
ミナや凝固した地金が浸漬ノズルに付着し、浸漬ノズル
の湯道を閉塞させるトラブルの危険性が増大する。従っ
て、鋳込み中の取鍋溶鋼温度を適正な範囲内に制御する
必要があり、このため出鋼温度の管理が非常に重要であ
る。
(Prior art) Generally, in the steelmaking process, molten steel produced in a converter or electric furnace is transferred to a ladle, and after undergoing secondary refining, bubbling, etc., it is passed through a tandem shoe mold. , slabs are manufactured by continuous casting, and during continuous casting, it is important to control the NtiA temperature to a predetermined temperature. If the ladle molten steel temperature during continuous casting is too high, the surface quality of the slab will deteriorate, the risk of breakout will increase, and center segregation, which is an internal defect in the slab, will worsen. Therefore, the casting speed must be lowered, reducing process capacity. On the other hand, if the temperature of the molten steel in the ladle during continuous casting is too low, the alumina and solidified base metal present in the molten steel will adhere to the immersion nozzle, increasing the risk of clogging the runner of the immersion nozzle. do. Therefore, it is necessary to control the temperature of molten steel in the ladle during pouring within an appropriate range, and for this reason, control of the tapping temperature is very important.

そこで従来は、出mi度を補正する際、溶鋼中添加元素
の成分濃度により決定される液相線温度、取鍋〜タンデ
イ221間の自然降温、バブリング時の降温、運搬時間
による降温、出鋼時や二次精錬処理時の添加合金による
降温、出鋼時の自然降温等を考慮する方法が採られてい
た。
Conventionally, when correcting the molten steel, the liquidus temperature determined by the concentration of added elements in molten steel, the natural temperature drop between the ladle and the tanday 221, the temperature drop during bubbling, the temperature drop due to transportation time, and the The method used was to take into consideration factors such as temperature drop due to steel alloy addition during secondary refining, natural temperature drop during tapping, etc.

しかしながらこの方法は、転炉出鋼〜連続鋳造間の溶鋼
温度のバラツキの原因が明らかでなく、推定精度が低か
ったため、二次精錬工程の昇熱処理やタンデイツシュに
おけるプラズマ加熱、誘導加熱そして、浸漬ノズルや上
ノズルの通電加熱等により冷えた溶鋼を加熱して操業ト
ラブルを回避する方法や、タンデイツシュでの塗材投入
法のように溶銅温度の高め外れを冷却することにより所
望の温度域に制御する方法が採られていた。
However, with this method, the cause of the variation in molten steel temperature between converter tapping and continuous casting was not clear, and the estimation accuracy was low. There are methods to avoid operational troubles by heating the cold molten steel by energizing the upper nozzle, etc., and controlling the temperature to the desired range by cooling the molten steel when it is too high, such as the method of adding coating material in a tundish. A method was adopted to do so.

(発明が解決しようとする課B) 溶鋼を加熱する方法は、設備化費用が大きいこと及び、
ランニングコスト(耐火物・電力)が大きくなるという
問題点があった。
(Case B to be solved by the invention) The method of heating molten steel requires high equipment costs, and
There was a problem that running costs (refractories and electricity) increased.

また、溶鋼を冷却する方法は、転炉吹き止め温度が高い
ために耐火物・合金コストが上昇すること及び、温度制
御域に制約があること、即ち、温度が高(なると、多量
の塗材を投入する必要が生じるが、塗材は、ある一定量
以上溶かすことは困難なため温度制御域が限られるとい
う問題点があった。
In addition, the method of cooling molten steel is difficult because the converter blow-off temperature is high, which increases the cost of refractories and alloys, and there are restrictions on the temperature control range. However, since it is difficult to melt more than a certain amount of coating material, there is a problem that the temperature control range is limited.

更に、転炉から連続鋳造に至る間の溶鋼温度降下量を推
定し、転炉出鋼時の温度を補正する方法は、例えば特開
昭62−297411号公報や特開平1−246313
号公報に示されるように、取鍋耐火物の蓄熱量に注目し
、溶鋼温度降下量の推定精度を向上させる技術が提案さ
れている。これらの中でも述べられているように、転炉
出鋼〜連続鋳造間の溶鋼温度降下量を推定するためには
、取鍋耐火物の蓄熱量を正確に把握することが必要であ
る。本発明者らが行った調査でも、転炉出端〜連続鋳造
間の全溶鋼温度降下量のうち取鍋耐火物からの熱ロスの
割合は、取鍋耐火物の受綱時の蓄熱量や合金投入量、二
次精錬の有無等、鋼種や操業条件によりバラツキはある
が、20〜60%を占めることが明らかになった。
Furthermore, methods for estimating the temperature drop of molten steel from the converter to continuous casting and correcting the temperature at the time of tapping the converter are disclosed in, for example, JP-A-62-297411 and JP-A-1-246313.
As shown in the publication, a technique has been proposed that focuses on the amount of heat stored in the ladle refractory and improves the accuracy of estimating the amount of temperature drop in molten steel. As mentioned above, in order to estimate the amount of molten steel temperature drop between converter tapping and continuous casting, it is necessary to accurately grasp the amount of heat stored in the ladle refractory. In the investigation conducted by the present inventors, the proportion of heat loss from the ladle refractory out of the total temperature drop of molten steel from the tip of the converter to continuous casting is determined by the amount of heat stored in the ladle refractory at the time of receiving the wire Although there are variations depending on the type of steel and operating conditions, such as the amount of alloy input and the presence or absence of secondary refining, it has been revealed that it accounts for 20 to 60%.

しかしながら、特開昭62−297411号公報に示さ
れるように、転炉から出鋼するのに先立ち、取鍋の内壁
表面温度を測定する方法の場合、取鍋内壁表面温度は連
続鋳造の鋳込み終了後経過時間や、転炉出鋼前のバーナ
ー等による取鍋予熱条件、バーナー消火後の経過時間に
より、極端に変動するため、取鍋蓄熱量(転炉出鋼後、
連続鋳造までの溶鋼温度降下量)を定量的に評価するこ
とは難しく、本発明者らが、実機操業で調査した結果、
この方法で取鍋耐火物への抜熱による溶鋼温度降下量を
推定するためには、取鍋受鋼開始の2分以内での測定が
必要であり、転炉出鋼温度を補正することは時間的制約
上、困難であった。
However, as shown in JP-A No. 62-297411, in the case of a method of measuring the inner wall surface temperature of the ladle prior to tapping the steel from the converter, the inner wall surface temperature of the ladle is measured at the end of continuous casting. The amount of heat stored in the ladle (after tapping in the converter,
It is difficult to quantitatively evaluate the amount of temperature drop in molten steel up to continuous casting, and as a result of the inventors' investigation using actual machine operation,
In order to estimate the amount of molten steel temperature drop due to heat removal to the ladle refractories using this method, it is necessary to measure within 2 minutes of the start of ladle receiving, and it is not possible to correct the converter tapping temperature. This was difficult due to time constraints.

また、特開平1−246313号公報に示されるように
、取鍋耐火物の内部温度のみを測定する場合、通常操業
においては、約2〜4時間を周期として転炉出鋼〜連続
鋳造〜取鍋整備〜転炉出鋼を繰り返すが、この条件では
、取鍋耐火物は熱的に非定常な状態であり、この例で述
べている[平衡時の温度を用いた方法jと「経時変化を
用いた方法Jのいずれの場合も熱的に定常な状態である
ため、これらの方法で、実操業における取鍋耐火物の蓄
熱量を定量的に評価することは困難であるという問題が
あった。
In addition, as shown in JP-A-1-246313, when only the internal temperature of the ladle refractory is measured, the period from converter tapping to continuous casting to removal is approximately 2 to 4 hours during normal operation. Ladle maintenance and converter tapping are repeated, but under these conditions, the ladle refractories are in a thermally unsteady state. In all cases of method J using Ta.

本発明はこれら従来法の問題点を解決しうる取鍋耐火物
の蓄熱量による出鋼温度補正方法を提供することを目的
とする。
An object of the present invention is to provide a method for correcting tapping temperature based on the amount of heat stored in a ladle refractory, which can solve the problems of these conventional methods.

(課題を解決するための手段) 本発明の要旨とするところは、取鍋耐火物の内部温度及
び、測温点の取鍋内壁からの距離を測定または推定し、
その結果に基づいて取鍋耐火物の抜熱による降温を考慮
し補正を加えることを特徴とする取鍋蓄熱量による出鋼
温度補正方法にある。
(Means for Solving the Problems) The gist of the present invention is to measure or estimate the internal temperature of a ladle refractory and the distance of a temperature measurement point from the inner wall of the ladle;
The present invention provides a method for correcting the tapping temperature based on the amount of heat stored in the ladle, which is characterized in that based on the results, correction is made in consideration of the temperature drop due to heat extraction from the ladle refractory.

(作 用) 取鍋耐火物の蓄熱量を定量的に把握するために種々の検
討を行った結果、転炉吹き止めの直前で吹き止め温度の
制御が可能な時間に、取鍋耐火物の内部点、即ち内壁か
ら5〜80III11の範囲内で1点または複数点の温
度と、測温点の耐火物内壁からの距離を把握すれば良い
ことが判明した。
(Function) As a result of various studies to quantitatively understand the amount of heat storage in the ladle refractories, it was found that the temperature of the ladle refractories was It has been found that it is sufficient to know the temperature of one or more points within the range of 5 to 80III11 from the internal point, that is, the inner wall, and the distance of the temperature measurement point from the inner wall of the refractory.

ここで、測定点が内壁から5IllII未満だと、ノイ
ズが大きく定量的な情報が得られず、また、8゜I超だ
と、転炉〜造塊工程間の溶鋼温度降下に及ぼす影響が小
さいため、取鍋耐火物蓄熱量の定置的な必要情報が得ら
れない。
If the measurement point is less than 5IllII from the inner wall, there will be large noise and quantitative information cannot be obtained, and if it is more than 8゜I, the effect on the temperature drop of molten steel between the converter and the ingot making process will be small. Therefore, the necessary fixed information on the amount of heat storage in the ladle refractories cannot be obtained.

本発明に係る非定常熱伝導においては、取鍋耐火物の蓄
熱量を定量的に評価するためには、温度情報だけでなく
、測温点の取鍋内壁からの情報も必要であるということ
が、本発明者らが行った調査の結果明らかになった。
In the unsteady heat conduction according to the present invention, in order to quantitatively evaluate the amount of heat storage in the ladle refractory, not only temperature information but also information from the inner wall of the ladle at the temperature measurement point is required. This was revealed as a result of the research conducted by the present inventors.

耐火物厚み方向(−次元)で、エネルギー収支をとると
、 (1)  耐火物の熱物性値が、温度に無関係に一定値
と仮定できる場合 T:温度(K) t:時間(s) X:距離(m) C:比熱CJ/ (kg−K)) ρ:密度(kg/n?) λ:熱伝導率(W/ (m−K)) (2)耐火物の熱物性値の温度依存性を無視できない場
合 但し、λ=λ (T)、c=c  (T)、ρ=ρ (
T)となり、いずれの場合においても、取鍋蓄熱量は、
温度だけでなく内壁からの距離の項が必要となる。
Taking the energy balance in the thickness direction (-dimension) of the refractory, (1) When the thermophysical properties of the refractory can be assumed to be constant values regardless of temperature T: Temperature (K) t: Time (s) X : Distance (m) C: Specific heat CJ/ (kg-K)) ρ: Density (kg/n?) λ: Thermal conductivity (W/ (m-K)) (2) Temperature of thermophysical property values of refractory When dependence cannot be ignored, λ=λ (T), c=c (T), ρ=ρ (
T), and in either case, the amount of heat stored in the ladle is
In addition to temperature, a term for distance from the inner wall is required.

以上の結果、従来は定量的な把握が困難で、転炉出鋼〜
連続鋳造工程の溶鋼温度降下量のバラツキの主因となっ
ていた取鍋耐火物の蓄熱量の正確な把握ができ、この情
報と、転炉出鋼〜連続鋳造工程の溶鋼温度推移を推定す
る計算モデルにて、溶鋼温度降下量を推定し、適正な転
炉吹き止め温度を転炉吹錬中に提示することにより、出
鋼温度を所望の温度域に制御することが可能となった。
As a result of the above, it has been difficult to grasp quantitatively in the past, and
The amount of heat stored in the ladle refractories, which was the main cause of variation in the temperature drop of molten steel in the continuous casting process, can be accurately grasped, and this information can be used in calculations to estimate the transition of molten steel temperature from the converter tapping process to the continuous casting process. By estimating the amount of molten steel temperature drop using a model and presenting an appropriate converter blow-off temperature during converter blowing, it has become possible to control the tapping temperature within the desired temperature range.

(実施例) 第1図は、本発明の実施例を示すブロック線図であり、
第2図は本発明に係る取鍋耐火物の内部温度を測定する
センサーを例示する断面図である。
(Embodiment) FIG. 1 is a block diagram showing an embodiment of the present invention,
FIG. 2 is a sectional view illustrating a sensor for measuring the internal temperature of the ladle refractory according to the present invention.

本発明は、第1図及び第2図に示すように、測定センサ
ー2及び厚み計3によって転炉吹錬中に、取鍋耐火物1
の内部温度及び測温点2Aの取鍋内壁14からの距離り
を測定すると共に転炉吹き止め温度予測に必要な情報、
即ち、取鍋情報や予測時間スケジュール情報、予定合金
投入量を収集する。
As shown in FIGS. 1 and 2, the present invention provides a measuring sensor 2 and a thickness gauge 3 to measure ladle refractories 1 during converter blowing.
Information necessary for measuring the internal temperature of the temperature measuring point 2A and the distance from the ladle inner wall 14, as well as predicting the converter blow-off temperature,
That is, ladle information, predicted time schedule information, and planned alloy input amount are collected.

実施例においては、転炉吹き止めの10分前に取鍋内面
温度及び、内壁からの距離を測定した。
In the example, the inner surface temperature of the ladle and the distance from the inner wall were measured 10 minutes before the converter was stopped.

その結果を表1に示した。また、転炉吹錬中のサブラン
スからの測定により、転炉出鋼後、連続鋳造工程へ到着
する間の成分調整のための合金投入量は、10.8 k
g / Tonと予測され、また、連続鋳造工程と二次
精錬工程から予測された時間を表2に示した。この例で
は、取鍋の付着物は認められなかった0以上の条件に基
づき、第1図に示すシステムにて、適正な転炉吹き止め
温度を計算したところ、1693°Cであった。なお、
表3に本実施例における転炉吹き止め後の溶鋼温度の計
算値と実測値を示した。
The results are shown in Table 1. Also, according to measurements from the sub-lance during converter blowing, the amount of alloy input for component adjustment after tapping from the converter and before reaching the continuous casting process is 10.8 k
g/Ton and the times predicted from the continuous casting process and the secondary smelting process are shown in Table 2. In this example, the appropriate converter blow-off temperature was calculated using the system shown in FIG. 1 and was 1693°C based on the condition of 0 or more in which no deposits were observed on the ladle. In addition,
Table 3 shows the calculated values and actual measured values of the molten steel temperature after the converter was blown off in this example.

第2図中4はターミナルボックス、5は可動ケーブルで
ある。
In FIG. 2, 4 is a terminal box, and 5 is a movable cable.

表1 測定結果 表2 操業条件 (単位:分) 表3 温度降下推定値と実測4M (単位;°C)(発明の効
果) 本発明により、連続鋳造工程到着時の溶鋼温度のバラツ
キ(標準偏差)がσ=8.4℃−′2.1°Cと減少し
、転炉吹き止め温度(平均)を6°C低下できた他、連
続鋳造における温度起因の品質・操業トラブルの減少が
図れる。
Table 1 Measurement Results Table 2 Operating Conditions (Unit: Minutes) Table 3 Estimated Temperature Drop Value and Actual Measurement 4M (Unit: °C) (Effect of the Invention) With the present invention, the variation (standard deviation) of the molten steel temperature upon arrival at the continuous casting process ) decreased to 8.4℃-'2.1℃, lowering the converter blow-off temperature (average) by 6℃, and reducing quality and operational problems caused by temperature in continuous casting. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示すブロック線図、第2図は
本発明に係る取鍋耐火物の内部温度を測定するセンサー
を例示する断面図である。 1:取鍋耐火物 2:温度センサー 3:厚み計 4:ターミナルボックス 5:可動ケーブル 特許出願人 新日本製鐵株式會社
FIG. 1 is a block diagram showing an embodiment of the present invention, and FIG. 2 is a sectional view illustrating a sensor for measuring the internal temperature of a ladle refractory according to the present invention. 1: Ladle refractory 2: Temperature sensor 3: Thickness meter 4: Terminal box 5: Movable cable Patent applicant Nippon Steel Corporation

Claims (1)

【特許請求の範囲】[Claims] 取鍋耐火物の内部温度及び、測温点の取鍋内壁からの距
離を測定または推定し、その結果に基づいて取鍋耐火物
の抜熱による降温を考慮し補正を加えることを特徴とす
る取鍋蓄熱量による出鋼温度補正方法。
It is characterized by measuring or estimating the internal temperature of the ladle refractory and the distance of the temperature measurement point from the inner wall of the ladle, and making corrections based on the results in consideration of temperature drop due to heat extraction from the ladle refractory. A method for correcting tapping temperature based on the amount of heat stored in the ladle.
JP12567890A 1990-05-16 1990-05-16 Method for correcting steel tapping temperature with reserving heat quantity in ladle Pending JPH0421713A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12567890A JPH0421713A (en) 1990-05-16 1990-05-16 Method for correcting steel tapping temperature with reserving heat quantity in ladle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12567890A JPH0421713A (en) 1990-05-16 1990-05-16 Method for correcting steel tapping temperature with reserving heat quantity in ladle

Publications (1)

Publication Number Publication Date
JPH0421713A true JPH0421713A (en) 1992-01-24

Family

ID=14915960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12567890A Pending JPH0421713A (en) 1990-05-16 1990-05-16 Method for correcting steel tapping temperature with reserving heat quantity in ladle

Country Status (1)

Country Link
JP (1) JPH0421713A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015174091A (en) * 2014-03-13 2015-10-05 株式会社神戸製鋼所 Control method for thermal insulation burner keeping temperature of ladle
JP2016180127A (en) * 2015-03-23 2016-10-13 Jfeスチール株式会社 Converter blowing end time objective molten steel temperature set device and method therefor
CN115354209A (en) * 2022-08-02 2022-11-18 河南中原特钢装备制造有限公司 Method for smelting high-manganese high-nitrogen steel 18Cr18Mn12Ni2N by adopting argon-oxygen furnace

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015174091A (en) * 2014-03-13 2015-10-05 株式会社神戸製鋼所 Control method for thermal insulation burner keeping temperature of ladle
JP2016180127A (en) * 2015-03-23 2016-10-13 Jfeスチール株式会社 Converter blowing end time objective molten steel temperature set device and method therefor
CN115354209A (en) * 2022-08-02 2022-11-18 河南中原特钢装备制造有限公司 Method for smelting high-manganese high-nitrogen steel 18Cr18Mn12Ni2N by adopting argon-oxygen furnace
CN115354209B (en) * 2022-08-02 2023-06-02 河南中原特钢装备制造有限公司 Method for smelting high-manganese high-nitrogen steel 18Cr18Mn12Ni2N by adopting argon-oxygen furnace

Similar Documents

Publication Publication Date Title
CN107891132B (en) Continuous casting method for sub-peritectic steel slab
Gupta et al. Temperature prediction model for controlling casting superheat temperature
JP5482615B2 (en) Blowing control method in converter
JPH0421713A (en) Method for correcting steel tapping temperature with reserving heat quantity in ladle
JP7055213B2 (en) Methods and equipment for monitoring the continuous steel casting process
JP3140799B2 (en) Control method of tapping temperature
JPH11335721A (en) Method for controlling temperature of molten metal in secondary refining and apparatus therefor
JP2947109B2 (en) Temperature control method for molten metal
JP2002266011A (en) Method for estimating furnace condition in blast furnace
JP4806964B2 (en) Method for determining end temperature of vacuum degassing process
CN102974794A (en) Device and method for reducing superheat degree of molten steel of continuous casting ladle or intermediate ladle
JP4081248B2 (en) Control method of the lower part of the blast furnace
US20040031583A1 (en) Method and device for controlling the temperature of steel from the surface of the bath of a continuous casting installation up to the furnace tap
JP2973890B2 (en) How to control molten steel temperature
TWI792485B (en) continuous casting method for steel
JP2978372B2 (en) Plasma heating controller for molten steel in tundish in continuous casting facility
JPH0929401A (en) Method for controlling temperature of molten steel in tundish for continuous casting
JP3369926B2 (en) Auto start method for continuous casting
EP2583089A1 (en) Method for determining amounts of inoculant to be added to a cast-iron melt
CN209379882U (en) A kind of heating in medium frequency conticaster
JPH03161161A (en) Method for controlling temperature of molten metal
JP3649175B2 (en) Pretreatment method for long-time continuous casting
JP2002011558A (en) Method for continuously casting steel
CN117268223A (en) Novel method for detecting thickness of continuous casting mold flux layer
JP2007289977A (en) Method and instrument for estimating molten metal temperature in mold for continuous casting