JPS6333164A - Continuous casting method using heating mold - Google Patents

Continuous casting method using heating mold

Info

Publication number
JPS6333164A
JPS6333164A JP17799386A JP17799386A JPS6333164A JP S6333164 A JPS6333164 A JP S6333164A JP 17799386 A JP17799386 A JP 17799386A JP 17799386 A JP17799386 A JP 17799386A JP S6333164 A JPS6333164 A JP S6333164A
Authority
JP
Japan
Prior art keywords
mold
temperature
cooling water
ingot
controlling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17799386A
Other languages
Japanese (ja)
Inventor
Akira Yamazaki
明 山崎
Kosaku Nakano
中野 耕作
Masahide Shinohara
篠原 正秀
Hideaki Kudo
秀明 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
O C C KK
Original Assignee
Furukawa Electric Co Ltd
O C C KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd, O C C KK filed Critical Furukawa Electric Co Ltd
Priority to JP17799386A priority Critical patent/JPS6333164A/en
Publication of JPS6333164A publication Critical patent/JPS6333164A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE:To keep the heat balance and to obtain a cast billet having good surface quality by making the temp. near outlet of a mold for continuous casting drawing as water-cooling the cast billet from molten metal in the mold, heated electrically at the melting point of casting metal or more, within the controlling range by cooling water quantity control. CONSTITUTION:In the continuous casting drawing as cooling 5 the cast billet 3 from the molten metal 4 in the mold 2 heated electrically at the melting point of casting metal or more, the temp. near the outlet of mold 2 is kept at within the controlling temp. range, for example, in case of copper casting, 1,060-1,080 deg.C controlling temp. range, by controlling the cooling water 5 quantity. In this case, the boundary face 1 of solidification becomes to projecting-like at the prescribed position, and so in case of becoming recess-like for the boundary face 1 by decreasing the cooling water 5 and advancing the boundary face 1, development of friction skin breakage 6 with the mold 2 caused by decentering of the cast billet 3 is prevented and the surface of case billet makes to good quality.

Description

【発明の詳細な説明】 〔産業上の利用分野) 本発明は加熱鋳型連続鋳造法(以下OCC法と略記)に
関し、特に鋳塊品質の向上とその安定化を計ったもので
ある。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a heated mold continuous casting method (hereinafter abbreviated as OCC method), and is particularly aimed at improving and stabilizing the quality of the ingot.

(従来の技術及び発明が解決しようとする問題点)OC
C法は電力加熱により鋳造金属の融点以上に保持した鋳
型内に鋳造金属を供給し、鋳型より引出す鋳塊を水冷し
て、鋳型内で鋳塊と接触する溶湯を連続的に凝固させる
もので、加熱鋳型の温度管理は高品質鋳塊を得るために
、最も重要な管理項目となっている。しかし鋳型温度を
高精度に管理しても、他の条件が不安定になると鋳塊品
質は低下する。このような外乱因子として特に大きな影
響を及ぼすものに冷却水量の変動がある。
(Prior art and problems to be solved by the invention) OC
Method C is a method in which the cast metal is supplied into a mold that is heated to a temperature above the melting point of the cast metal using electric heating, and the ingot that is pulled out of the mold is cooled with water to continuously solidify the molten metal that comes into contact with the ingot within the mold. , temperature control of heated molds is the most important control item in order to obtain high quality ingots. However, even if the mold temperature is controlled with high precision, the quality of the ingot will deteriorate if other conditions become unstable. Among such disturbance factors, fluctuations in the amount of cooling water have a particularly large effect.

冷却水には一般的に工業用水が使用されているが、他の
工業設備等の使用量によって給水圧力に変動を生じ、こ
れに伴い水量の変動を生じる。OCC法では所定水量の
約5%の冷却水減少によって鋳塊品質を大きく低下する
。この冷却水の変化は、例えば2j!/minの流量に
対して0.1 f/minの変化であり、この程度の変
動は工業的に避けられないのが現状である。
Industrial water is generally used as cooling water, but the water supply pressure varies depending on the amount used by other industrial equipment, and the amount of water changes accordingly. In the OCC method, the quality of the ingot is significantly reduced by reducing the amount of cooling water by about 5% of the predetermined amount of water. This change in cooling water is, for example, 2j! This is a change of 0.1 f/min for a flow rate of 0.1 f/min, and at present, this degree of variation is unavoidable industrially.

従来OCC法における加熱鋳型の温度は、鋳型肉厚のほ
ぼ中心部に挿入した熱電対により検出し、温調器のPI
D制御によって高精度の制御を行なっている。しかし冷
却水の減少によって熱収支が崩れ、鋳塊表面に微細な割
れ等の欠陥を発生する。この原因は成る安定条件下で鋳
造が行なわれていた時、冷却水が減少すると冷却能が低
下し、鋳型内の凝固界面は鋳型出口側(前方)に移動す
る。一方鋳型の温度は凝固界面の移動分だけ鋳型内の溶
湯量が増加するから、溶湯の熱によって上昇する。ここ
で温調器は鋳型温度を一定とすべく発熱体への供給電力
を自動的に低減させ、鋳型温度を初期の温度(設定温度
)に戻す。この過程で鋳塊表面に微細な割れを発生する
。即ち安定条件下での鋳造状態は第2図に示すように凝
固界面(1)は平坦又は凸状であり、鋳型(2)と鋳塊
(3)は溶湯(4)を介しているので、溶湯、(4)の
潤滑効果によって削れは発生せず、高品質の鋳塊(3)
が得られる。
In the conventional OCC method, the temperature of the heated mold is detected by a thermocouple inserted approximately in the center of the mold wall thickness, and the temperature of the heated mold is detected by the PI of the temperature controller.
Highly accurate control is performed using D control. However, the decrease in cooling water disrupts the heat balance and causes defects such as minute cracks on the surface of the ingot. The reason for this is that when casting is performed under stable conditions, when the amount of cooling water decreases, the cooling capacity decreases, and the solidification interface in the mold moves toward the mold outlet side (forward). On the other hand, the temperature of the mold increases due to the heat of the molten metal because the amount of molten metal in the mold increases by the movement of the solidification interface. Here, the temperature controller automatically reduces the power supplied to the heating element to keep the mold temperature constant, and returns the mold temperature to the initial temperature (set temperature). During this process, minute cracks occur on the surface of the ingot. In other words, under stable conditions, the solidification interface (1) is flat or convex as shown in Figure 2, and the mold (2) and ingot (3) are connected through the molten metal (4). Due to the lubrication effect of the molten metal and (4), no scraping occurs, resulting in a high quality ingot (3)
is obtained.

面図において(5)は冷却水を示す。これに対し冷却水
が減少すると第3図に示すように、凝固界面(1)が前
方に移動し、鋳型(2)の温度が上昇する。この時点で
熱の収支は保たれているが、ここで温調器が作動し、鋳
型(2)の温度を設定値まで下げることにより熱の収支
が崩れ、はぼ平坦であった凝固界面(1)は凹状になる
。このとき鋳塊(3)と鋳型(2)のわずかな偏心によ
り両者間に摩擦を生じ、スキン破断(6)を生ずる。
In the top view, (5) indicates cooling water. On the other hand, when the cooling water decreases, as shown in FIG. 3, the solidification interface (1) moves forward and the temperature of the mold (2) increases. At this point, the heat balance is maintained, but at this point the temperature controller is activated and lowers the temperature of the mold (2) to the set value, causing the heat balance to collapse and the solidification interface (which was almost flat) to 1) becomes concave. At this time, due to slight eccentricity between the ingot (3) and the mold (2), friction occurs between the two, resulting in skin breakage (6).

このように鋳型の温度調整のみを高精度化しても、冷却
水量の変動を押えなくては効果がない。
In this way, even if only the temperature control of the mold is made highly accurate, it will not be effective unless fluctuations in the amount of cooling water are suppressed.

〔問題点を解決するための手段及び作用〕本発明はこれ
に鑑みこ種々検討の結果、冷却水が変動しても鋳塊の欠
陥発生がなく、安定して高品質の鋳塊を製造することが
できるOCC法を開発したもので、鋳造金属の融点以上
に保持した鋳型内に、鋳造金属を供給し、鋳型より引出
す鋳塊を水冷して鋳型内で鋳塊と接触する溶湯を連続的
に凝固させる鋳造法において、鋳型を電力加熱により鋳
造金属の融点以上に保持し、鋳型出口近傍の温度を検知
し、この温度が管理温度範囲内となるように鋳塊の冷却
水量を制御することを特徴とするものである。
[Means and effects for solving the problems] In view of this, the present invention has been developed as a result of various studies, and it is possible to stably produce high-quality ingots without causing defects in the ingots even if the cooling water fluctuates. In this method, the cast metal is supplied into a mold that is maintained at a temperature higher than the melting point of the cast metal, and the ingot that is pulled out of the mold is water-cooled to continuously cool the molten metal that comes into contact with the ingot within the mold. In the casting method that solidifies the metal, the mold is maintained at a temperature above the melting point of the cast metal by electric heating, the temperature near the mold outlet is detected, and the amount of cooling water for the ingot is controlled so that this temperature is within the controlled temperature range. It is characterized by:

本発明は上記の如く鋳型温度の自動制御は行わず、鋳型
が鋳造金属の融点以上になるように電力加熱、例えば鋳
型加熱用発熱体に電力を供給し、その電力を保持する。
In the present invention, the mold temperature is not automatically controlled as described above, but electric power is heated, for example, electric power is supplied to a heating element for heating the mold, and the electric power is maintained so that the temperature of the mold is higher than the melting point of the cast metal.

そして鋳型の温度は、その出口より後方、例えば10.
の所に挿入した熱電対により検知し、この鋳型温度が高
品質鋳塊を得ることができる温度範囲内に管理するもの
である。鋳型温度は冷却水の変化によって変化するが、
この温度が管理温度範囲内で変化する時は、この状態を
保持(冷却水の増減調整は行わない)し、鋳型温度が管
理温度範囲外又は管理温度範囲外となりそうな時に冷却
水母の調整を行うものである。
The temperature of the mold is set at a temperature downstream of the outlet, for example, 10.
The temperature of the mold is controlled within a temperature range that allows high-quality ingots to be obtained. Mold temperature changes due to changes in cooling water,
When this temperature changes within the controlled temperature range, maintain this state (do not adjust the increase or decrease of the cooling water), and adjust the cooling water base when the mold temperature is outside the controlled temperature range or is about to go outside the controlled temperature range. It is something to do.

管理温度範囲及び冷却水量の調整はおらかじめ鋳造金属
について鋳塊品質と鋳塊温度の関係と、水量と鋳型温度
の関係を求めておき、単に冷却水量を管理することによ
って鋳型温度を管理することができる。
To adjust the control temperature range and amount of cooling water, determine the relationship between ingot quality and ingot temperature and the relationship between water amount and mold temperature for the cast metal in advance, and then manage the mold temperature simply by controlling the amount of cooling water. Can be done.

〔実施例〕〔Example〕

OCC法により直径15mの無酸素銅(OFC)鋳塊を
製造した。鋳型加熱用発熱体への供給電力を一定(1,
5に−)とし、鋳型出口の後方10711111の所に
熱電対を挿入し、鋳塊を水冷して毎分150 mの鋳造
速度で鋳造し、高品質鋳塊が得られる管理温度範囲と冷
却水量の関係を調べた。
An oxygen-free copper (OFC) ingot with a diameter of 15 m was produced by the OCC method. The power supplied to the heating element for mold heating is constant (1,
5-), insert a thermocouple at 10711111 behind the mold outlet, cool the ingot with water, and cast at a casting speed of 150 m/min. Control temperature range and amount of cooling water to obtain a high quality ingot. We investigated the relationship between

その結果第1図に示すように管理温度範囲は1060〜
1080℃であり、そのときの冷却水量は1.5〜2.
Of/minの範囲内で制御すればよいことが判る。
As a result, as shown in Figure 1, the control temperature range is 1060~
The temperature is 1080°C, and the amount of cooling water at that time is 1.5 to 2.
It can be seen that it is sufficient to control within the range of Of/min.

そこで鋳型出口の温度を1060〜1080℃に設定し
、冷却水量により鋳型出口の温度を調整した。
Therefore, the temperature at the mold outlet was set at 1060 to 1080°C, and the temperature at the mold outlet was adjusted by adjusting the amount of cooling water.

即ち冷却水量を約1.7 、g/minとして鋳造を開
始し、その後水圧の変動により鋳型出口の温度が変化す
るが、この温度変化が1060〜1080℃の範囲内で
あれば冷却水の増減調整を行なわず、鋳型出口の温度が
1060℃又はその近傍に下がったときに冷却水量を1
.51/minに減じ、鋳型出口の温度が1080℃又
はその近傍に上がったときに冷却水量を2.01/mi
nに増加した。その結果、得られた高品質鋳塊の表面に
はスキン破断が仝く認められなかった。
That is, casting is started with a cooling water amount of approximately 1.7 g/min, and then the temperature at the mold outlet changes due to fluctuations in water pressure, but if this temperature change is within the range of 1060 to 1080°C, the cooling water can be increased or decreased. If the temperature at the mold outlet drops to 1060℃ or around 1060℃ without adjustment, reduce the cooling water amount by 1.
.. 51/min, and when the mold outlet temperature rises to 1080℃ or around 1080℃, the cooling water flow rate is reduced to 2.01/min.
increased to n. As a result, no skin breakage was observed on the surface of the obtained high-quality ingot.

(発明の効果) このように本発明によれば精密な制御機器を必要とせず
、長時間安定して高品質鋳塊を得ることができる等、工
業上顕著な効果を奏するものである。
(Effects of the Invention) As described above, the present invention provides remarkable industrial effects, such as being able to stably obtain high-quality ingots for a long time without requiring precise control equipment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明における鋳型出口温度と冷却水量の関係
を示す説明図、第2図及び第3図はOCC法における鋳
造状態を示すもので、第2図は条件安定鋳造状態、第3
図は条件不安定鋳造状態を示す。 1、凝固界面   2.鋳型 3、鋳塊     4.溶湯 5、冷却水    6.スキン破断 第1図 第2図   第3図
Fig. 1 is an explanatory diagram showing the relationship between the mold outlet temperature and the amount of cooling water in the present invention, Figs. 2 and 3 show the casting state in the OCC method, and Fig. 2 shows the stable casting state,
The figure shows unstable casting conditions. 1. Solidification interface 2. Mold 3, ingot 4. Molten metal 5, cooling water 6. Skin rupture Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 鋳造金属の融点以上に保持した鋳型内に、鋳造金属を供
給し、鋳型より引出す鋳塊を水冷して鋳型内で鋳塊と接
触する溶湯を連続的に凝固させる鋳造法において、鋳型
を電力加熱により鋳造金属の融点以上に保持し、鋳型出
口近傍の温度を検知し、この温度が管理温度範囲内とな
るように鋳塊の冷却水量を制御することを特徴とする加
熱鋳型連続鋳造法。
A casting method in which the cast metal is supplied into a mold held at a temperature above the melting point of the cast metal, the ingot pulled out from the mold is water-cooled, and the molten metal that comes into contact with the ingot in the mold is continuously solidified.The mold is heated by electricity. A heating mold continuous casting method characterized by maintaining the temperature at or above the melting point of the cast metal, detecting the temperature near the mold outlet, and controlling the amount of cooling water for the ingot so that this temperature is within the controlled temperature range.
JP17799386A 1986-07-29 1986-07-29 Continuous casting method using heating mold Pending JPS6333164A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17799386A JPS6333164A (en) 1986-07-29 1986-07-29 Continuous casting method using heating mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17799386A JPS6333164A (en) 1986-07-29 1986-07-29 Continuous casting method using heating mold

Publications (1)

Publication Number Publication Date
JPS6333164A true JPS6333164A (en) 1988-02-12

Family

ID=16040665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17799386A Pending JPS6333164A (en) 1986-07-29 1986-07-29 Continuous casting method using heating mold

Country Status (1)

Country Link
JP (1) JPS6333164A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6030565A (en) * 1983-07-21 1985-02-16 O C C:Kk Method for stabilizing surface shape of ingot with heated casting mold type continuous casting method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6030565A (en) * 1983-07-21 1985-02-16 O C C:Kk Method for stabilizing surface shape of ingot with heated casting mold type continuous casting method

Similar Documents

Publication Publication Date Title
JPH0688106B2 (en) Horizontal continuous casting method for strip-shaped metal ingot and its equipment
JPH051102B2 (en)
JPS6333164A (en) Continuous casting method using heating mold
US20190076918A1 (en) Dynamically positioned diffuser for metal distribution during a casting operation
JPH07132349A (en) Twin roll type continuous casting method
SU806236A1 (en) Method of continuous ingot casting
JPS62292242A (en) Method and apparatus for continuous casting of metallic material
JPH03133543A (en) Continuous casting method
JPS6127147B2 (en)
JPH079093A (en) Method for adjusting temperature of cooling water for casting
JPS63224846A (en) Method and apparatus for continuously casting metal strip
JPH02133155A (en) Method for preventing longitudinal crack of continuously cast slab
RU2080208C1 (en) Method of continuous casting of blanks in mold with porous shaping member
JPH07115131B2 (en) Twin roll casting machine
KR100490998B1 (en) Method For Continuous Casting A Strip
JPS6153143B2 (en)
JPH05131B2 (en)
JPS6127148B2 (en)
JPH02175049A (en) Method for continuously casting metal pipe
JPH0243569B2 (en)
JPS6087956A (en) Continuous casting method of metal
RU2009005C1 (en) Method of producing sheet slab from aluminium and its alloys
JPH06226406A (en) Continuous casting apparatus and continuous casting method
CN114713780A (en) Method for improving stability of solidification zone of molten silicon steel in thin strip continuous casting process
RU2043832C1 (en) Method of continuous casting of metal