JPH06246406A - Method for adjusting overheating degree of molten steel in continuous casting mold - Google Patents

Method for adjusting overheating degree of molten steel in continuous casting mold

Info

Publication number
JPH06246406A
JPH06246406A JP5952093A JP5952093A JPH06246406A JP H06246406 A JPH06246406 A JP H06246406A JP 5952093 A JP5952093 A JP 5952093A JP 5952093 A JP5952093 A JP 5952093A JP H06246406 A JPH06246406 A JP H06246406A
Authority
JP
Japan
Prior art keywords
molten steel
mold
degree
δtmold
continuous casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5952093A
Other languages
Japanese (ja)
Inventor
Tooru Akemiya
徹 朱宮
Yasuo Hitomi
康雄 人見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP5952093A priority Critical patent/JPH06246406A/en
Publication of JPH06246406A publication Critical patent/JPH06246406A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE:To drastically reduce the unevenness in overheating degree of the molten steel in a mold in continuous casting and to stabilize the quality of a steel slab. CONSTITUTION:In a method for holding the molten steel overheating degree DELTAT mold on the molten steel surface in the mold in the continuous casting to the constant, the molten steel overheating degree DELTAT mold on the molten steel surface in the mold is estimated by the following equation and the estimated molten steel overheating degree DELTAT mold on the molten steel surface in the mold and the preset molten steel overheating degree are compared and by changing the powder brand and automatically changing nozzle dipping depth, the molten steel overheating degree DELTAT mold in the mold in the continuous casting is adjusted. DELTAT mold=A(DELTATt)+B(Vc)+C(EMS)+D(Ph)+E(Nd), Wherein, A-E: coefficients obtd. from regression equation, DELTATt: the molten steel overheating degree in the tundish ( deg.C), Vc: casting velocity (mm/min), EMS: intensity of electromagnetic stirring (A), Ph: calorific heat of exothermic powder (kcal), Nd: nozzle dipping depth (mm).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、鋼の連続鋳造におい
て、連続鋳造鋳型内の溶鋼過熱度を一定に保持するため
の調整方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for adjusting the superheat degree of molten steel in a continuous casting mold in a continuous casting of steel so as to keep it constant.

【0002】[0002]

【従来の技術】鋼の連続鋳造は、タンディッシュから所
定の断面形状および寸法を有する鋳型内に溶鋼を注入
し、鋳型の下方から鋳片として連続的に引出すことによ
ってなされている。このような鋼の連続鋳造において
は、鋳型内の溶鋼の表面にパウダが供給され、パウダは
溶鋼の熱によって粉末層、焼結層および溶融層を形成
し、溶融したパウダは鋳型内の壁面と鋳片表面間に流入
して潤滑剤としての役割を果たすと共に、溶鋼の酸化を
防止する。上記鋼の連続鋳造においては、鋳込み温度を
適正な領域で一定に保つことが鋳片品質の高位安定のた
めに重要である。この鋳込み温度は、本来的には鋳型内
湯面における溶鋼の過熱度ΔTmold(鋳型内溶鋼温
度−液相線温度)であるべきであるが、この部分の温度
測定は不可能であるので、従来タンディッシュ内の溶鋼
の過熱度ΔTt(タンディッシュ内溶鋼温度−液相線温
度)を用いて鋳型内溶鋼の過熱度ΔTmoldを推定し
ている。
2. Description of the Related Art Continuous casting of steel is carried out by injecting molten steel from a tundish into a mold having a predetermined cross-sectional shape and dimensions and continuously withdrawing it as a slab from below the mold. In continuous casting of such steel, powder is supplied to the surface of the molten steel in the mold, the powder forms a powder layer, a sintered layer and a molten layer by the heat of the molten steel, and the melted powder and the wall surface in the mold. It flows between the surfaces of the slab and plays a role as a lubricant, and also prevents the molten steel from being oxidized. In continuous casting of the above-mentioned steel, it is important to keep the casting temperature constant in an appropriate region in order to maintain high quality of the slab. Originally, the casting temperature should be the superheat degree ΔTmold of the molten steel on the molten metal surface in the mold (molten steel temperature in the mold-liquidus temperature), but it is impossible to measure the temperature of this part, so the conventional temperature The superheat degree ΔTmold of the molten steel in the mold is estimated by using the superheat degree ΔTt (molten steel temperature in the tundish-liquidus temperature) of the molten steel in the dish.

【0003】上記連続鋳造において、鋳型内溶鋼の過熱
度ΔTmoldを一定に保つため、タンディッシュ内の
溶鋼の過熱度ΔTtを二次精錬終了温度に制御し、さら
にそのバラツキを緩和するため、浸漬ノズル深さを変化
させることによって、鋳型内湯面における溶鋼の過熱度
ΔTmoldを一定とする施策を実施している。上記連
続鋳造において、図2に示すとおり、鋳型内溶鋼の過熱
度ΔTmold(℃)が低い場合は、ノロカミ欠陥およ
び鋳型内皮張りが発生し易く、鋳型内溶鋼の過熱度ΔT
moldが高い場合は、凝固シェルの再溶解によるブレ
ークアウトの発生頻度が高くなるため、鋳型内溶鋼の過
熱度ΔTmoldは適正な制御領域を有する。
In the above continuous casting, in order to keep the degree of superheat ΔTmold of the molten steel in the mold constant, the degree of superheat ΔTt of the molten steel in the tundish is controlled to the secondary refining end temperature, and in order to alleviate the variation, the immersion nozzle is used. By changing the depth, measures are taken to keep the superheat degree ΔTmold of the molten steel on the molten metal surface in the mold constant. In the above continuous casting, as shown in FIG. 2, when the superheat degree ΔTmold (° C.) of the molten steel in the mold is low, nolokami defects and mold inner skin tension easily occur, and the superheat degree ΔT of the molten steel in the mold ΔT
When the mold is high, the frequency of breakout due to the remelting of the solidified shell is high, so the superheat degree ΔTmold of the molten steel in the mold has an appropriate control region.

【0004】上記連続鋳造における安定操業の方法とし
ては、鋳型内へのパウダの流入状況を計測し、鋳型内の
パウダの状況、溶鋼の湯面位置の測定およびパウダ消費
量の把握に基づいて、パウダの選択と投入量、投入時間
および操業条件の変更を行ってパウダの流入状況を制御
し、表面疵やブレークアウトを防止する方法(特開昭5
7−202952号公報)、前工程の溶鋼処理工程搬出
時の親鍋内の溶鋼温度を実測し、その実測値と注入開始
までの経過時間から親鍋注入開始時の親鍋内の溶鋼温度
を求め、親鍋注入開始からの経過時間と親鍋注入開始時
の親鍋内溶鋼温度から親鍋注入中の親鍋内溶鋼温度を求
め、タンディッシュへの鋳込み開始からの経過時間とこ
のタンディッシュの種類に基づく定数と注入中の親鍋内
溶鋼温度からタンディッシュ内の溶鋼温度を求め、1チ
ャージに少なくとも1回、タンディッシュ内の溶鋼温度
を実測しその実測値に基づいて前記注入中の親鍋内溶鋼
温度とタンディッシュ内の溶鋼温度を修正し、タンディ
ッシュ内の溶鋼温度または修正された注入中の親鍋内溶
鋼温度とタンディッシュ内の溶鋼温度の値とタンディッ
シュ使用開始からの経過時間とから鋳型内メニスカス部
の溶鋼温度を求め、この鋳込み温度データを鋳片温度の
初期値として二次冷却制御する方法(特開昭59−15
6559号公報)、タンディッシュ内溶鋼過熱度ΔTt
が、20℃≦ΔTt≦100℃を満足する条件で鋳型に
注湯し、鋳型から引き抜かれた鋳片の内部の溶鋼の凝固
が完了する以前の部分に、所定の鍛圧加工を施す方法
(特開平2−155550号公報)、タンディッシュの
溶鋼通過量から、該タンディッシュ内耐火物の熱的状況
を定量化し、これを勘案して出鋼時点からタンディッシ
ュに至るまでの間の溶鋼の温度降下量を推定し、出鋼時
の溶鋼温度を適正範囲に調整する方法(特開平4−28
467号公報)等多くの提案が行われている。
As a stable operation method in the above continuous casting, the inflow condition of powder into the mold is measured, and the powder condition in the mold, the molten metal surface position measurement and the powder consumption amount are grasped. A method of controlling the inflow situation of the powder by selecting the powder and changing the input amount, the input time and the operating condition to prevent surface flaws and breakout (Japanese Patent Laid-Open No. Sho 5
7-202952 gazette), the molten steel temperature in the master ladle at the time of carrying out the molten steel treatment process of the previous process is measured, and the molten steel temperature in the master ladle at the start of the master ladle injection is measured from the measured value and the elapsed time until the start of pouring Calculate the temperature of the molten steel in the master pot during the injection of the master pot and the temperature of the molten steel in the master pot at the start of the injection of the master pot, and calculate the elapsed time from the start of casting into the tundish and this tundish. The molten steel temperature in the tundish is calculated from the constant based on the type of the molten steel and the molten steel temperature in the master pot during the injection, and the molten steel temperature in the tundish is measured at least once per charge. The molten steel temperature in the master pot and the molten steel temperature in the tundish are modified, and the molten steel temperature in the tundish or the value of the molten steel temperature in the master pot during injection and the molten steel temperature in the tundish and the tundish start from Seeking molten steel temperature of the mold in the meniscus portion from an elapsed time, a method of secondary cooling control this casting temperature data as the initial value of the slab temperature (JP 59-15
No. 6559), molten steel superheat degree in tundish ΔTt
However, a method of pouring molten metal into a mold under the condition of 20 ° C ≤ ΔTt ≤ 100 ° C and performing a predetermined forging process on the portion before the solidification of the molten steel inside the cast piece drawn from the mold is completed (special (Kaihei 2-155550), the thermal condition of the refractory in the tundish is quantified from the molten steel passing amount of the tundish, and the temperature of the molten steel from the time of tapping to the tundish is taken into consideration. Method of estimating the amount of drop and adjusting the molten steel temperature during tapping to an appropriate range (Japanese Patent Laid-Open No. 4-28)
Many proposals have been made.

【0005】[0005]

【発明が解決しようとする課題】上記特開昭57−20
2952号公報に開示の方法は、鋳型と鋳片間へのパウ
ダの流入不良に起因する表面疵やブレークアウトを防止
するもので、鋳型内溶鋼の過熱度ΔTmoldを一定に
するものではない。また、特開昭59−156559号
公報に開示の方法は、プロセスコンピュータを用いた二
次冷却制御の基礎となる鋳込み温度の設定に関するもの
で、鋳型内溶鋼の過熱度ΔTmoldを一定にするもの
ではない。さらに、特開平2−155550号公報に開
示の方法は、鋳片の中心偏析の軽減と介在物を減少させ
るもので、タンディッシュ内溶鋼過熱度ΔTtが、20
℃≦ΔTt≦100℃を満足する条件で鋳型に注湯した
のでは、鋳型内溶鋼の過熱度ΔTmoldを一定にする
ことはできない。さらにまた、特開平4−28467号
公報に開示の方法は、タンディッシュ内における溶鋼温
度のチャージによるバラツキを小さくするもので、鋳型
内溶鋼の過熱度ΔTmoldを一定にすることはできな
い。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
The method disclosed in Japanese Patent No. 2952 is intended to prevent surface flaws and breakouts due to defective inflow of powder between the mold and the slab, and do not make the superheat degree ΔTmold of the molten steel in the mold constant. Further, the method disclosed in Japanese Patent Laid-Open No. 59-156559 relates to the setting of the pouring temperature which is the basis of the secondary cooling control using the process computer, and does not make the superheat degree ΔTmold of the molten steel in the mold constant. Absent. Further, the method disclosed in Japanese Patent Application Laid-Open No. 2-155550 reduces the center segregation of cast slabs and reduces inclusions, and the degree of superheat ΔTt of molten steel in a tundish is 20.
If the mold is poured under the condition of satisfying the condition of ° C ≤ ΔTt ≤ 100 ° C, the degree of superheat ΔTmold of the molten steel in the mold cannot be made constant. Furthermore, the method disclosed in Japanese Unexamined Patent Publication No. 4-28467 is intended to reduce the variation due to the charge of the molten steel temperature in the tundish, and it is not possible to make the superheat degree ΔTmold of the molten steel in the mold constant.

【0006】この発明の目的は、連続鋳造における鋳型
内溶鋼の過熱度ΔTmoldを一定にできる連続鋳造に
おける鋳型内溶鋼過熱度の調整方法を提供することにあ
る。
An object of the present invention is to provide a method for adjusting the degree of superheat of molten steel in a mold in continuous casting, which can keep the degree of superheat ΔTmold of the molten steel in the mold in continuous casting.

【0007】[0007]

【課題を解決するための手段】本発明者らは、上記目的
を達成すべく鋭意試験研究を重ねた。その結果、鋳型内
溶鋼の過熱度ΔTmoldに影響を及ぼす因子として
は、タンディッシュ内溶鋼の過熱度ΔTt、鋳込み速度
Vc、鋳型内電磁撹拌強度EMS、パウダ銘柄、ノズル
浸漬深さが考えられた。そこでこれらの5つの因子につ
いて、実鋳込み条件と鋳型内溶鋼の過熱度ΔTmold
を回帰式によって整理し、操業中オンラインで測定でき
ない鋳型内溶鋼の過熱度ΔTmoldを推定し、該推定
した鋳型内溶鋼の過熱度ΔTmoldに基づいて、パウ
ダ銘柄変更、ノズル浸漬深さを変更すれば、鋳型内溶鋼
の過熱度ΔTmoldをほぼ一定に保持できることを究
明し、この発明に到達した。
[Means for Solving the Problems] The inventors of the present invention have made extensive studies to achieve the above object. As a result, as factors affecting the superheat degree ΔTmold of the molten steel in the mold, the superheat degree ΔTt of the molten steel in the tundish, the casting speed Vc, the electromagnetic stirring strength EMS in the mold, the powder brand, and the nozzle immersion depth were considered. Therefore, regarding these five factors, the actual casting conditions and the degree of superheat of molten steel in the mold ΔTmold
According to the regression equation, the superheat degree ΔTmold of the molten steel in the mold that cannot be measured online during the operation is estimated, and based on the estimated superheat degree ΔTmold of the molten steel in the mold, if the powder brand is changed and the nozzle immersion depth is changed, It was found that the superheat degree ΔTmold of the molten steel in the mold can be kept substantially constant, and the present invention was reached.

【0008】すなわちこの発明は、連続鋳造における鋳
型内湯面における溶鋼過熱度ΔTmoldを一定に保持
する方法において、鋳型内湯面における溶鋼過熱度ΔT
moldを下記式により推定し、推定した鋳型内湯面に
おける溶鋼過熱度ΔTmoldと予め設定した溶鋼過熱
度を比較し、溶鋼過熱度ΔTmoldが適正値を外れた
場合、パウダ銘柄変更、ノズル浸漬深さを自動変更する
ことを特徴とする連続鋳造の鋳型内溶鋼過熱度調整方法
である。 ΔTmold=A(ΔTt)+B(Vc)+C(EM
S)+D(Ph)+E(Nd) ただし、A〜Eは、回帰式により求めた係数、 ΔTt:タンディッシュ内溶鋼過熱度(℃) Vc:鋳込み速度(mm/min) EMS:電磁撹拌強さ(A) Ph:発熱パウダ発熱量(kcal) Nd:ノズル浸漬深さ(mm)
That is, according to the present invention, in the method of maintaining the molten steel superheat degree ΔT mold on the molten metal surface in the mold in continuous casting constant, the molten steel superheat degree ΔT on the molten metal surface in the mold is
Mold is estimated by the following formula, and the estimated molten steel superheat degree ΔTmold on the molten metal surface in the mold is compared with a preset molten steel superheat degree. If the molten steel superheat degree ΔTmold is out of an appropriate value, the powder brand is changed and the nozzle immersion depth is changed. This is a method for adjusting the degree of superheat of molten steel in a continuous casting mold, which is characterized by automatic change. ΔTmold = A (ΔTt) + B (Vc) + C (EM
S) + D (Ph) + E (Nd) where A to E are coefficients obtained by the regression equation, ΔTt: superheated degree of molten steel in tundish (° C) Vc: casting speed (mm / min) EMS: electromagnetic stirring strength (A) Ph: heating value of heating powder (kcal) Nd: nozzle immersion depth (mm)

【0009】[0009]

【作用】この発明においては、鋳型内湯面における溶鋼
過熱度ΔTmoldを前記式により推定し、推定した鋳
型内湯面における溶鋼過熱度ΔTmoldと予め設定し
た溶鋼過熱度を比較し、溶鋼過熱度ΔTmoldが適正
値を外れた場合、パウダ銘柄変更、ノズル浸漬深さを自
動変更するから、鋳型内湯面における溶鋼過熱度ΔTm
oldを適正値に保持することができ、従来の鋳型内湯
面における溶鋼過熱度ΔTmoldのバラツキを約40
%低減でき、その分鋳片の品質を安定させることができ
る。前記鋳型内湯面における溶鋼過熱度ΔTmoldの
推定式のA〜Eの係数は、個々のプラントによって異な
るが、それぞれのプラントで回帰式によって各係数を求
めて推定すればよい。
In the present invention, the molten steel superheat degree ΔTmold at the molten metal in-mold surface is estimated by the above formula, the estimated molten steel superheat degree ΔTmold at the molten metal surface in the mold is compared with the preset molten steel superheat degree, and the molten steel superheat degree ΔTmold is appropriate. If the value deviates, the powder brand is changed and the nozzle immersion depth is automatically changed. Therefore, the molten steel superheat degree ΔTm on the molten metal surface in the mold
It is possible to maintain the old value at an appropriate value, and the variation of the molten steel superheat degree ΔTmold on the molten metal surface in the conventional mold is about 40.
%, And the quality of the cast piece can be stabilized accordingly. The coefficients A to E in the equation for estimating the molten steel superheat ΔTmold on the molten metal surface in the mold differ depending on the individual plant, but may be estimated by obtaining each coefficient by a regression equation in each plant.

【0010】この発明において、鋳型内湯面における溶
鋼過熱度ΔTmoldに影響を与える各因子のうち、パ
ウダ銘柄、ノズル浸漬深さを自動変更するのは、パウダ
銘柄およびノズル浸漬深さの変更は、他のタンディッシ
ュ内溶鋼過熱度、鋳込み速度および電磁撹拌強さのよう
に直接操業に与える影響が大きくなく、変更可能で、し
かも、鋳型内湯面における溶鋼過熱度ΔTmoldを制
御できるからである。
In the present invention, among the factors that affect the molten steel superheat degree ΔTmold on the molten metal surface in the mold, the powder brand and the nozzle immersion depth are automatically changed, and the powder brand and the nozzle immersion depth are changed. This is because such effects as the superheated degree of molten steel in the tundish, casting speed, and electromagnetic stirring strength do not have a great influence on the operation directly and can be changed, and the superheated degree of molten steel ΔTmold on the molten metal surface in the mold can be controlled.

【0011】[0011]

【実施例】No.1〜4ストランドを有する容量25t
のタンディッシュから鋳型内に溶鋼を供給し、連続鋳造
する場合において、回帰式によって求めた前記鋳型内湯
面における溶鋼過熱度ΔTmoldの下記推定式を用
い、鋳型内湯面における溶鋼過熱度ΔTmoldを推定
し、鋳型内湯面における溶鋼過熱度ΔTmoldが適性
値を外れた場合、パウダ銘柄変更およびノズル浸漬深さ
を自動変更して連続鋳造を行った。その結果、鋳型内湯
面における溶鋼過熱度ΔTmoldのバラツキは、図1
に示すとおり、改善前に比較し約40%低減された。 ΔTmold=0.79(ΔTt)+0.046(V
c)+0.005(EMS)+0.074(Ph)−
0.019(Nd) ただし、ΔTt:タンディッシュ内溶鋼過熱度(℃) Vc:鋳込み速度(mm/min) EMS:電磁撹拌強さ(A) Ph:発熱パウダ発熱量(kcal) Nd:ノズル深さ(mm)
Example No. 25t capacity with 1-4 strands
In the case of supplying molten steel into the mold from the tundish and continuously casting, the molten steel superheat ΔTmold at the molten metal inside the mold is estimated using the following estimation formula of the molten steel superheat ΔTmold at the molten metal inside the mold obtained by the regression equation. When the molten steel superheat degree ΔTmold on the molten metal surface in the mold was out of the appropriate value, the powder brand was changed and the nozzle immersion depth was automatically changed to perform continuous casting. As a result, the variation of the molten steel superheat degree ΔTmold on the molten metal surface in the mold is shown in FIG.
As shown in, the reduction was about 40% compared to before improvement. ΔTmold = 0.79 (ΔTt) +0.046 (V
c) +0.005 (EMS) +0.074 (Ph)-
0.019 (Nd) However, ΔTt: superheated degree of molten steel in tundish (° C) Vc: pouring speed (mm / min) EMS: electromagnetic stirring strength (A) Ph: heat generation powder calorific value (kcal) Nd: nozzle depth (Mm)

【0012】[0012]

【発明の効果】以上述べたとおり、この発明方法によれ
ば、連続鋳造における鋳型内溶鋼過熱度ΔTmoldの
バラツキを大幅に低減でき、鋳片の品質を安定させるこ
とができる。
As described above, according to the method of the present invention, it is possible to greatly reduce the variation in the molten steel superheat degree ΔTmold in the mold during continuous casting, and to stabilize the quality of the cast piece.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例における改善前後の鋳型内湯面における
溶鋼過熱度ΔTmoldのバラツキを示すグラフであ
る。
FIG. 1 is a graph showing variations in molten steel superheat degree ΔTmold on a molten metal surface in a mold before and after improvement in an example.

【図2】鋳型内湯面における溶鋼過熱度ΔTmoldと
ノロカミ欠陥率およびブレークアウト頻度との関係を示
すグラフである。
FIG. 2 is a graph showing a relationship between a molten steel superheat degree ΔTmold on a molten metal surface in a mold, a slag defect rate, and a breakout frequency.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 連続鋳造における鋳型内湯面における溶
鋼過熱度ΔTmoldを一定に保持する方法において、
鋳型内湯面における溶鋼過熱度ΔTmoldを下記式に
より推定し、推定した鋳型内湯面における溶鋼過熱度Δ
Tmoldと予め設定した溶鋼過熱度を比較し、パウダ
銘柄変更、ノズル浸漬深さを自動変更することを特徴と
する連続鋳造鋳型内の溶鋼過熱度調整方法。 ΔTmold=A(ΔTt)+B(Vc)+C(EM
S)+D(Ph)+E(Nd) ただし、A〜Eは、回帰式により求めた係数、 ΔTt:タンディッシュ内溶鋼過熱度(℃) Vc:鋳込み速度(mm/min) EMS:電磁撹拌強さ(A) Ph:発熱パウダ発熱量(kcal) Nd:ノズル浸漬深さ(mm)
1. A method of keeping a molten steel superheat degree ΔTmold on a molten metal surface in a mold in continuous casting constant,
The molten steel superheat degree ΔTmold on the molten metal surface in the mold was estimated by the following equation, and the estimated molten steel superheat degree Δ on the molten metal surface in the mold Δ
A method for adjusting the degree of superheat of molten steel in a continuous casting mold, which comprises comparing Tmold with a preset degree of superheat of molten steel, and automatically changing the powder brand and the immersion depth of the nozzle. ΔTmold = A (ΔTt) + B (Vc) + C (EM
S) + D (Ph) + E (Nd) where A to E are coefficients obtained by the regression equation, ΔTt: superheated degree of molten steel in tundish (° C) Vc: casting speed (mm / min) EMS: electromagnetic stirring strength (A) Ph: heating value of heating powder (kcal) Nd: nozzle immersion depth (mm)
JP5952093A 1993-02-23 1993-02-23 Method for adjusting overheating degree of molten steel in continuous casting mold Pending JPH06246406A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5952093A JPH06246406A (en) 1993-02-23 1993-02-23 Method for adjusting overheating degree of molten steel in continuous casting mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5952093A JPH06246406A (en) 1993-02-23 1993-02-23 Method for adjusting overheating degree of molten steel in continuous casting mold

Publications (1)

Publication Number Publication Date
JPH06246406A true JPH06246406A (en) 1994-09-06

Family

ID=13115628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5952093A Pending JPH06246406A (en) 1993-02-23 1993-02-23 Method for adjusting overheating degree of molten steel in continuous casting mold

Country Status (1)

Country Link
JP (1) JPH06246406A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6347864B1 (en) * 2017-03-24 2018-06-27 日新製鋼株式会社 Method for producing austenitic stainless steel slab
EP3533536A1 (en) * 2018-02-28 2019-09-04 Heraeus Electro-Nite International N.V. Method and apparatus for monitoring a continuous steel casting process

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6347864B1 (en) * 2017-03-24 2018-06-27 日新製鋼株式会社 Method for producing austenitic stainless steel slab
JP2018161667A (en) * 2017-03-24 2018-10-18 日新製鋼株式会社 Method of producing austenitic stainless steel slab
EP3533536A1 (en) * 2018-02-28 2019-09-04 Heraeus Electro-Nite International N.V. Method and apparatus for monitoring a continuous steel casting process
WO2019166121A1 (en) * 2018-02-28 2019-09-06 Heraeus Electro-Nite International N.V. Method and apparatus for monitoring a continuous steel casting process
US11673187B2 (en) 2018-02-28 2023-06-13 Heraeus Electro-Nite International N.V. Method and apparatus for monitoring a continuous steel casting process

Similar Documents

Publication Publication Date Title
KR100752693B1 (en) Automation of a high-speed continuous casting plant
US3630267A (en) Method of controlling the temperature of molten ferrous metal
RU1819188C (en) Method and apparatus for cooling steel ingots at continuous casting
JPH06246406A (en) Method for adjusting overheating degree of molten steel in continuous casting mold
JP3562116B2 (en) Control method of molten steel temperature in tundish
JPH06246404A (en) Tundish for continuous casting
JP2947109B2 (en) Temperature control method for molten metal
JP2019515797A (en) Mold flux and casting method using the same
RU2286863C2 (en) Method to control secondary cooling of slab in continuous-casting machines at stationary and transient casting conditions
JPH0318979B2 (en)
JPS6347537B2 (en)
KR101400040B1 (en) Control method for molten steel in tundish
JP3551710B2 (en) Steel continuous casting method
JPH02133155A (en) Method for preventing longitudinal crack of continuously cast slab
JP3649175B2 (en) Pretreatment method for long-time continuous casting
JPH0428467A (en) Method for controlling molten steel temperature
JPH11192539A (en) Method for continuous casting of chromium-containing molten steel having excellent internal defect resistance
JPH06170511A (en) Continuous casting method and tundish
JPS643590B2 (en)
JPH09276996A (en) Method for preventing surface oxidation (deckel) at the time of starting reused tundish
KR101435117B1 (en) Method for stabilizing meniscus in continuous casting
SU1072990A1 (en) Method of casting cast-iron rolls
JPS6153143B2 (en)
KR101368352B1 (en) Method for controlling temperature of casting
JPH02258152A (en) Continuous casting method