JP3649175B2 - Pretreatment method for long-time continuous casting - Google Patents

Pretreatment method for long-time continuous casting Download PDF

Info

Publication number
JP3649175B2
JP3649175B2 JP2001324394A JP2001324394A JP3649175B2 JP 3649175 B2 JP3649175 B2 JP 3649175B2 JP 2001324394 A JP2001324394 A JP 2001324394A JP 2001324394 A JP2001324394 A JP 2001324394A JP 3649175 B2 JP3649175 B2 JP 3649175B2
Authority
JP
Japan
Prior art keywords
molten steel
casting
temperature
time
ladle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001324394A
Other languages
Japanese (ja)
Other versions
JP2003126946A (en
Inventor
祐樹 鍋島
孝幸 柏
宏泰 森岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2001324394A priority Critical patent/JP3649175B2/en
Publication of JP2003126946A publication Critical patent/JP2003126946A/en
Application granted granted Critical
Publication of JP3649175B2 publication Critical patent/JP3649175B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Continuous Casting (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、長時間連続鋳造時の前処理方法に関し、とくに、長時間の安定鋳造に適した二次精錬の方法についての新規な提案である。
【0002】
【従来の技術】
ステンレス鋼や高合金鋼などの特殊鋼の場合、品質保持の観点から低速鋳造することが多く、そのために連続鋳造に長時間を必要とするという問題があった。すなわち、近年、鋼材に対する機能や品質への要求が高まり、それにつれて、製鋼段階での鋳片品質の向上が求められている。こうした要請に応えるべく、連続鋳造時に、介在物の侵入を抑えたり、中心偏析等の断面欠陥を低減することを目的として、鋳造速度を低下させる連続鋳造方法が提案されている。しかし、鋳造速度を低下させて鋳造時間が延長されると、取鍋残鋼の溶鋼温度が次第に低下し、結果的には溶鋼の過熱度も低下するという事態が生じる。
【0003】
一般に、連続鋳造時の溶鋼過熱度(タンディッシュ溶鋼温度と凝固温度との差)は、介在物の浮上を促進するためには高い方が望ましいが、あまりに高すぎると、正常な凝固シェルの成長が妨げられることによるブレイクアウト等の操業トラブルの原因となる。一方で、凝固組織として等軸晶が望まれる場合は、この溶鋼過熱度は低い方が望ましく、精錬コスト上も溶鋼温度の低下はコスト低減が図れるという利点がある。しかし、あまりに低すぎると鋳造が続行できなくなったり、介在物の浮上分離が妨げられることに起因する鋳片表面欠陥の増大につながるという問題があり、鋳造を通じて適切な温度範囲に保持することが重要である。
【0004】
このような問題に対し、従来、上述したような低速鋳造を余儀なくされる鋼種を鋳造するときは、精錬終了時の溶鋼温度を高めて、鋳造末期の溶鋼過熱度を確保する方法などの対策が講じられている。しかし、このような方法では、鋳造の初期と末期とで、溶鋼過熱度の差が大きくなり、鋳片品質のバラツキの原因や操業トラブルの原因となることが多かった。
その解決手段としては、鋳造時間の長い場合や溶鋼過熱度の幅狭コントロールが必要な場合には、タンディッシュに誘導加熱やプラズマトーチのような電気的エネルギーを利用することによって溶鋼の温度を上昇させること、鋳造末期の溶鋼温度降下を補償する手段などが検討されている(例えば、特開昭1-237064号公報)。
【0005】
【発明が解決しようとする課題】
長時間連続鋳造を行うための上記従来技術については、タンディッシュの改造が必要となったり、タンディッシュ内溶鋼加熱装置等の特別の設備を必要としたり、あるいは溶鋼過熱度を高くしたときに取鍋やタンディッシュのライニング寿命を縮めて、コスト高を招くというような問題があった。また、これらの方法では、熱効率の低下や鋳造の初期から末期に到る溶鋼温度の著しい変動(降下)による鋳片品質のバラツキが不可避に発生するという問題もあった。
【0006】
そこで、本発明の目的は、特別の加熱装置や高い溶鋼過熱度を必要とすることなく、鋳片品質のバラツキや操業上のトラブルもなく、鋳造の全期間に亘って安定した長時間の連続鋳造ができる技術を確立し提案するところにある。
【0007】
上掲の目的の実現に向けて鋭意検討した結果、発明者らは、下記の要旨構成に係る発明が、従来技術が抱えている上述した課題を有利に解決できることをつき止め、本発明に想到した。即ち、本発明は、取鍋1チャージの連続鋳造にかける時間が、70分/ch程度以上である長時間の連続鋳造を行うに当たり、この連続鋳造に先立つ取鍋での二次精錬段階での処理を、その取鍋内壁耐火物の温度がほぼ安定化する40分程度以上行うものである。
【0009】
また、取鍋内壁耐火物の温度が安定化する時間、即ち取鍋からの放熱量が定常化する時間が、40分程度以上であることが好ましい。
【0010】
【発明の実施の形態】
発明者らは、従来技術が抱えている上述した問題に対し、その解決策を検討するうちに、長時間連続鋳造時の鋳造末期における温度低下に対しては、取鍋の保有熱量(含熱量)が大きく影響しており、しかもその含熱量は、連続鋳造の前工程の処理である二次精錬条件に大きく影響していることを見い出した。
一般に、取鍋内溶鋼の温度降下に、取鍋の含熱量が影響を与えることは、製鋼の分野では知られていることであり、その温度降下を抑制するために、受鋼前の取鍋を燃焼バーナー等で加熱したり、取鍋の稼働本数を削減して使用比率を高めることによって、含熱量を増大させる方法が採用されている。この点、発明者らも、とくに長時間鋳造を余儀なくされるケースでは、バーナーによる予備加熱を十分に行うとか、事前に汎用鋼種の鋳造に使用して予め含熱量を増大させる等の対策を講じてはいたが、それでも時によっては鋳造末期に溶鋼温度が低下しすぎて、鋳造の続行が不可能になるというトラブルを経験した。
【0011】
そこで、発明者らは、鋳造末期の温度降下に及ぼす諸因子についての研究の中で、連続鋳造に先立って行われる二次精錬時間について検討した。その結果、この二次精錬時間が鋳造末期の溶鋼温度の低下に強く影響していることをつきとめた。二次精錬の時間は、一般に溶鋼の温度や成分の均一性を確保するための攪拌や、溶鋼中に浮遊する非金属介在物の浮上分離、溶鋼中のC,N,H,Oといったガス成分の真空除去、あるいは昇温等による溶鋼の成分、温度、清浄度等を、所期した範囲に的中させるのに必要とされる時間で決定されている。従って、溶鋼に求められているスペックや二次精錬処理に供する溶鋼の条件によって、二次精錬の時間が大きく異なり、精錬コストや耐火物コストの低減を目的に、種々の改善によって二次精錬時間の短縮も図られてきた。
しかしながら、取鍋のとくに耐火物(ライニング)が保有する熱エネルギーという観点から、二次精錬時間について観察すると、図1に示すように、溶鋼から取鍋に供給される熱量は、バーナーの加熱によって供給できる熱量よりも圧倒的に大きく、それは、取鍋の使用時に限って考えると、この取鍋を連続的に使用した回数の差による含熱量のバラツキをも補っても余りあるだけの熱量を供給できる量であることがわかった。
【0012】
そこで、発明者らは、溶鋼から取鍋への熱供給量を二次精錬時間によって変化させることを試みた。即ち、二次精錬時間を故意に短縮もしくは延長する実験を実施し、長時間鋳造時の鋳造末期での溶鋼温度の変化について調査したのである。その結果、二次精錬時間の短いチャージでは、連続使用していた取鍋においても溶鋼温度の低下が著しく、逆に二次精錬時間の長いチャージでは連続使用していなかった取鍋においてさえも、溶鋼温度の低下は小さいという結果となった。なお、この二次精錬時間は、必要以上に延長して二次精錬時間を長くしたとしても、溶鋼温度低下率は次第に飽和することもわかった。
【0013】
これらの事実より、発明者らは、溶鋼から取鍋への熱移動が定常状態に達するまで、即ち取鍋による二次精錬段階の処理を、その取鍋の内壁耐火物の温度がほぼ安定化する時間以上継続すると、たとえ長時間の連続鋳造を行ったとしても、その鋳造末期の溶鋼温度の著しい低下は抑制できることを知見した。
この発明における二次精錬に必要とされる時間は、鋼種、ヒートサイズ、取鍋ディメンジョン、取鍋耐火物の種類、鋳造温度、鋳造時間、二次精錬処理内容による影響を受けるため、一義的に定めることはできないが、それぞれの設備を構成する材料のディメンジョンと熱伝導度のデータにもとづき、伝熱計算によって予め予想することが可能であり、計算予測時間を中心とした操業データを蓄積することによって、実操業での具体的時間を定めることができる。
【0014】
取鍋内壁耐火物は、取鍋の鉄皮に近い側から順に永久張り、ワークライニングという各耐火物層によって構成されている。このうち永久張りは、耐火度や耐溶損性は比較的低いが、断熱性の高い材質の耐火物で構成されている。一方、ワークライニングは、耐火度、耐溶損性、耐スポーリング性などが永久張りに比べてはるかに高いが、断熱性は低い(すなわち熱伝導度が高い)。
取鍋内の溶鋼から熱伝導の高いワークライニングを通じて耐火物内に流入した熱は、高断熱性の永久張り層に阻まれて、ワークライニング内に蓄積される。そして、ワークライニングと永久張りの境界の温度と鉄皮温度の差によって、永久張り層内を徐々に移動して鉄皮へと移行し、最終的に鉄皮から大気中、あるいは真空脱ガス処理槽内へと放散していく。取鍋鉄皮の温度は、大気あるいは雰囲気による冷却を受けているのであまり大きく変化しない。したがって、取鍋内から鉄皮を通じて放散する熱流束は、ほぼ永久張りとワークライニングの境界の温度に依存する。取鍋内壁耐火物内の温度の状態が定常に達するということは、上記の熱流束が安定するということに他ならないから、取鍋内壁耐火物内の温度が定常状態に達したか否かの把握は、永久張りとワークライニングの境界の温度をモニターすることがもっとも合理的である。
したがって、本発明において、取鍋内壁耐火物の熱的状態を把握するのは、伝熱計算によるものであれ、熱電対等による実測によるものであれ、永久張りとワークライニングの境界もしくはその近傍の温度を対象とするのが実際的であり、好ましいものである。
【0015】
例えば、取鍋からの放熱量が定常化し、取鍋内壁耐火物の温度(永久張りとワークライニングの境界の温度)がほぼ安定化させる二次精錬時間としては、図1に示すように、40分/ch程度以上であり、この時間を超えて二次精錬を行うと、図2に示すように、取鍋の連続使用回数が3回以上のときもまた3回未満のときも、鋳造中の温度低下は10℃以下になるという結果を得ることができる。
【0016】
なお、本発明において、長時間連続鋳造というときは、70分/ch以上の時間を継続的に鋳造する場合であって、この場合、図3に示すように、二次精錬時間が20分(従来例)では、連続鋳造の時間:70分を境として溶鋼過熱度が急に低下し始めるのに対し、本発明に適合する条件の下で連続鋳造した場合(二次精錬時間60分)、鋳造末期にあっても、溶鋼過熱度は35〜55℃の適正範囲に収まっていることが判明した。
【0017】
【実施例】
以下、本発明の効果を検証するために行った実験について説明する。
この実験は、マルテンサイト系中炭素ステンレス鋼を素材とし、この適用材を連続鋳造に先立って二次精錬、即ちVOD装置によって真空脱ガス処理を施した。そして、得られた180t/chの溶鋼をスラブ連鋳機にて連続鋳造した例である。
なお、前記VOD処理の時間は20〜90分、80〜120分の鋳造時間で連続鋳造を実施し、ダンディッシュでの溶鋼過熱度(℃)を一定時間毎に測定し、溶鋼温度の低下を求めた。
【0018】
その結果につき、図3に、本発明例として二次精錬時間60分、従来例として二次精錬時間20分の場合についての鋳造中の温度変化を図示した。
【0019】
この図からわかるように、鋳造時間120分経過時において、発明法では、40分経過時点に50℃だったものが40℃へと溶鋼温度はたしかに低下したが、それでも適正範囲内にあって鋳造は可能であった。しかし、従来法では、鋳造時間が40分経過した時点で65℃だったものが、120分経過時点では溶鋼過熱度は25℃にまで低下していて、鋳造の継続が困難になった。
【0020】
【発明の効果】
以上説明したように、本発明によれば、長時間連続鋳造を行うときであっても、タンディッシュ内溶鋼加熱装置のような特別な熱付与設備が不必要であり、しかも鋳造末期の溶鋼温度を確保するために、鋳造初期の温度(溶鋼過熱度)を過度に上昇させる必要がなくなるので、鋳片品質のバラツキや操業上のトラブルが解決できる。加えて、鋳造の全区間で安定した鋳造操業を確保することができる。
【図面の簡単な説明】
【図1】 二次精錬時間と取鍋内壁温度との関係を示すグラフである。
【図2】 連続鋳造時の溶鋼温度低下に及ぼす二次精錬時間の影響を示すグラフである。
【図3】 実施例における鋳造中の溶鋼温度変化と溶鋼過熱度との関係を示すグラフである。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a pretreatment method for long-time continuous casting, and in particular, is a novel proposal for a secondary refining method suitable for long-time stable casting.
[0002]
[Prior art]
In the case of special steels such as stainless steel and high alloy steel, low-speed casting is often performed from the viewpoint of maintaining quality, and there is a problem that a long time is required for continuous casting. That is, in recent years, demands for functions and quality of steel materials have increased, and accordingly, improvement in slab quality at the steel making stage has been demanded. In order to meet these demands, there has been proposed a continuous casting method for reducing the casting speed for the purpose of suppressing the intrusion of inclusions during continuous casting and reducing cross-sectional defects such as center segregation. However, if the casting speed is reduced and the casting time is extended, the molten steel temperature of the ladle remaining steel gradually decreases, and as a result, the degree of superheat of the molten steel also decreases.
[0003]
In general, the degree of superheat of molten steel during continuous casting (difference between the temperature of the tundish molten steel and the solidification temperature) is preferably high in order to promote the flotation of inclusions. May cause operational troubles such as breakout. On the other hand, when an equiaxed crystal is desired as the solidification structure, it is desirable that the degree of superheating of the molten steel is low, and there is an advantage that the reduction of the molten steel temperature can be reduced in terms of refining costs. However, if it is too low, there is a problem that casting cannot be continued or the surface defect of the slab is increased due to hindering the floating separation of inclusions. It is.
[0004]
For such problems, conventionally, when casting a steel type that is forced to perform low-speed casting as described above, measures such as a method of increasing the molten steel temperature at the end of refining and ensuring the molten steel superheat degree at the end of casting are taken. Has been taken. However, in such a method, the difference in the degree of superheated molten steel becomes large between the initial stage and the final stage of casting, which often causes slab quality variations and operational troubles.
The solution is to increase the temperature of the molten steel by using electric energy such as induction heating or plasma torch in the tundish when the casting time is long or when it is necessary to control the degree of superheat of the molten steel. Means for compensating for the temperature drop of the molten steel at the end of casting have been studied (for example, Japanese Patent Laid-Open No. 1-237064).
[0005]
[Problems to be solved by the invention]
The above-mentioned prior art for continuous casting for a long period of time is necessary when tundish modification is required, special equipment such as a tundish molten steel heating device is required, or when the superheat degree of the molten steel is increased. There was a problem that the lining life of the pan and tundish was shortened and the cost was increased. In addition, these methods have a problem in that variations in slab quality inevitably occur due to a decrease in thermal efficiency and a significant fluctuation (drop) in molten steel temperature from the beginning to the end of casting.
[0006]
Accordingly, the object of the present invention is to provide a stable and continuous operation over the entire casting period without requiring any special heating device or high degree of superheated molten steel, without slab quality variations and operational troubles. The technology that can be cast is established and proposed.
[0007]
As a result of diligent research toward the realization of the above-mentioned object, the inventors have found that the invention according to the following summary configuration can advantageously solve the above-described problems of the prior art, and arrived at the present invention. did. That is, according to the present invention, when performing continuous casting for a long time of about 70 minutes / ch or more for continuous casting of a ladle 1 charge, in the secondary refining stage in the ladle prior to this continuous casting. The treatment is performed for about 40 minutes or more when the temperature of the refractory inside the ladle is almost stabilized.
[0009]
Moreover, it is preferable that the time for stabilizing the temperature of the ladle inner wall refractory, that is, the time for stabilizing the amount of heat released from the ladle is about 40 minutes or more.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The inventors have studied the solution to the above-mentioned problems that the conventional technology has, and for the temperature drop at the end of casting during continuous casting for a long time, It has been found that the heat content is greatly affected by the secondary refining conditions, which is the pre-treatment of continuous casting.
In general, it is known in the field of steelmaking that the heat content of the ladle affects the temperature drop of the molten steel in the ladle. In order to suppress the temperature drop, the ladle before receiving the steel is known. A method of increasing the heat content is employed by heating the hot pot with a combustion burner or the like, or reducing the number of operating ladles and increasing the usage ratio. In this regard, the inventors have also taken measures such as sufficiently performing preheating with a burner or increasing the heat content in advance by using a general-purpose steel grade for casting, especially in cases where casting for a long time is forced. However, in some cases, the temperature of the molten steel dropped too much at the end of casting, and it was impossible to continue casting.
[0011]
Therefore, the inventors examined the secondary refining time to be performed prior to continuous casting in research on factors affecting the temperature drop at the end of casting. As a result, it was found that this secondary refining time strongly influences the decrease in molten steel temperature at the end of casting. The time of secondary refining is generally agitation to ensure the temperature and composition uniformity of the molten steel, floating separation of non-metallic inclusions floating in the molten steel, and gas components such as C, N, H, O in the molten steel It is determined by the time required to bring the composition, temperature, cleanliness, etc. of the molten steel due to vacuum removal or temperature rise into the expected range. Therefore, the secondary refining time varies greatly depending on the specifications required for the molten steel and the conditions of the molten steel used for the secondary refining treatment, and the secondary refining time can be reduced by various improvements to reduce refining costs and refractory costs. Has also been shortened.
However, from the viewpoint of the thermal energy possessed by the refractory (lining) of the ladle, when observing the secondary refining time, as shown in Fig. 1, the amount of heat supplied from the molten steel to the ladle depends on the heating of the burner. It is overwhelmingly larger than the amount of heat that can be supplied. When considering only when using the ladle, the amount of heat that is sufficient to compensate for the variation in the heat content due to the difference in the number of times this ladle has been used continuously. It turned out that it was the quantity which can be supplied.
[0012]
Therefore, the inventors tried to change the heat supply amount from the molten steel to the ladle according to the secondary refining time. That is, an experiment to intentionally shorten or extend the secondary refining time was carried out, and the change in molten steel temperature at the end of casting during long casting was investigated. As a result, in the charge with a short secondary refining time, the temperature of the molten steel decreased significantly even in the ladle that was continuously used, and conversely, even in the ladle that was not continuously used in the charge that had a long secondary refining time, As a result, the decrease in molten steel temperature was small. In addition, even if this secondary refining time was extended more than needed and the secondary refining time was lengthened, it turned out that the molten steel temperature fall rate is gradually saturated.
[0013]
From these facts, the inventors have stabilized the temperature of the inner wall refractory of the ladle until the heat transfer from the molten steel to the ladle reaches a steady state, that is, the secondary refining stage treatment by the ladle. It has been found that if the continuous casting time is continued for a long time, even if continuous casting is performed for a long time, a significant decrease in the molten steel temperature at the end of casting can be suppressed.
Since the time required for secondary refining in this invention is affected by the steel type, heat size, ladle dimension, ladle refractory type, casting temperature, casting time, and the content of the secondary refining treatment, Although it cannot be determined, it can be predicted in advance by heat transfer calculation based on the dimensions and thermal conductivity data of the materials that make up each facility, and operation data centered on the calculation prediction time should be accumulated. The specific time in actual operation can be determined.
[0014]
The ladle inner wall refractory is made up of refractory layers called work lining that are permanently stretched in order from the side closer to the iron skin of the ladle. Among these, the permanent tension is composed of a refractory material having a high heat insulating property, although the fire resistance and the erosion resistance are relatively low. On the other hand, the work lining has much higher fire resistance, erosion resistance, spalling resistance and the like than permanent tension, but has low heat insulation (that is, high thermal conductivity).
The heat that flows into the refractory through the work lining with high thermal conductivity from the molten steel in the ladle is blocked by the highly heat-insulating permanent tension layer and accumulated in the work lining. Then, due to the difference between the temperature of the boundary between the work lining and the permanent tension and the temperature of the iron skin, it gradually moves in the permanent tension layer and moves to the iron skin, and finally the atmosphere from the iron skin or vacuum degassing treatment. Dissipate into the tank. The temperature of the ladle iron skin does not change so much because it is cooled by the atmosphere or atmosphere. Therefore, the heat flux dissipated from the ladle through the iron shell is almost dependent on the temperature at the boundary between the permanent tension and the work lining. The fact that the temperature state in the ladle inner wall refractory reaches a steady state means that the above heat flux is stabilized, so whether or not the temperature in the ladle inner wall refractory has reached a steady state. It is most reasonable to grasp the temperature at the boundary between the permanent tension and the work lining.
Therefore, in the present invention, it is possible to grasp the thermal state of the ladle inner wall refractory, whether by heat transfer calculation, by actual measurement by a thermocouple, etc., the temperature at or near the boundary between the permanent tension and the work lining. Is practical and preferred.
[0015]
For example, as shown in FIG. 1, the secondary refining time during which the amount of heat released from the ladle becomes steady and the temperature of the refractory inside the ladle (the temperature at the boundary between permanent tension and work lining) is almost stabilized is 40 When the secondary refining is performed over this time, as shown in Fig. 2, the ladle is being cast both when it is used 3 times or more and less than 3 times as shown in Fig. 2. As a result, the temperature drop of 10 ° C. or less can be obtained.
[0016]
In the present invention, long-time continuous casting refers to the case of continuous casting for a time of 70 minutes / ch or more. In this case, as shown in FIG. 3, the secondary refining time is 20 minutes ( In the conventional example), while the continuous casting time: 70 minutes, the molten steel superheat degree starts to drop suddenly, whereas when continuously cast under the conditions suitable for the present invention (secondary refining time 60 minutes), Even at the end of casting, it was found that the degree of superheated molten steel was within the proper range of 35 to 55 ° C.
[0017]
【Example】
Hereinafter, experiments conducted for verifying the effects of the present invention will be described.
In this experiment, martensitic medium carbon stainless steel was used as a raw material, and this applied material was subjected to secondary refining, that is, vacuum degassing treatment by a VOD apparatus prior to continuous casting. This is an example in which the obtained 180 t / ch molten steel was continuously cast by a slab continuous casting machine.
The VOD treatment time is 20 to 90 minutes, 80 to 120 minutes of continuous casting time, and the molten steel superheat degree (° C) in the dundish is measured at regular intervals to reduce the molten steel temperature. Asked.
[0018]
As a result, FIG. 3 shows the temperature change during casting when the secondary refining time is 60 minutes as an example of the present invention and the secondary refining time is 20 minutes as a conventional example.
[0019]
As can be seen from this figure, when the casting time was 120 minutes, in the invention method, the molten steel temperature actually dropped to 40 ° C from 50 ° C when 40 minutes passed, but it was still within the proper range and cast. Was possible. However, with the conventional method, the casting temperature was 65 ° C. when 40 minutes passed, but the molten steel superheat decreased to 25 ° C. when 120 minutes passed, making it difficult to continue casting.
[0020]
【The invention's effect】
As described above, according to the present invention, even when continuous casting is performed for a long time, a special heat application facility such as a tundish molten steel heating device is unnecessary, and the molten steel temperature at the end of casting is not necessary. Therefore, it is not necessary to excessively raise the temperature at the beginning of casting (molten steel superheat degree), so that it is possible to solve variations in slab quality and operational problems. In addition, stable casting operation can be ensured in the entire casting section.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between secondary refining time and ladle inner wall temperature.
FIG. 2 is a graph showing the influence of secondary refining time on the temperature drop of molten steel during continuous casting.
FIG. 3 is a graph showing the relationship between the change in molten steel temperature during casting and the degree of superheated molten steel in Examples.

Claims (1)

取鍋1チャージの連続鋳造にかける時間が、70分/ch程度以上である長時間の連続鋳造を行うに当たり、この連続鋳造に先立つ取鍋での二次精錬段階での処理を、その取鍋内壁耐火物の温度がほぼ安定化する40分程度以上行うことを特徴とする長時間連続鋳造時の前処理方法。When performing continuous casting with a ladle 1 charge continuous casting time of about 70 minutes / ch or more, the ladle is processed in the secondary refining stage prior to this continuous casting. A pretreatment method for continuous casting over a long period of time, characterized in that it is carried out for about 40 minutes or more at which the temperature of the inner wall refractory is substantially stabilized.
JP2001324394A 2001-10-23 2001-10-23 Pretreatment method for long-time continuous casting Expired - Fee Related JP3649175B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001324394A JP3649175B2 (en) 2001-10-23 2001-10-23 Pretreatment method for long-time continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001324394A JP3649175B2 (en) 2001-10-23 2001-10-23 Pretreatment method for long-time continuous casting

Publications (2)

Publication Number Publication Date
JP2003126946A JP2003126946A (en) 2003-05-08
JP3649175B2 true JP3649175B2 (en) 2005-05-18

Family

ID=19141124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001324394A Expired - Fee Related JP3649175B2 (en) 2001-10-23 2001-10-23 Pretreatment method for long-time continuous casting

Country Status (1)

Country Link
JP (1) JP3649175B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5169390B2 (en) * 2008-04-01 2013-03-27 新日鐵住金株式会社 Thermal insulation method for molten steel
CN115138816A (en) * 2021-03-29 2022-10-04 上海梅山钢铁股份有限公司 Integral control method for superheat range of multi-heat continuous casting tundish

Also Published As

Publication number Publication date
JP2003126946A (en) 2003-05-08

Similar Documents

Publication Publication Date Title
CN107891132B (en) Continuous casting method for sub-peritectic steel slab
BRPI0904814B1 (en) method of manufacturing a steel product
JPS61103654A (en) Method of controlling condition of continuous casting
JP2018503741A (en) Lean duplex stainless steel and manufacturing method thereof
CN108642364A (en) Extra-supercritical unit martensite heat-resistant steel and its vacuum induction furnace smelting technique
CN104109760A (en) Steel ingot medium-frequency induction furnace/electroslag furnace dual-smelting system and method and steel ingot
JP3649175B2 (en) Pretreatment method for long-time continuous casting
JP4548483B2 (en) Casting method for molten alloy
CN111375736B (en) Casting method of martensite precipitation hardening stainless steel
JP4451798B2 (en) Continuous casting method
JP5131992B2 (en) Continuous casting method for medium carbon steel
JP2004115823A (en) Method for refining molten steel
CN113351843B (en) Continuous casting method and device for iron-chromium-aluminum alloy
JPS6347537B2 (en)
JPS59223148A (en) Induction heating method of molten metal in tundish
JP5218208B2 (en) Thermal insulation method for molten steel
Nosochenko et al. Reducing Axial Segregation in a Continuous-Cast Semifinished Product by Micro-Alloying.
JPS61115653A (en) Continuous casting method of medium-carbon steel
EP4067511A1 (en) Operation method of ladle refining process
JPH06246404A (en) Tundish for continuous casting
JPH04313453A (en) Continuous casting method
JP2019217531A (en) Underside-pouring ingot making method
JP2024004032A (en) Continuous casting method
JPH06246406A (en) Method for adjusting overheating degree of molten steel in continuous casting mold
JPH0421713A (en) Method for correcting steel tapping temperature with reserving heat quantity in ladle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20031225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050207

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3649175

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080225

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090225

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090225

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100225

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100225

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110225

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120225

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120225

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130225

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130225

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees