JP2003126946A - Pretreatment method in case of long time continuous casting - Google Patents

Pretreatment method in case of long time continuous casting

Info

Publication number
JP2003126946A
JP2003126946A JP2001324394A JP2001324394A JP2003126946A JP 2003126946 A JP2003126946 A JP 2003126946A JP 2001324394 A JP2001324394 A JP 2001324394A JP 2001324394 A JP2001324394 A JP 2001324394A JP 2003126946 A JP2003126946 A JP 2003126946A
Authority
JP
Japan
Prior art keywords
casting
ladle
temperature
continuous casting
molten steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001324394A
Other languages
Japanese (ja)
Other versions
JP3649175B2 (en
Inventor
Yuki Nabeshima
祐樹 鍋島
Takayuki Kashiwa
孝幸 柏
Hiroyasu Morioka
宏泰 森岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP2001324394A priority Critical patent/JP3649175B2/en
Publication of JP2003126946A publication Critical patent/JP2003126946A/en
Application granted granted Critical
Publication of JP3649175B2 publication Critical patent/JP3649175B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)
  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To establish a technique by which a stable long time continuous casting can be executed over the whole period of the casting without a special heating device and a high molten steel overheat temperature, and without the dispersion of quality of the cast slab and operational troubles. SOLUTION: In the case that the long time continuous casting is executed, the treatment by a ladle at a secondary refining stage prior to the continuous casting is performed for a time longer than that required for making the temperature of the refractory in the internal wall of the ladle to be almost stabilized, and making the heat radiation amount from the ladle to be stabilized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、長時間連続鋳造時
の前処理方法に関し、とくに、長時間の安定鋳造に適し
た二次精錬の方法についての新規な提案である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pretreatment method for continuous casting for a long time, and particularly to a new proposal for a secondary refining method suitable for stable casting for a long time.

【0002】[0002]

【従来の技術】ステンレス鋼や高合金鋼などの特殊鋼の
場合、品質保持の観点から低速鋳造することが多く、そ
のために連続鋳造に長時間を必要とするという問題があ
った。すなわち、近年、鋼材に対する機能や品質への要
求が高まり、それにつれて、製鋼段階での鋳片品質の向
上が求められている。こうした要請に応えるべく、連続
鋳造時に、介在物の侵入を抑えたり、中心偏析等の断面
欠陥を低減することを目的として、鋳造速度を低下させ
る連続鋳造方法が提案されている。しかし、鋳造速度を
低下させて鋳造時間が延長されると、取鍋残鋼の溶鋼温
度が次第に低下し、結果的には溶鋼の過熱度も低下する
という事態が生じる。
2. Description of the Related Art Special steels such as stainless steels and high alloy steels are often cast at a low speed from the viewpoint of maintaining quality, and there is a problem that continuous casting requires a long time. That is, in recent years, there has been an increasing demand for the function and quality of steel materials, and along with this, improvement in the quality of cast slabs at the steelmaking stage is required. In order to meet such demands, a continuous casting method has been proposed in which the casting speed is reduced for the purpose of suppressing the intrusion of inclusions and reducing the cross-sectional defects such as center segregation during continuous casting. However, when the casting speed is reduced and the casting time is extended, the molten steel temperature of the ladle residual steel gradually decreases, and as a result, the degree of superheat of the molten steel also decreases.

【0003】一般に、連続鋳造時の溶鋼過熱度(タンデ
ィッシュ溶鋼温度と凝固温度との差)は、介在物の浮上
を促進するためには高い方が望ましいが、あまりに高す
ぎると、正常な凝固シェルの成長が妨げられることによ
るブレイクアウト等の操業トラブルの原因となる。一方
で、凝固組織として等軸晶が望まれる場合は、この溶鋼
過熱度は低い方が望ましく、精錬コスト上も溶鋼温度の
低下はコスト低減が図れるという利点がある。しかし、
あまりに低すぎると鋳造が続行できなくなったり、介在
物の浮上分離が妨げられることに起因する鋳片表面欠陥
の増大につながるという問題があり、鋳造を通じて適切
な温度範囲に保持することが重要である。
Generally, it is desirable that the molten steel superheat degree (difference between the tundish molten steel temperature and the solidification temperature) during continuous casting is high in order to promote the floating of inclusions, but if it is too high, normal solidification is achieved. This will cause operational problems such as breakouts due to the hindrance of shell growth. On the other hand, when equiaxed crystals are desired as a solidification structure, it is desirable that the molten steel superheat degree is low, and there is an advantage that the molten steel temperature can be lowered in terms of refining cost. But,
If it is too low, there is a problem that casting cannot be continued or the slab surface defects increase due to the floating separation of inclusions being hindered, so it is important to maintain an appropriate temperature range throughout casting. .

【0004】このような問題に対し、従来、上述したよ
うな低速鋳造を余儀なくされる鋼種を鋳造するときは、
精錬終了時の溶鋼温度を高めて、鋳造末期の溶鋼過熱度
を確保する方法などの対策が講じられている。しかし、
このような方法では、鋳造の初期と末期とで、溶鋼過熱
度の差が大きくなり、鋳片品質のバラツキの原因や操業
トラブルの原因となることが多かった。その解決手段と
しては、鋳造時間の長い場合や溶鋼過熱度の幅狭コント
ロールが必要な場合には、タンディッシュに誘導加熱や
プラズマトーチのような電気的エネルギーを利用するこ
とによって溶鋼の温度を上昇させること、鋳造末期の溶
鋼温度降下を補償する手段などが検討されている(例え
ば、特開昭1-237064号公報)。
In response to such a problem, when casting a steel type which is conventionally forced to perform low speed casting as described above,
Measures have been taken such as increasing the temperature of molten steel at the end of refining to ensure the degree of superheating of molten steel at the end of casting. But,
In such a method, the difference in the degree of superheat of molten steel between the initial stage and the final stage of casting becomes large, which often causes variations in the quality of cast slabs and causes operating problems. As a solution, if the casting time is long or narrow control of the degree of superheating of molten steel is required, the temperature of molten steel is increased by using electrical energy such as induction heating or plasma torch in the tundish. A means for compensating for the molten steel temperature drop at the end of casting has been studied (for example, JP-A-1-237064).

【0005】[0005]

【発明が解決しようとする課題】長時間連続鋳造を行う
ための上記従来技術については、タンディッシュの改造
が必要となったり、タンディッシュ内溶鋼加熱装置等の
特別の設備を必要としたり、あるいは溶鋼過熱度を高く
したときに取鍋やタンディッシュのライニング寿命を縮
めて、コスト高を招くというような問題があった。ま
た、これらの方法では、熱効率の低下や鋳造の初期から
末期に到る溶鋼温度の著しい変動(降下)による鋳片品
質のバラツキが不可避に発生するという問題もあった。
Regarding the above-mentioned prior art for performing long-time continuous casting, the tundish needs to be modified, special equipment such as a molten steel heating device in the tundish is required, or There is a problem that when the superheated degree of molten steel is increased, the lining life of the ladle and the tundish is shortened and the cost is increased. Further, these methods also have a problem that variations in slab quality inevitably occur due to a decrease in thermal efficiency and a remarkable change (drop) in molten steel temperature from the initial stage to the final stage of casting.

【0006】そこで、本発明の目的は、特別の加熱装置
や高い溶鋼過熱度を必要とすることなく、鋳片品質のバ
ラツキや操業上のトラブルもなく、鋳造の全期間に亘っ
て安定した長時間の連続鋳造ができる技術を確率し提案
するところにある。
Therefore, an object of the present invention is to provide a stable long-term casting over the entire casting period, without the need for a special heating device or a high degree of molten steel superheat, variation in slab quality, and operational troubles. We are proposing a technology that enables continuous casting in time.

【0007】上掲の目的の実現に向けて鋭意検討した結
果、発明者らは、下記の要旨構成に係る発明が、従来技
術が抱えている上述した課題を有利に解決できることを
つき止め、本発明に想到した。即ち、本発明は、長時間
の連続鋳造を行うに当たり、この連続鋳造に先立つ取鍋
での二次精錬段階での処理を、その取鍋内壁耐火物の温
度がほぼ安定化する時間以上行うものである。
As a result of diligent studies aimed at achieving the above-mentioned object, the inventors have found that the invention according to the following gist constitution can advantageously solve the above-mentioned problems that the prior art has. Invented the invention. That is, in the present invention, when performing continuous casting for a long time, the treatment in the secondary refining stage in the ladle prior to this continuous casting is performed for a time period during which the temperature of the refractory of the ladle inner wall is substantially stabilized. Is.

【0008】なお、本発明において、1チャージの連続
鋳造にかける時間が、70分/ch程度以上であることが好
ましい。
In the present invention, the time required for continuous casting with one charge is preferably about 70 minutes / ch or more.

【0009】また、取鍋内壁耐火物の温度が安定化する
時間、即ち取鍋からの放熱量が定常化する時間が、40分
程度以上であることが好ましい。
Further, it is preferable that the time for the temperature of the refractory material on the inner wall of the ladle to stabilize, that is, the time for the amount of heat radiated from the ladle to become steady is about 40 minutes or more.

【0010】[0010]

【発明の実施の形態】発明者らは、従来技術が抱えてい
る上述した問題に対し、その解決策を検討するうちに、
長時間連続鋳造時の鋳造末期における温度低下に対して
は、取鍋の保有熱量(含熱量)が大きく影響しており、
しかもその含熱量は、連続鋳造の前工程の処理である二
次精錬条件に大きく影響していることを見い出した。一
般に、取鍋内溶鋼の温度降下に、取鍋の含熱量が影響を
与えることは、製鋼の分野では知られていることであ
り、その温度降下を抑制するために、受鋼前の取鍋を燃
焼バーナー等で加熱したり、取鍋の稼働本数を削減して
使用比率を高めることによって、含熱量を増大させる方
法が採用されている。この点、発明者らも、とくに長時
間鋳造を余儀なくされるケースでは、バーナーによる予
備加熱を十分に行うとか、事前に汎用鋼種の鋳造に使用
して予め含熱量を増大させる等の対策を講じてはいた
が、それでも時によっては鋳造末期に溶鋼温度が低下し
すぎて、鋳造の続行が不可能になるというトラブルを経
験した。
BEST MODE FOR CARRYING OUT THE INVENTION The inventors of the present invention, while studying a solution to the above-mentioned problems of the prior art,
The heat capacity (heat content) of the ladle has a large effect on the temperature drop at the end of casting during long-term continuous casting.
Moreover, it has been found that the heat content has a great influence on the secondary refining condition which is the process in the pre-process of continuous casting. In general, it is known in the field of steelmaking that the heat content of a ladle affects the temperature drop of molten steel in a ladle. A method of increasing the heat content is used by heating the oil with a combustion burner or the like, or by reducing the number of ladle in operation and increasing the usage ratio. In this respect, the inventors also take measures such as sufficient preheating with a burner or increasing the heat content in advance by casting in a general-purpose steel type, especially in the case where casting is required for a long time. However, in some cases, the temperature of the molten steel fell too low at the end of casting, which made it impossible to continue casting.

【0011】そこで、発明者らは、鋳造末期の温度降下
に及ぼす諸因子についての研究の中で、連続鋳造に先立
って行われる二次精錬時間について検討した。その結
果、この二次精錬時間が鋳造末期の溶鋼温度の低下に強
く影響していることをつきとめた。二次精錬の時間は、
一般に溶鋼の温度や成分の均一性を確保するための攪拌
や、溶鋼中に浮遊する非金属介在物の浮上分離、溶鋼中
のC,N,H,Oといったガス成分の真空除去、あるい
は昇温等による溶鋼の成分、温度、清浄度等を、所期し
た範囲に的中させるのに必要とされる時間で決定されて
いる。従って、溶鋼に求められているスペックや二次精
錬処理に供する溶鋼の条件によって、二次精錬の時間が
大きく異なり、精錬コストや耐火物コストの低減を目的
に、種々の改善によって二次精錬時間の短縮も図られて
きた。しかしながら、取鍋のとくに耐火物(ライニン
グ)が保有する熱エネルギーという観点から、二次精錬
時間について観察すると、図1に示すように、溶鋼から
取鍋に供給される熱量は、バーナーの加熱によって供給
できる熱量よりも圧倒的に大きく、それは、取鍋の使用
時に限って考えると、この取鍋を連続的に使用した回数
の差による含熱量のバラツキをも補っても余りあるだけ
の熱量を供給できる量であることがわかった。
Therefore, the inventors examined the secondary refining time performed prior to continuous casting in the study of various factors affecting the temperature drop in the final stage of casting. As a result, it was found that this secondary refining time had a strong influence on the decrease in molten steel temperature at the end of casting. The time for secondary refining is
Generally, stirring for ensuring the uniformity of molten steel temperature and composition, floating separation of non-metallic inclusions floating in molten steel, vacuum removal of gas components such as C, N, H, O in molten steel, or temperature rise It is determined by the time required to bring the composition, temperature, cleanliness, etc. of molten steel to the desired range. Therefore, the secondary refining time varies greatly depending on the specifications required for the molten steel and the conditions of the molten steel to be subjected to the secondary refining treatment.The secondary refining time is improved by various improvements for the purpose of reducing refining costs and refractory costs. Has been shortened. However, when the secondary refining time is observed from the viewpoint of the thermal energy of the ladle, especially the refractory (lining), the amount of heat supplied from the molten steel to the ladle by heating the burner is as shown in Fig. 1. It is overwhelmingly larger than the amount of heat that can be supplied, and considering it only when using a ladle, it is enough heat even if it compensates for the variation in heat content due to the difference in the number of times this ladle is used continuously. It turned out that the amount could be supplied.

【0012】そこで、発明者らは、溶鋼から取鍋への熱
供給量を二次精錬時間によって変化させることを試み
た。即ち、二次精錬時間を故意に短縮もしくは延長する
実験を実施し、長時間鋳造時の鋳造末期での溶鋼温度の
変化について調査したのである。その結果、二次精錬時
間の短いチャージでは、連続使用していた取鍋において
も溶鋼温度の低下が著しく、逆に二次精錬時間の長いチ
ャージでは連続使用していなかった取鍋においてさえ
も、溶鋼温度の低下は小さいという結果となった。な
お、この二次精錬時間は、必要以上に延長して二次精錬
時間を長くしたとしても、溶鋼温度低下率は次第に飽和
することもわかった。
Therefore, the inventors tried to change the amount of heat supplied from the molten steel to the ladle by the secondary refining time. That is, an experiment was carried out in which the secondary refining time was intentionally shortened or extended, and the change in molten steel temperature at the end of casting during long-time casting was investigated. As a result, with a short secondary refining time charge, the molten steel temperature significantly decreased even in a ladle that was continuously used, and conversely, even in a ladle that was not continuously used with a long secondary refining time charge, As a result, the decrease in molten steel temperature was small. It was also found that even if this secondary refining time was extended more than necessary and the secondary refining time was lengthened, the molten steel temperature decrease rate was gradually saturated.

【0013】これらの事実より、発明者らは、溶鋼から
取鍋への熱移動が定常状態に達するまで、即ち取鍋によ
る二次精錬段階の処理を、その取鍋の内壁耐火物の温度
がほぼ安定化する時間以上継続すると、たとえ長時間の
連続鋳造を行ったとしても、その鋳造末期の溶鋼温度の
著しい低下は抑制できることを知見した。この発明にお
ける二次精錬に必要とされる時間は、鋼種、ヒートサイ
ズ、取鍋ディメンジョン、取鍋耐火物の種類、鋳造温
度、鋳造時間、二次精錬処理内容による影響を受けるた
め、一義的に定めることはできないが、それぞれの設備
を構成する材料のディメンジョンと熱伝導度のデータに
もとづき、伝熱計算によって予め予想することが可能で
あり、計算予測時間を中心とした操業データを蓄積する
ことによって、実操業での具体的時間を定めることがで
きる。
From these facts, the inventors of the present invention carried out the treatment of the secondary refining stage by the ladle until the heat transfer from the molten steel to the ladle reached a steady state, and the temperature of the refractory on the inner wall of the ladle was changed. It has been found that, if it is continued for more than a stabilizing time, even if continuous casting is performed for a long time, a remarkable decrease in molten steel temperature at the final stage of casting can be suppressed. The time required for secondary refining in the present invention is affected by steel type, heat size, ladle dimension, type of ladle refractory, casting temperature, casting time, secondary refining treatment content, and therefore is unique Although it cannot be specified, it is possible to predict in advance by heat transfer calculation based on the dimensions and thermal conductivity data of the materials that make up each facility, and accumulate operation data centered on the calculation prediction time. Can set a specific time in actual operation.

【0014】取鍋内壁耐火物は、取鍋の鉄皮に近い側か
ら順に永久張り、ワークライニングという各耐火物層に
よって構成されている。このうち永久張りは、耐火度や
耐溶損性は比較的低いが、断熱性の高い材質の耐火物で
構成されている。一方、ワークライニングは、耐火度、
耐溶損性、耐スポーリング性などが永久張りに比べては
るかに高いが、断熱性は低い(すなわち熱伝導度が高
い)。取鍋内の溶鋼から熱伝導の高いワークライニング
を通じて耐火物内に流入した熱は、高断熱性の永久張り
層に阻まれて、ワークライニング内に蓄積される。そし
て、ワークライニングと永久張りの境界の温度と鉄皮温
度の差によって、永久張り層内を徐々に移動して鉄皮へ
と移行し、最終的に鉄皮から大気中、あるいは真空脱ガ
ス処理槽内へと放散していく。取鍋鉄皮の温度は、大気
あるいは雰囲気による冷却を受けているのであまり大き
く変化しない。したがって、取鍋内から鉄皮を通じて放
散する熱流束は、ほぼ永久張りとワークライニングの境
界の温度に依存する。取鍋内壁耐火物内の温度の状態が
定常に達するということは、上記の熱流束が安定すると
いうことに他ならないから、取鍋内壁耐火物内の温度が
定常状態に達したか否かの把握は、永久張りとワークラ
イニングの境界の温度をモニターすることがもっとも合
理的である。したがって、本発明において、取鍋内壁耐
火物の熱的状態を把握するのは、伝熱計算によるもので
あれ、熱電対等による実測によるものであれ、永久張り
とワークライニングの境界もしくはその近傍の温度を対
象とするのが実際的であり、好ましいものである。
The refractory material on the inner wall of the ladle is made up of refractory layers called work linings, which are permanently attached in order from the side close to the iron skin of the ladle. Among them, the permanent tension is composed of a refractory made of a material having a high heat insulating property, although the fire resistance and the melting resistance are relatively low. On the other hand, the work lining is
It has much higher erosion resistance, spalling resistance, etc. than permanent tension, but has low heat insulation (that is, high thermal conductivity). The heat that has flowed into the refractory from the molten steel in the ladle through the work lining with high heat conduction is blocked by the highly heat-insulating permanent layer, and is accumulated in the work lining. Then, due to the difference between the temperature of the boundary between the work lining and the permanent upholstery and the temperature of the iron skin, it gradually moves in the permanent upholstery layer and shifts to the iron skin, and finally from the iron skin to the atmosphere or vacuum degassing treatment. It diffuses into the tank. The temperature of the ladle iron crust does not change much because it is cooled by the atmosphere or atmosphere. Therefore, the heat flux radiated from the ladle through the iron shell depends almost on the temperature at the boundary between the permanent tension and the work lining. The fact that the temperature inside the ladle inner wall refractory reaches a steady state is nothing but the stabilization of the above heat flux. Therefore, whether the temperature inside the ladle inner wall refractory reaches a steady state or not. The most reasonable way of understanding is to monitor the temperature at the boundary between the permanent tension and the work lining. Therefore, in the present invention, to grasp the thermal state of the refractory of the inner wall of the ladle, whether by the heat transfer calculation or the actual measurement by a thermocouple or the like, the temperature at or near the boundary between the permanent tension and the work lining is measured. Is practical and preferred.

【0015】例えば、取鍋からの放熱量が定常化し、取
鍋内壁耐火物の温度(永久張りとワークライニングの境
界の温度)がほぼ安定化させる二次精錬時間としては、
図1に示すように、40分/ch程度以上であり、この時間
を超えて二次精錬を行うと、図2に示すように、取鍋の
連続使用回数が3回以上のときもまた3回未満のとき
も、鋳造中の温度低下は10℃以下になるという結果を得
ることができる。
For example, the secondary refining time for stabilizing the heat radiation from the ladle and stabilizing the temperature of the refractory on the inner wall of the ladle (the temperature at the boundary between the permanent tension and the work lining) is as follows:
As shown in Fig. 1, it is about 40 minutes / ch or more, and if secondary refining is performed beyond this time, as shown in Fig. 2, even when the number of continuous use of the ladle is 3 or more, 3 Even when it is less than the number of times, it is possible to obtain the result that the temperature drop during casting is 10 ° C. or less.

【0016】なお、本発明において、長時間連続鋳造と
いうときは、70分/ch以上の時間を継続的に鋳造する場
合であって、この場合、図3に示すように、二次精錬時
間が20分(従来例)では、連続鋳造の時間:70分を境と
して溶鋼過熱度が急に低下し始めるのに対し、本発明に
適合する条件の下で連続鋳造した場合(二次精錬時間60
分)、鋳造末期にあっても、溶鋼過熱度は35〜55℃の適
正範囲に収まっていることが判明した。
In the present invention, long-term continuous casting is a case of continuously casting for 70 minutes / ch or more. In this case, as shown in FIG. At 20 minutes (conventional example), the continuous casting time: the superheat degree of molten steel begins to drop sharply at the boundary of 70 minutes, while continuous casting is performed under the conditions compatible with the present invention (secondary refining time 60
Min), it was found that even in the final stage of casting, the degree of superheat of molten steel was within the proper range of 35 to 55 ° C.

【0017】[0017]

【実施例】以下、本発明の効果を検証するために行った
実験について説明する。この実験は、マルテンサイト系
中炭素ステンレス鋼を素材とし、この適用材を連続鋳造
に先立って二次精錬、即ちVOD装置によって真空脱ガス
処理を施した。そして、得られた180t/chの溶鋼をスラ
ブ連鋳機にて連続鋳造した例である。なお、前記VOD処
理の時間は20〜90分、80〜120分の鋳造時間で連続鋳造
を実施し、ダンディッシュでの溶鋼過熱度(℃)を一定
時間毎に測定し、溶鋼温度の低下を求めた。
EXAMPLES The experiments conducted to verify the effects of the present invention will be described below. In this experiment, martensitic medium carbon stainless steel was used as a raw material, and this applied material was subjected to secondary refining, that is, vacuum degassing treatment by a VOD device, prior to continuous casting. Then, the obtained 180 t / ch molten steel was continuously cast by a slab continuous casting machine. The VOD treatment time is 20 to 90 minutes, continuous casting is performed with a casting time of 80 to 120 minutes, and the molten steel superheat degree (° C) in the dandysh is measured at regular intervals to reduce the molten steel temperature. I asked.

【0018】その結果につき、図3に、本発明例として
二次精錬時間60分、従来例として二次精錬時間20分の場
合についての鋳造中の温度変化を図示した。
The results are shown in FIG. 3 showing the temperature change during casting when the secondary refining time was 60 minutes as the example of the present invention and the secondary refining time was 20 minutes as the conventional example.

【0019】この図からわかるように、鋳造時間120分
経過時において、発明法では、40分経過時点に50℃だっ
たものが40℃へと溶鋼温度はたしかに低下したが、それ
でも適正範囲内にあって鋳造は可能であった。しかし、
従来法では、鋳造時間が40分経過した時点で65℃だった
ものが、120分経過時点では溶鋼過熱度は25℃にまで低
下していて、鋳造の継続が困難になった。
As can be seen from the figure, when the casting time was 120 minutes, the molten steel temperature certainly dropped from 40 ° C to 40 ° C in the invention method, but it was still within the proper range. Therefore, casting was possible. But,
In the conventional method, the casting temperature was 65 ° C. when 40 minutes passed, but the molten steel superheat degree decreased to 25 ° C. when 120 minutes passed, making it difficult to continue casting.

【0020】[0020]

【発明の効果】以上説明したように、本発明によれば、
長時間連続鋳造を行うときであっても、タンディッシュ
内溶鋼加熱装置のような特別な熱付与設備が不必要であ
り、しかも鋳造末期の溶鋼温度を確保するために、鋳造
初期の温度(溶鋼過熱度)を過度に上昇させる必要がな
くなるので、鋳片品質のバラツキや操業上のトラブルが
解決できる。加えて、鋳造の全区間で安定した鋳造操業
を確保することができる。
As described above, according to the present invention,
Even when performing continuous casting for a long time, no special heat application equipment such as a molten steel heating device in the tundish is required, and in order to secure the molten steel temperature at the end of casting, the temperature at the beginning of casting (molten steel Since it is not necessary to raise the superheat degree excessively, it is possible to solve variations in the quality of the slab and problems in operation. In addition, a stable casting operation can be secured in the entire casting section.

【図面の簡単な説明】[Brief description of drawings]

【図1】 二次精錬時間と取鍋内壁温度との関係を示す
グラフである。
FIG. 1 is a graph showing the relationship between secondary refining time and ladle inner wall temperature.

【図2】 連続鋳造時の溶鋼温度低下に及ぼす二次精錬
時間の影響を示すグラフである。
FIG. 2 is a graph showing the effect of secondary refining time on the temperature drop of molten steel during continuous casting.

【図3】 実施例における鋳造中の溶鋼温度変化と溶鋼
過熱度との関係を示すグラフである。
FIG. 3 is a graph showing the relationship between molten steel temperature change during casting and molten steel superheat degree in Example.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 森岡 宏泰 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究所内 Fターム(参考) 4E004 MB20 4K013 FA00 FA03    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Hiroyasu Morioka             1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba Made in Kawasaki             Technical Research Institute of Iron Co., Ltd. F-term (reference) 4E004 MB20                 4K013 FA00 FA03

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 長時間の連続鋳造を行うに当たり、この
連続鋳造に先立つ取鍋での二次精錬段階での処理を、そ
の取鍋内壁耐火物の温度がほぼ安定化する時間以上行う
ことを特徴とする長時間連続鋳造時の前処理方法。
1. When performing continuous casting for a long time, the treatment at the secondary refining stage in the ladle prior to this continuous casting is performed for a time longer than the temperature at which the temperature of the refractory material inside the ladle is substantially stabilized. A characteristic pretreatment method for long-term continuous casting.
【請求項2】 1チャージの連続鋳造にかける時間が、
70分/ch程度以上であることを特徴とする請求項1に記
載の前処理方法。
2. The time required for continuous casting of one charge is
The pretreatment method according to claim 1, which is about 70 minutes / ch or more.
【請求項3】 取鍋内壁耐火物の温度が安定化する時間
が、40分程度以上であることを特徴とする請求項1に記
載の前処理方法。
3. The pretreatment method according to claim 1, wherein the time for stabilizing the temperature of the refractory material on the inner wall of the ladle is about 40 minutes or more.
JP2001324394A 2001-10-23 2001-10-23 Pretreatment method for long-time continuous casting Expired - Fee Related JP3649175B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001324394A JP3649175B2 (en) 2001-10-23 2001-10-23 Pretreatment method for long-time continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001324394A JP3649175B2 (en) 2001-10-23 2001-10-23 Pretreatment method for long-time continuous casting

Publications (2)

Publication Number Publication Date
JP2003126946A true JP2003126946A (en) 2003-05-08
JP3649175B2 JP3649175B2 (en) 2005-05-18

Family

ID=19141124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001324394A Expired - Fee Related JP3649175B2 (en) 2001-10-23 2001-10-23 Pretreatment method for long-time continuous casting

Country Status (1)

Country Link
JP (1) JP3649175B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009248094A (en) * 2008-04-01 2009-10-29 Nippon Steel Corp Heat insulation method of molten steel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009248094A (en) * 2008-04-01 2009-10-29 Nippon Steel Corp Heat insulation method of molten steel

Also Published As

Publication number Publication date
JP3649175B2 (en) 2005-05-18

Similar Documents

Publication Publication Date Title
JP6484716B2 (en) Lean duplex stainless steel and manufacturing method thereof
US7967057B2 (en) Induction melting apparatus employing halide type crucible, process for producing the crucible, method of induction melting, and process for producing ingot of ultrahigh-purity Fe-, Ni-, or Co-based alloy material
WO2014002409A1 (en) Continuous casting mold and method for continuous casting of steel
JPH05212508A (en) Composite material nozzle assembly
JPS61103654A (en) Method of controlling condition of continuous casting
CN104109760A (en) Steel ingot medium-frequency induction furnace/electroslag furnace dual-smelting system and method and steel ingot
JP6772677B2 (en) Tandish internal molten steel heating method and tundish plasma heating device
JP2003126946A (en) Pretreatment method in case of long time continuous casting
JP4746412B2 (en) Continuous casting method
JPWO2006109739A1 (en) Casting method for molten alloy
JP2005297001A (en) Continuous casting method for steel
US4462824A (en) Annular tuyere
JP4770616B2 (en) Method for continuous casting of molten metal and immersion lance for continuous casting
US4477279A (en) Annular tuyere and method
KR102515295B1 (en) Manufacturing method of thin cast steel
KR100333074B1 (en) Large steel ingot casting by hot top heating method
JPH04313454A (en) Continuous casting method
JP2004115823A (en) Method for refining molten steel
JP2019217531A (en) Underside-pouring ingot making method
JP5218208B2 (en) Thermal insulation method for molten steel
JP5701720B2 (en) Mold for continuous casting of ingot made of titanium or titanium alloy and continuous casting apparatus provided with the same
JPS61115653A (en) Continuous casting method of medium-carbon steel
JP5169390B2 (en) Thermal insulation method for molten steel
JPS59223148A (en) Induction heating method of molten metal in tundish
JP2001276958A (en) Cast-iron made by continuous casting and it's producing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20031225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040803

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050207

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3649175

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080225

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090225

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090225

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100225

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100225

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110225

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120225

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120225

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130225

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130225

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees