JPH051102B2 - - Google Patents

Info

Publication number
JPH051102B2
JPH051102B2 JP60008536A JP853685A JPH051102B2 JP H051102 B2 JPH051102 B2 JP H051102B2 JP 60008536 A JP60008536 A JP 60008536A JP 853685 A JP853685 A JP 853685A JP H051102 B2 JPH051102 B2 JP H051102B2
Authority
JP
Japan
Prior art keywords
mold
molten metal
continuous casting
solidification
casting method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60008536A
Other languages
Japanese (ja)
Other versions
JPS61169149A (en
Inventor
Masanori Kato
Kanji Tanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NITSUKO KYOSEKI KK
Original Assignee
NITSUKO KYOSEKI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NITSUKO KYOSEKI KK filed Critical NITSUKO KYOSEKI KK
Priority to JP853685A priority Critical patent/JPS61169149A/en
Publication of JPS61169149A publication Critical patent/JPS61169149A/en
Publication of JPH051102B2 publication Critical patent/JPH051102B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/045Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds for horizontal casting

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Description

【発明の詳細な説明】 本発明は、金属の連続鋳造方法に関するもので
あり、さらに詳しく述べるならば、銅、貴金属、
アルミニウム、亜鉛、スズまたはこれらの合金を
容易に一方向凝固させることができる連続鋳造方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a continuous casting method for metals, and more specifically, copper, precious metals,
The present invention relates to a continuous casting method that allows easy unidirectional solidification of aluminum, zinc, tin, or alloys thereof.

高速鋳造、大型品の鋳造に広く用いられている
通常の連続鋳造法は鋳型により溶湯を積極的に冷
却(一次冷却)するため、鋳型内壁側の溶湯に結
晶核が発生すると、これより結晶成長は温度勾配
のもつとも強い方向、即ち鋳型軸方向内向きに起
こり、この結果凝固界面が引き抜き方向に対して
先細りに、すなわち凹状になる。すると不純物成
分が鋳造棒の中心に集中し濃縮する結果鋳造製品
中心の内部欠陥などの品質劣化が起こる。凹状に
なる程度は銅やアルミニウムなどでは少なく鉄鋼
では非常に大きい。このため鋳塊が塑性加工時に
柱状晶成長方向に圧縮された場合に、合金によつ
ては粒界割れを生じる。また一次冷却のときに鋳
造殻が溶湯静水圧を受けているから鋳型内壁と摩
擦し、肌荒れが起こるので鋳肌に問題がある。
In the normal continuous casting method, which is widely used for high-speed casting and casting of large products, the molten metal is actively cooled by the mold (primary cooling), so when crystal nuclei are generated in the molten metal on the inner wall of the mold, crystal growth occurs. This occurs in the direction where the temperature gradient is strongest, ie, inward in the axial direction of the mold, and as a result, the solidification interface becomes tapered, ie, concave, in the drawing direction. As a result, impurity components concentrate and concentrate in the center of the cast rod, resulting in quality deterioration such as internal defects in the center of the cast product. The degree of concaveness is small in copper and aluminum, but is very large in steel. For this reason, when the ingot is compressed in the direction of columnar crystal growth during plastic working, intergranular cracking may occur depending on the alloy. Furthermore, during primary cooling, the casting shell is subjected to hydrostatic pressure of the molten metal, which causes friction with the inner wall of the mold, causing surface roughness, which causes problems with the casting surface.

この欠点を解決するために、特公昭55−46265
号のように、鋳型を加熱して鋳型入口部では凝固
を妨げ、鋳型出口部で凝固させる装置が提案され
ている。この方法では、鋳型を内圧ヒーターによ
る加熱により鋳型内壁での結晶核発生を抑制する
ことにより、凝固界面は凹にならず凸状又は平坦
になる。また鋳型内では凝固が開始しないため凝
固殻が溶湯静水圧の作用を受けて鋳型内壁と摩擦
することによる鋳肌荒れなどが起こらず、表面品
質が優れている。上述のような鋳造過程を実現す
るためには金属は熱伝導性に優れていること、鋳
造製品が小径もしくは薄肉であることが必要であ
る。
In order to solve this drawback,
A device has been proposed that heats a mold to prevent solidification at the mold entrance and solidify at the mold exit. In this method, by heating the mold with an internal pressure heater to suppress the generation of crystal nuclei on the inner wall of the mold, the solidified interface becomes convex or flat instead of concave. Furthermore, since solidification does not start within the mold, the solidified shell is subjected to the action of hydrostatic pressure of the molten metal and does not cause roughening of the casting surface due to friction with the mold inner wall, resulting in excellent surface quality. In order to realize the above-described casting process, the metal must have excellent thermal conductivity, and the cast product must have a small diameter or thin wall.

しかしながら、この方法では鋳型内では凝固が
起こらないようにする必要があるため、凝固が鋳
型出口側直前の位置で開始するように引抜速度を
微妙に調節する必要があり、これに失敗すると直
にブレークアウトが起こる。また鋳型にヒーター
を内在させるために鋳型の構造が複雑になり、操
業も難しい。
However, with this method, it is necessary to prevent solidification from occurring inside the mold, so it is necessary to delicately adjust the drawing speed so that solidification starts just before the mold outlet. A breakout occurs. Furthermore, since the heater is built into the mold, the structure of the mold becomes complicated, making operation difficult.

本発明はこのような問題点を解消するととも
に、上記した金属や合金を、電子機器内配線ある
いは電子機器間配線等の細物導電線材を製造する
素材としてのロツド等に鋳造する際に要求される
材質の項目である下記: 1 異物、ピンホール等内部欠陥の少ないこと 2 長尺物で均一な品質をもつもので、偏析の少
ないこと 3 柱状晶がロツドの中心に向かつて成長しない
こと の条件を満たすことが出来、さらに鋳造の際の安
全性も満たす連続鋳造方法を提供するものであ
る。
The present invention solves these problems, and also solves the problems required when casting the above-mentioned metals and alloys into rods, etc., as materials for manufacturing thin conductive wires for wiring inside electronic devices or between electronic devices. The following are the material requirements for the rod: 1. It must have few internal defects such as foreign matter and pinholes. 2. It must be long and of uniform quality, with little segregation. 3. It must have no columnar crystals that grow towards the center of the rod. The object of the present invention is to provide a continuous casting method that satisfies the conditions and also satisfies safety during casting.

即ち、本発明の方法は、溶融金属浴を保持する
装置に固定した鋳型の一端を前記溶融金属浴に突
出させて該溶融金属の熱により加熱し、鋳型の他
端を冷却構造体により冷却することにより凝固界
面を前記鋳型の前記一端よりも前記他端側に位置
させるとともに、前記凝固界面が鋳塊の縦断面か
ら見て平坦になるような鋳造速度で該鋳塊をパル
ス引抜きをして一方向凝固組織を得ることを特徴
とする連続鋳造方法である。さらに本発明は実施
態様として以下の連続鋳造法を提供する。
That is, in the method of the present invention, one end of a mold fixed to a device holding a molten metal bath is made to protrude into the molten metal bath and heated by the heat of the molten metal, and the other end of the mold is cooled by a cooling structure. By this, the solidification interface is located closer to the other end than the one end of the mold, and the ingot is subjected to pulse drawing at a casting speed such that the solidification interface becomes flat when viewed from a longitudinal section of the ingot. This is a continuous casting method characterized by obtaining a unidirectionally solidified structure. Furthermore, the present invention provides the following continuous casting method as an embodiment.

鋳型の材料が、熱良導体の耐火物である連続鋳
造方法。
A continuous casting method in which the mold material is a refractory material that is a good thermal conductor.

鋳型の冷却構造体の溶融金属浴側から、鋳型壁
面に不活性ガス及び又は中性ガスを吹き込む連続
鋳造方法。
A continuous casting method in which inert gas and/or neutral gas is blown into the mold wall from the molten metal bath side of the mold cooling structure.

以下本発明を詳細に説明する。 The present invention will be explained in detail below.

本発明方法が適用される金属は、銅;金、銀な
どの貴金属;アルミニウム;亜鉛;スズおよびこ
れらの合金である。これらの金属は熱良導体であ
り、以下説明するような凝固過程を経て一方向凝
固される。
Metals to which the method of the present invention is applied are copper; noble metals such as gold and silver; aluminum; zinc; tin and alloys thereof. These metals are good thermal conductors and are unidirectionally solidified through a solidification process as described below.

本発明の鋳型は上記金属、合金の溶湯を保持す
る装置に固定されており、鋳型の一端は溶融金属
浴に突出している。鋳型の一端を溶融金属内に突
出させることにより溶融金属の熱により鋳型を加
熱する。この事によりヒーターなどの別の加熱手
段を用いずに鋳型の加熱が可能になるので、加熱
のための構造が簡単となる。
The mold of the present invention is fixed to a device that holds a molten metal or alloy, and one end of the mold projects into the molten metal bath. By protruding one end of the mold into the molten metal, the mold is heated by the heat of the molten metal. This makes it possible to heat the mold without using a separate heating means such as a heater, which simplifies the heating structure.

さらに、溶融金属内に鋳型の一端を十分に突出
させると、鋳型は溶融金属の温度に加熱されかつ
引抜方向の軸と直交方向では温度勾配は生じな
い。引抜方向の軸と直交方向の温度勾配は鋳型の
他端では冷却構造体による冷却により発生してい
るが、冷却構造体の配置位置を凝固界面での引抜
方向と直交方向の温度勾配が生じない程度に鋳型
の先端から遠ざけるようにしている。一方、凝固
界面の発生位置は、仮に鋳型を溶融金属内に突出
させないとすると、鋳型先端より若干内側となり
かつ凝固界面の形状が凹状になるが、本発明のよ
うに鋳型を溶融金属内に突出させるとともに冷却
構造体での冷却を強く行うと、鋳造金属の熱が鋳
造方向に奪われる結果、溶融金属内に突出した鋳
型内で金属の温度が下がり、凝固が開始する。こ
のように凝固が開始すると、凝固界面に接する水
平面で見た温度勾配は鋳型外側から内側に向かう
方向で減少し、鋳型による加熱が起こつて鋳造棒
の周辺が溶解し凝固界面が凸状になる。また、引
抜の速度を調節することにより、鋳型からの加熱
を弱め凝固界面を平坦にすることもできる。この
ような状態で熱伝導が高い金属を鋳造すると、鋳
塊の縦断面から見た凝固界面は平坦に保つたまま
連続鋳造により一方向凝固組織を得ることができ
る。
Furthermore, when one end of the mold is sufficiently protruded into the molten metal, the mold is heated to the temperature of the molten metal and no temperature gradient occurs in the direction orthogonal to the axis of the drawing direction. A temperature gradient in the direction perpendicular to the axis in the drawing direction is generated at the other end of the mold due to cooling by the cooling structure, but the position of the cooling structure is arranged so that no temperature gradient occurs in the direction perpendicular to the drawing direction at the solidification interface. I try to keep it as far away from the tip of the mold as possible. On the other hand, if the mold were not to protrude into the molten metal, the solidification interface would be generated slightly inside the mold tip and the solidification interface would have a concave shape, but if the mold were not to protrude into the molten metal as in the present invention, When the cooling structure is used to strongly cool the metal, the heat of the cast metal is removed in the casting direction, and as a result, the temperature of the metal decreases in the mold protruding into the molten metal, and solidification begins. When solidification begins in this way, the temperature gradient seen on the horizontal plane in contact with the solidification interface decreases from the outside of the mold toward the inside, and heating by the mold occurs, melting the periphery of the cast rod and making the solidification interface convex. . Furthermore, by adjusting the drawing speed, it is possible to weaken the heating from the mold and flatten the solidification interface. When a metal with high thermal conductivity is cast in such a state, a unidirectional solidification structure can be obtained by continuous casting while keeping the solidification interface flat when viewed from the longitudinal section of the ingot.

溶融金属の熱で鋳型を加熱することによる他の
特徴は、鋳造金属の溶解温度に鋳型が加熱される
ために、融点より極端に高い温度に鋳型が加熱さ
れることはなく、鋳型加熱温度が適正温度に自動
的に調節され、過剰加熱が起こらないことであ
る。
Another feature of heating the mold with the heat of the molten metal is that the mold is heated to the melting temperature of the cast metal, so the mold is not heated to a temperature extremely higher than the melting point, and the mold heating temperature is The temperature is automatically adjusted to the appropriate temperature and overheating does not occur.

また、凝固界面の形状は鋳塊の引抜き速度即ち
鋳造速度により影響され、引抜速度が極端に速い
と、凝固界面の形状は鋳塊の縦断面から見て凹状
(鋳造方向に凝固金属が凹んだ形状)になる。こ
のような鋳造条件では本発明が目的とする鋳造組
織は得られない。
In addition, the shape of the solidification interface is influenced by the drawing speed of the ingot, that is, the casting speed. shape). Under such casting conditions, the cast structure aimed at by the present invention cannot be obtained.

さらに安定な操業及び安定な品質の面ではパル
ス引抜が必要であることが分かつた。パルス引抜
とは、一定の短時間引抜を行い、その後短時間引
抜を停止するサイクルを繰り返して引抜を行う方
法である。例えば4.5秒の停止、0.5秒の引抜と言
う断続的引抜を行う。パルス引抜の停止期間は、
鋳塊と鋳型との摩擦がないので肌荒れが起こら
ず、また凝固界面は鋳型入口方向に向かつて引抜
き停止前の位置に戻るために、ブレークアウトが
起こり難くなる。また、パルスなし引抜の引抜速
度とパルス引抜の平均引抜速度が同じである前提
で両者を比較すると、後者の引抜中の速度は前者
の引抜速度よりも高くなるにも拘らず摩擦による
肌荒れが後者の方が少ない。これは本発明の方法
では凝固界面が凹状にならないので、通常の連続
鋳造法のように溶融の精水圧が凝固殻にかかり鋳
型と摩擦して成長中の薄い凝固殻が傷つけれられ
ることがなく、さらに引抜停止中に摩擦が皆無に
なるからである。
Furthermore, it was found that pulse drawing is necessary for stable operation and stable quality. Pulse drawing is a method in which drawing is performed by repeating a cycle in which drawing is performed for a fixed short period of time, and then drawing is stopped for a short period of time. For example, perform intermittent withdrawal such as stopping for 4.5 seconds and withdrawing for 0.5 seconds. The stop period of pulse extraction is
Since there is no friction between the ingot and the mold, roughness does not occur, and the solidified interface moves toward the mold entrance and returns to the position before stopping the drawing, making it difficult for breakouts to occur. In addition, when comparing the two on the assumption that the average pulling speed of non-pulsed drawing and pulsed drawing are the same, it is found that although the speed during drawing of the latter is higher than that of the former, the surface roughness due to friction is worse in the latter. There are fewer. This is because in the method of the present invention, the solidification interface does not become concave, so the pressure of molten water is applied to the solidified shell and does not rub against the mold and damage the growing thin solidified shell, as in normal continuous casting methods. Furthermore, there is no friction at all during the withdrawal stop.

このように引抜停止時間は重要な役割をもつの
で、停止時間が引抜時間より長い方が好ましい。
すなわち、温度勾配が安定を持つて引抜を行い、
凝固界面を僅かに鋳造方向に移動させそして引抜
を停止し、その以前には溶融金属があつた位置に
おいて一方向凝固を開始させるとともに温度勾配
を安定して形成させるように引抜を十分な長時間
停止する。好ましくは停止時間/引抜時間の比率
が5以上である。また同様の理由により1回の引
抜長さは短いことが好ましい。例えば3mm/回の
引抜長さが好ましい。
As described above, the stopping time for drawing out plays an important role, so it is preferable that the stopping time is longer than the drawing time.
In other words, drawing is performed with a stable temperature gradient,
The solidification interface is moved slightly in the casting direction, the drawing is stopped, and the drawing is continued for a long enough time to allow unidirectional solidification to begin at the location where the molten metal was previously and to form a stable temperature gradient. Stop. Preferably, the ratio of stopping time/drawing time is 5 or more. Further, for the same reason, it is preferable that the length of one drawing is short. For example, a drawing length of 3 mm/time is preferred.

上述のような鋳造方法では結晶粒の非常に大き
い鋳造組織を得ることができる。本発明では凝固
方向は一方向であるので、鋳塊の径が小さいと理
論的には鋳塊全体を単結晶とする程度の粗大組織
を生成することができる。しかし実際には鋳造の
初期に核発生が数カ所で起こるのでその後生成す
る結晶も多結晶となる。そうであるにせよ凝固方
向が一方向であるので、鋳造中の新たな核発生が
なくあるいはあつても少なく、この結果鋳型の断
面で結晶が数個といつた大きな結晶を成長させる
ことができる。
With the above-described casting method, a cast structure with very large crystal grains can be obtained. In the present invention, since the solidification direction is unidirectional, if the diameter of the ingot is small, it is theoretically possible to generate a coarse structure that makes the entire ingot a single crystal. However, in reality, nucleation occurs at several locations during the initial stage of casting, so the crystals that are formed thereafter also become polycrystalline. Even so, since the solidification direction is unidirectional, there is no or very little new nucleation during casting, and as a result, it is possible to grow large crystals with only a few crystals in the cross section of the mold. .

以上の連続鋳造方法をより好ましくするための
鋳型の材料としては、例えば、窒化珪素、炭化珪
素、黒鉛等の熱良導体の耐火物を用いる。
As a mold material for making the above continuous casting method more preferable, for example, a refractory material with good thermal conductivity such as silicon nitride, silicon carbide, graphite, etc. is used.

また、鋳型の冷却構造体の溶融金属浴側から、
鋳型壁面に不活性ガス及び/又は中性ガスを吹き
込む構造とすることにより、該ガスを鋳型壁面と
鋳塊の間の間〓から溶融金属中に送入し、溶融金
属を鋳型への入口部で撹拌混合することができ
る。この撹拌混合により凝固金属の偏析を防止し
かつ溶融金属の温度を均一に保持することができ
る。ガス管は冷却構造体と接した鋳型の部分と、
接しない鋳型の入口側との間に間〓を設け、この
間〓に装入できる構造であることが好ましい。
Also, from the molten metal bath side of the cooling structure of the mold,
By having a structure in which inert gas and/or neutral gas is blown into the mold wall, the gas is introduced into the molten metal from between the mold wall and the ingot, and the molten metal is introduced into the inlet to the mold. Can be mixed by stirring. This stirring and mixing can prevent segregation of the solidified metal and maintain a uniform temperature of the molten metal. The gas pipe is connected to the part of the mold that is in contact with the cooling structure,
It is preferable that a gap be provided between the mold and the inlet side of the mold that are not in contact with each other, so that the material can be charged between the two.

さらに本発明に用いる鋳型は、溶解炉又は保持
炉の下部に鋳型を設けた縦型鋳造方式、あるいは
溶解炉又は保持炉の側壁横に設けた水平鋳造方式
のいずれであつてもよい。
Further, the mold used in the present invention may be either a vertical casting method in which the mold is provided at the lower part of the melting furnace or holding furnace, or a horizontal casting method in which the mold is provided next to the side wall of the melting furnace or holding furnace.

本発明方法に対しては、鋳塊製品の大きさはあ
まり大径のものは適さず、例えば直径が20mm以下
の鋳塊が適する。これは、鋳型の熱が溶融金属あ
るいは固液共存状態の金属に伝わり、鋳型冷却が
凝固に支配的で有る寸法範囲で好ましい一方向凝
固が可能になるからである。
For the method of the present invention, it is not suitable for the ingot product to have a very large diameter; for example, an ingot with a diameter of 20 mm or less is suitable. This is because the heat of the mold is transmitted to the molten metal or the metal in a solid-liquid coexistence state, and desirable unidirectional solidification is possible in the size range where mold cooling is dominant for solidification.

以上のように本発明を実施することにより、以
下の効果を得ることができる。
By implementing the present invention as described above, the following effects can be obtained.

(1) ブレークアウトの危険がなく、一方向凝固組
織の長尺金属塊を得ることができる。
(1) Long metal ingots with unidirectional solidification structure can be obtained without the risk of breakout.

(2) 異物の混入、ピンホールがない長尺金属塊を
得ることができる。
(2) It is possible to obtain long metal ingots that are free from foreign matter and pinholes.

(3) 偏析が少ない一方向凝固の鋳塊を得ることが
できる。
(3) A unidirectionally solidified ingot with little segregation can be obtained.

(4) パルス引き抜きにより鋳塊表面が極めて滑ら
かである。
(4) The surface of the ingot is extremely smooth due to pulse drawing.

(5) 一方向凝固のため、加工性が極めて良い。(5) Due to unidirectional solidification, workability is extremely good.

(6) 結晶粒の大きい長尺金属塊を得ることができ
るため、機器内電線(例えば、オーデイオ機器
用電線)等の細物の導電線用材としてのロツド
を製造するために適する。
(6) Since a long metal lump with large crystal grains can be obtained, it is suitable for manufacturing rods as materials for thin conductive wires such as wires for equipment (for example, wires for audio equipment).

以下実施例によりさらに詳しく本発明を説明す
る。
The present invention will be explained in more detail with reference to Examples below.

実施例 1 第1図に示した装置を用いて実施した。Example 1 The experiment was carried out using the apparatus shown in FIG.

溶解炉2底部側壁に取付けた11mm径の孔を有す
るグラフアイト鋳型6に外径10.6mmの純銅棒の端
を溶融金属1供給側より10mm内側に位置させた。
The end of a pure copper rod with an outer diameter of 10.6 mm was placed 10 mm inside the molten metal 1 supply side in a graphite mold 6 having a hole with a diameter of 11 mm attached to the bottom side wall of the melting furnace 2.

溶解炉2には溶解された純銅50Kgを入れ1250℃
に保持した。溶融金属供給側と反対側に設置され
た冷却構造体5に8/分の水を通じ、純銅の凝
固位置を鋳型内の溶融金属供給側に設定した。
Put 50kg of melted pure copper into melting furnace 2 and heat it to 1250℃.
was held at Water was passed at a rate of 8/min through the cooling structure 5 installed on the side opposite to the molten metal supply side, and the solidification position of the pure copper was set on the molten metal supply side in the mold.

グラフアイト鋳型6に第1図に示すごとくN2
ガスを4より導入し、鋳造ロツド3の表面を覆い
つつ溶融金属中へ噴出させ、溶融金属を撹拌しか
つ温度および金属成分のバラツキをなくした。尚
N2ガスが、溶融金属側のみに放出されるよう、
ガスシール8を設けた。
N 2 was applied to the graphite mold 6 as shown in Figure 1.
Gas was introduced from 4 and was ejected into the molten metal while covering the surface of the casting rod 3, thereby stirring the molten metal and eliminating variations in temperature and metal composition. still
so that N2 gas is released only to the molten metal side.
A gas seal 8 was provided.

凝固したロツドを連続的に0.5秒で2mm引抜き、
その後4秒停止するようにピンチロール7を操作
してパルス引抜を行つた。
The solidified rod is continuously pulled out by 2 mm in 0.5 seconds,
Thereafter, pulse extraction was performed by operating the pinch roll 7 so as to stop for 4 seconds.

この結果得られた純銅は一方向凝固組織を有
し、結晶粒が極めて大きいものであつた。
The resulting pure copper had a unidirectional solidification structure and extremely large crystal grains.

実施例 2 第2図の縦型連続鋳造装置を使用して実施例1
と同様に連続鋳造を行つたところ、やはり一方向
凝固組織を有する鋳造ロツドが得られた。
Example 2 Example 1 was carried out using the vertical continuous casting apparatus shown in Fig. 2.
When continuous casting was carried out in the same manner as above, a cast rod having a unidirectionally solidified structure was also obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、横型連続鋳造に適用された本発明の
連続鋳造装置の説明図、第2図は、縦型連続鋳造
に適用された本発明の連続鋳造装置の説明図であ
る。 図中、1は溶融金属、2は溶解炉、3は鋳造ロ
ツド、4はN2ガス導入口、5は冷却構造体、6
はグラフアイト鋳型である。
FIG. 1 is an explanatory diagram of a continuous casting apparatus of the present invention applied to horizontal continuous casting, and FIG. 2 is an explanatory diagram of a continuous casting apparatus of the present invention applied to vertical continuous casting. In the figure, 1 is the molten metal, 2 is the melting furnace, 3 is the casting rod, 4 is the N2 gas inlet, 5 is the cooling structure, and 6
is a graphite mold.

Claims (1)

【特許請求の範囲】 1 銅、貴金属、アルミニウム、亜鉛、スズまた
はこれらの合金の連続鋳造方法において、 溶融金属浴を保持する装置に固定して鋳型の一
端を前記溶融金属浴に突出させて該溶融金属の熱
により加熱し、鋳型の他端を冷却構造体により冷
却することにより凝固界面を前記鋳型の前記一端
よりも前記他端側に位置させるとともに、凝固界
面が鋳塊の縦断面で平坦になるような速度でパル
ス引抜きして一方向凝固組織を得ることを特徴と
する連続鋳造方法。 2 前記鋳型の材料が、熱良導体の耐火物である
ことを特徴とする特許請求の範囲第1項記載の連
続鋳造方法。 3 前記鋳型の冷却構造体の溶融金属浴側から、
鋳型壁面に不活性ガス及び又は中性ガスを吹き込
むことを特徴とする特許請求の範囲第1項記載の
連続鋳造方法。
[Claims] 1. A continuous casting method for copper, precious metals, aluminum, zinc, tin, or alloys thereof, comprising: fixing a mold to a device that holds a molten metal bath, and having one end of the mold protrude into the molten metal bath; By heating with the heat of the molten metal and cooling the other end of the mold with a cooling structure, the solidification interface is located closer to the other end than the one end of the mold, and the solidification interface is flat in the longitudinal section of the ingot. A continuous casting method characterized by obtaining a unidirectionally solidified structure by pulse drawing at a speed such that 2. The continuous casting method according to claim 1, wherein the material of the mold is a refractory material that is a good thermal conductor. 3 From the molten metal bath side of the cooling structure of the mold,
The continuous casting method according to claim 1, characterized in that an inert gas and/or neutral gas is blown into the mold wall surface.
JP853685A 1985-01-22 1985-01-22 Continuous casting method Granted JPS61169149A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP853685A JPS61169149A (en) 1985-01-22 1985-01-22 Continuous casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP853685A JPS61169149A (en) 1985-01-22 1985-01-22 Continuous casting method

Publications (2)

Publication Number Publication Date
JPS61169149A JPS61169149A (en) 1986-07-30
JPH051102B2 true JPH051102B2 (en) 1993-01-07

Family

ID=11695871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP853685A Granted JPS61169149A (en) 1985-01-22 1985-01-22 Continuous casting method

Country Status (1)

Country Link
JP (1) JPS61169149A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013123254A1 (en) 2012-02-15 2013-08-22 Cydex Pharmaceuticals, Inc. Manufacturing process for cyclodextrin derivatives
WO2013130666A1 (en) 2012-02-28 2013-09-06 Cydex Pharmaceuticals, Inc. Alkylated cyclodextrin compositions and processes for preparing and using the same
WO2014066274A1 (en) 2012-10-22 2014-05-01 Cydex Pharmaceuticals, Inc. Alkylated cyclodextrin compositions and processes for preparing and using the same
WO2016029179A1 (en) 2014-08-22 2016-02-25 Cydex Pharmaceuticals, Inc. Fractionated alkylated cyclodextrin compositions and processes for preparing and using the same
EP3363430A1 (en) 2008-04-28 2018-08-22 CyDex Pharmaceuticals, Inc. Sulfoalkyl ether cyclodextrin compositions

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62292242A (en) * 1986-06-10 1987-12-18 Asaba:Kk Method and apparatus for continuous casting of metallic material
JPS6367416A (en) * 1986-09-09 1988-03-26 斎藤 敏定 Driving member
JPH01224141A (en) * 1988-03-03 1989-09-07 Nippon Mining Co Ltd Method and apparatus for continuous casting
JP2887287B2 (en) * 1988-06-10 1999-04-26 日鉱金属株式会社 Method for manufacturing zinc alloy wire and zinc alloy wire for coloring plating
JP2785908B2 (en) * 1995-05-08 1998-08-13 日鉱金属株式会社 Method of manufacturing copper tube for superconductivity
EP1688198A4 (en) * 2003-09-24 2007-03-21 Sumitomo Metal Ind Continuous casting mold and method of continuous casting for copper alloy
JP4738115B2 (en) * 2005-09-20 2011-08-03 株式会社フジクラ Wire rod, manufacturing method thereof, and manufacturing apparatus thereof
JP2007196264A (en) * 2006-01-26 2007-08-09 Fujikura Ltd Method for producing rough drawn wire and device therefor
JP6988878B2 (en) * 2017-02-23 2022-01-05 住友電気工業株式会社 How to manufacture copper wire

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50131626A (en) * 1974-04-05 1975-10-17
JPS52142625A (en) * 1976-05-24 1977-11-28 Oumi Shindo Kk Continuous casting method of metal
JPS53149126A (en) * 1977-06-01 1978-12-26 Ishikawajima Harima Heavy Ind Drawing out method and apparatus for casted segment in continuous casting apparatus
JPS542604A (en) * 1977-06-08 1979-01-10 Hitachi Ltd Originating subscriber confirmation system
JPS57181746A (en) * 1981-04-30 1982-11-09 Mitsubishi Electric Corp Graphite mold and continuous casting method using this mold
JPS5870946A (en) * 1981-10-26 1983-04-27 Mitsubishi Heavy Ind Ltd Mold device for horizontal casting machine
JPS5897464A (en) * 1981-12-02 1983-06-09 Atsumi Ono Continuous casting method for eutectic composite material
JPS59229262A (en) * 1983-06-13 1984-12-22 O C C:Kk Method and device for horizontal type continuous casting of metallic molding

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5671347U (en) * 1979-10-29 1981-06-12

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50131626A (en) * 1974-04-05 1975-10-17
JPS52142625A (en) * 1976-05-24 1977-11-28 Oumi Shindo Kk Continuous casting method of metal
JPS53149126A (en) * 1977-06-01 1978-12-26 Ishikawajima Harima Heavy Ind Drawing out method and apparatus for casted segment in continuous casting apparatus
JPS542604A (en) * 1977-06-08 1979-01-10 Hitachi Ltd Originating subscriber confirmation system
JPS57181746A (en) * 1981-04-30 1982-11-09 Mitsubishi Electric Corp Graphite mold and continuous casting method using this mold
JPS5870946A (en) * 1981-10-26 1983-04-27 Mitsubishi Heavy Ind Ltd Mold device for horizontal casting machine
JPS5897464A (en) * 1981-12-02 1983-06-09 Atsumi Ono Continuous casting method for eutectic composite material
JPS59229262A (en) * 1983-06-13 1984-12-22 O C C:Kk Method and device for horizontal type continuous casting of metallic molding

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3363430A1 (en) 2008-04-28 2018-08-22 CyDex Pharmaceuticals, Inc. Sulfoalkyl ether cyclodextrin compositions
WO2013123254A1 (en) 2012-02-15 2013-08-22 Cydex Pharmaceuticals, Inc. Manufacturing process for cyclodextrin derivatives
EP3702374A1 (en) 2012-02-15 2020-09-02 CyDex Pharmaceuticals, Inc. Manufacturing process for cyclodextrin derivatives
EP4083075A1 (en) 2012-02-15 2022-11-02 CyDex Pharmaceuticals, Inc. Manufacturing process for cyclodextrin derivatives
WO2013130666A1 (en) 2012-02-28 2013-09-06 Cydex Pharmaceuticals, Inc. Alkylated cyclodextrin compositions and processes for preparing and using the same
WO2014066274A1 (en) 2012-10-22 2014-05-01 Cydex Pharmaceuticals, Inc. Alkylated cyclodextrin compositions and processes for preparing and using the same
WO2016029179A1 (en) 2014-08-22 2016-02-25 Cydex Pharmaceuticals, Inc. Fractionated alkylated cyclodextrin compositions and processes for preparing and using the same

Also Published As

Publication number Publication date
JPS61169149A (en) 1986-07-30

Similar Documents

Publication Publication Date Title
Ohno Continuous casting of single crystal ingots by the OCC process
US4621676A (en) Casting of metallic materials
JPH051102B2 (en)
JPH03243247A (en) Horizontal type continuous casting method for hoop cast metal and apparatus thereof
US4665970A (en) Method of producing a metallic member having a unidirectionally solidified structure
JPH05131B2 (en)
JPS6257418B2 (en)
JPH0217260B2 (en)
JPS61193743A (en) Continuous casting device
JPH0262105B2 (en)
JP2531629B2 (en) Video and / or television wire manufacturing method
Kim et al. An experimental study on process variables in crystal growth by ohno continuous casting
JPH0337818B2 (en)
JPH03133543A (en) Continuous casting method
JPH0243569B2 (en)
JPS62286650A (en) Production of electric wire for audio use
JPH0620601B2 (en) Continuous casting method
JPS59169651A (en) Heated casting mold type continuous casting device having guide mold
JPS58179541A (en) Method and device for continuous casting of metallic material having smooth surface
JPH02175049A (en) Method for continuously casting metal pipe
JPS62107844A (en) Mold for continuous casting billet
JPS58184043A (en) Method and device for upward open type continuous casting of metallic material
JPS62137147A (en) Apparatus for producing bar-shaped ingot
JPS58187243A (en) Method and device for diagonal upward type continuous casting of metallic molding
JPH0259145A (en) Method for continuously casting metal by heating mold