JPH0620601B2 - Continuous casting method - Google Patents

Continuous casting method

Info

Publication number
JPH0620601B2
JPH0620601B2 JP13971785A JP13971785A JPH0620601B2 JP H0620601 B2 JPH0620601 B2 JP H0620601B2 JP 13971785 A JP13971785 A JP 13971785A JP 13971785 A JP13971785 A JP 13971785A JP H0620601 B2 JPH0620601 B2 JP H0620601B2
Authority
JP
Japan
Prior art keywords
mold
magnetic field
continuous casting
casting method
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13971785A
Other languages
Japanese (ja)
Other versions
JPS61296940A (en
Inventor
昌司 長崎
一寿 山内
和夫 澤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP13971785A priority Critical patent/JPH0620601B2/en
Publication of JPS61296940A publication Critical patent/JPS61296940A/en
Publication of JPH0620601B2 publication Critical patent/JPH0620601B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、連続鋳造方法に関し、特に一方向凝固鋳塊
や単結晶鋳塊を得ることのできる連続鋳造方法に関す
る。
Description: TECHNICAL FIELD The present invention relates to a continuous casting method, and more particularly to a continuous casting method capable of obtaining a unidirectionally solidified ingot or a single crystal ingot.

[従来の技術] 興味ある先行技術として、特公昭55−46265号公
報に開示された連続鋳造法がある。この連続鋳造法は、
鋳型を加熱し、鋳型の出口の内壁面の温度を鋳造金属の
凝固温度以上に保持することによって、鋳造金属が鋳型
の出口を出ると同時に凝固核の形成を開始するようにし
ている。この方法によれば、鋳型からの凝固核の発生が
ないので、比較的容易に一方向凝固鋳塊や単結晶鋳塊を
得ることができる。
[Prior Art] As an interesting prior art, there is a continuous casting method disclosed in JP-B-55-46265. This continuous casting method
By heating the mold and maintaining the temperature of the inner wall surface at the outlet of the mold at the solidification temperature of the casting metal or higher, the casting metal starts to form solidification nuclei at the same time when the casting metal exits the outlet of the mold. According to this method, since solidification nuclei are not generated from the mold, a unidirectionally solidified ingot or a single crystal ingot can be obtained relatively easily.

[発明が解決しようとする問題点] しかしながら、上述の方法により鋳塊の引抜き速度を大
きくすれば、その反面融液の対流も大きくなる。この対
流は、固液界面の変動や、それに伴なう温度変動および
濃度変動をもたらす。さらに、鋳造材料中の異種物質の
鋳塊中への混入の恐れも増加させる。そのため、効率良
く一方向凝固を促進し、また単結晶を成長させるには、
鋳塊の引抜き速度、鋳造金属の冷却速度、鋳塊の外径な
どの諸因子を厳密にコントロールしなければならなかっ
た。
[Problems to be Solved by the Invention] However, if the drawing speed of the ingot is increased by the method described above, convection of the melt also increases. This convection causes fluctuations in the solid-liquid interface, and accompanying fluctuations in temperature and concentration. Further, the risk of mixing different substances in the casting material into the ingot increases. Therefore, in order to efficiently promote unidirectional solidification and grow a single crystal,
Various factors such as the ingot drawing speed, the casting metal cooling rate, and the outer diameter of the ingot had to be strictly controlled.

それゆえに、この発明の目的は、一方向凝固鋳塊や単結
晶鋳塊を容易にかつ安定して得ることのできる連続鋳造
方法を提供することである。
Therefore, an object of the present invention is to provide a continuous casting method capable of easily and stably obtaining a unidirectionally solidified ingot or a single crystal ingot.

[問題点を解決するための手段]および[発明の効果] この発明による連続鋳造方法は、鋳型から溶融材料を連
続的に引き出して凝固させるのに際し、鋳型の出口内壁
面の温度を鋳造材料の凝固点よりも高温に加熱し、か
つ、鋳造材料の末凝固部分に磁場を付与することを特徴
とする。
[Means for Solving Problems] and [Effects of the Invention] In the continuous casting method according to the present invention, when the molten material is continuously drawn from the mold and solidified, the temperature of the inner wall surface of the outlet of the mold is set to It is characterized in that it is heated to a temperature higher than the freezing point and a magnetic field is applied to the unsolidified portion of the casting material.

鋳型の出口内壁面の温度を鋳造材料の凝固点よりも高温
に加熱するので、不必要な結晶の核の生成を防止するこ
とができ、一方向凝固鋳塊や単結晶鋳塊を得やすくな
る。さらに、大きな温度勾配をつけることも可能であ
り、固液界面の安定性を高めることができる。したがっ
て、結晶成長速度を速めることができ、ひいては生産性
を高めることができる。
Since the temperature of the inner wall surface of the outlet of the mold is heated to a temperature higher than the freezing point of the casting material, it is possible to prevent the generation of unnecessary crystal nuclei, and it is easy to obtain a unidirectionally solidified ingot or a single crystal ingot. Furthermore, it is possible to provide a large temperature gradient, and the stability of the solid-liquid interface can be enhanced. Therefore, the crystal growth rate can be increased, which in turn can improve the productivity.

より大きな温度勾配をつけようとする場合には、鋳造材
料を鋳型出口から出たところで強制冷却するのがよい。
この場合、たとえば冷却水や冷却ガスを鋳造材料に吹き
つけるようにすることが考えられる。
When a larger temperature gradient is to be applied, it is preferable to forcibly cool the casting material at the outlet of the mold.
In this case, for example, cooling water or cooling gas may be blown onto the casting material.

また、鋳造材料の末凝固部分に磁場を付与することによ
って、融液の見かけ粘度は増加する。したがって、融液
の対流を効果的に減少させることができる。こうして、
たとえ引抜き速度を大きくしたとしても、磁場の影響に
よって対流が少なくなるので、固液界面が安定し、諸因
子の制御が容易となる。その結果、鋳型出口におけるブ
レークアウトを効果的に防止することができるようにな
る。なお、磁場は、たとえば静止磁場である。
Further, the apparent viscosity of the melt is increased by applying a magnetic field to the unsolidified portion of the casting material. Therefore, convection of the melt can be effectively reduced. Thus
Even if the drawing speed is increased, the convection is reduced due to the influence of the magnetic field, so that the solid-liquid interface becomes stable and various factors can be easily controlled. As a result, breakout at the mold outlet can be effectively prevented. The magnetic field is, for example, a static magnetic field.

さらに、融液の対流を少なくしたことにより、異物の凝
固部分への混入を防止しやすくなる。
Furthermore, by reducing the convection of the melt, it becomes easier to prevent foreign matter from entering the solidified portion.

なお、鋳造材料の末凝固部分に付与される磁場の大きさ
は、好ましくは、0.1テスラ以上とされる。この大き
さであれば、融液の対流を効果的に減少させることがで
きる。また、鋳造材料は金属や半導体などであり、溶融
状態において導電性を発揮する材料が選ばれる。
The magnitude of the magnetic field applied to the unsolidified portion of the casting material is preferably 0.1 Tesla or more. With this size, the convection of the melt can be effectively reduced. Further, the casting material is a metal, a semiconductor or the like, and a material that exhibits conductivity in a molten state is selected.

[実施例] 実施例1 第1図は、この発明を実施するのに使用した装置の一例
を模式的に示す図である。1は溶融材料であり、この実
施例では純度99.99%の高純度アルミニウムを溶融
させている。この溶融材料1を、鋳型2から連続的に引
き出して凝固させた。この際、鋳型2の出口内壁面の温
度を上記高純度アルミニウムの凝固点よりも高温に加熱
した。具体的には、鋳型2の温度を690℃とした。な
お、溶融材料1の温度は710℃であった。
Example 1 Example 1 FIG. 1 is a diagram schematically showing an example of an apparatus used to carry out the present invention. Reference numeral 1 is a molten material, and in this embodiment, high-purity aluminum having a purity of 99.99% is melted. The molten material 1 was continuously drawn from the mold 2 and solidified. At this time, the temperature of the outlet inner wall surface of the mold 2 was heated to a temperature higher than the freezing point of the high-purity aluminum. Specifically, the temperature of the mold 2 was set to 690 ° C. The temperature of the molten material 1 was 710 ° C.

また、図示するように、鋳型2の出口部近傍にマグネッ
ト3を配置し、これにより高純度アルミニウムの末凝固
部分に磁場を付与し得るようにした。
Further, as shown in the figure, a magnet 3 is arranged in the vicinity of the outlet of the mold 2 so that a magnetic field can be applied to the powder-solidified portion of high-purity aluminum.

そして、引出治具5を用いて直径15mmの単結晶鋳塊6
となるように連続的に引き下げた。なお、4は冷却機構
であり、鋳型2の出口から出た材料を強制的に冷却して
いる。上記操作を、磁場を与えていない状態と磁場を与
えている状態の両者において行なった。
Then, using the drawing jig 5, a single crystal ingot 6 having a diameter of 15 mm
It was continuously lowered so that A cooling mechanism 4 forcibly cools the material discharged from the outlet of the mold 2. The above operation was performed both in the state where the magnetic field was not applied and in the state where the magnetic field was applied.

磁場を与えていない状態では、ブレークアウトせずに単
結晶鋳塊6が得られる速度は、1m/min.程度であっ
た。一方、引出方向に対して垂直に0.5テスラの磁場
を与えたところ、3m/min.の速度で引出してもブレー
クアウトせずに安定して単結晶鋳塊6が得られた。
When no magnetic field was applied, the speed at which the single crystal ingot 6 was obtained without breakout was about 1 m / min. On the other hand, when a magnetic field of 0.5 Tesla was applied perpendicularly to the pulling direction, a single crystal ingot 6 was stably obtained without breaking out even when pulled out at a speed of 3 m / min.

実施例2 第2図は、この発明を実施するのに使用した装置の他の
例を模式的に示す図である。7は溶融材料であり、この
実施例ではCu−8%Sn合金を溶融させている。この
溶融材料7を、鋳型8から、引出治具9を用いて水平方
向に連続的に引出し、直径18mmの鋳塊10を得た。な
お、鋳型8を、Cu−8%Sn合金の凝固点よりも高温
に加熱した。また、図示するように、鋳型8の出口部近
傍にマグネット11を配置し、末凝固部分に磁場を付与
し得るようにしている。12は冷却機構であり、鋳型8
から引出された材料を強制冷却する。
Embodiment 2 FIG. 2 is a diagram schematically showing another example of the apparatus used to carry out the present invention. Reference numeral 7 is a molten material, and in this embodiment, Cu-8% Sn alloy is melted. The molten material 7 was continuously drawn from the mold 8 in the horizontal direction using a drawing jig 9 to obtain an ingot 10 having a diameter of 18 mm. The mold 8 was heated to a temperature higher than the freezing point of the Cu-8% Sn alloy. Further, as shown in the figure, a magnet 11 is arranged in the vicinity of the outlet of the mold 8 so that a magnetic field can be applied to the unsolidified portion. 12 is a cooling mechanism, which is a mold 8
Force cooling of the material drawn from.

磁場を与えていない状態で上記操作を行なったところ、
得られた鋳塊10中にミクロなSn濃度の濃淡が見られ
た。一方、0.3テスラの磁場を与えて上記操作を行な
ったところ、Sn濃度の濃淡は見られなくなった。
When the above operation was performed without applying a magnetic field,
In the ingot 10 thus obtained, microscopic tin concentration variations were observed. On the other hand, when the above operation was performed by applying a magnetic field of 0.3 tesla, no tin concentration was observed.

【図面の簡単な説明】[Brief description of drawings]

第1図は、この発明を実施するのに使用した装置の一例
を模式的に示す図である。第2図は、この発明を実施す
るのに使用した装置の他の例を模式的に示す図である。 図において、1は溶融材料、2は鋳型、3はマグネッ
ト、4は冷却機構、5は引出治具、6は単結晶鋳塊を示
す。
FIG. 1 is a diagram schematically showing an example of an apparatus used to carry out the present invention. FIG. 2 is a diagram schematically showing another example of the apparatus used to carry out the present invention. In the figure, 1 is a molten material, 2 is a mold, 3 is a magnet, 4 is a cooling mechanism, 5 is a drawing jig, and 6 is a single crystal ingot.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】鋳型から溶融材料を連続的に引出して凝固
させるのに際し、鋳型の出口内壁面の温度を鋳造材料の
凝固点よりも高温に加熱し、かつ、鋳造材料の未凝固部
分に磁場を付与することを特徴とする、連続鋳造方法。
1. When the molten material is continuously drawn out from the mold and solidified, the temperature of the inner wall surface of the outlet of the mold is heated to a temperature higher than the freezing point of the casting material, and a magnetic field is applied to the unsolidified portion of the casting material. A continuous casting method, characterized by applying.
【請求項2】前記鋳造材料は、前記鋳型出口から出たと
ころで強制冷却される、特許請求の範囲第1項に記載の
連続鋳造方法。
2. The continuous casting method according to claim 1, wherein the casting material is forcibly cooled when it comes out of the mold outlet.
【請求項3】前記磁場の大きさは、0.1テスラ以上で
ある、特許請求の範囲第1項または第2項に記載の連続
鋳造方法。
3. The continuous casting method according to claim 1, wherein the magnitude of the magnetic field is 0.1 tesla or more.
JP13971785A 1985-06-26 1985-06-26 Continuous casting method Expired - Fee Related JPH0620601B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13971785A JPH0620601B2 (en) 1985-06-26 1985-06-26 Continuous casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13971785A JPH0620601B2 (en) 1985-06-26 1985-06-26 Continuous casting method

Publications (2)

Publication Number Publication Date
JPS61296940A JPS61296940A (en) 1986-12-27
JPH0620601B2 true JPH0620601B2 (en) 1994-03-23

Family

ID=15251769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13971785A Expired - Fee Related JPH0620601B2 (en) 1985-06-26 1985-06-26 Continuous casting method

Country Status (1)

Country Link
JP (1) JPH0620601B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3769761B2 (en) * 1994-04-28 2006-04-26 住友化学株式会社 Aluminum alloy single crystal target and method for producing the same
FR2913434B1 (en) * 2007-03-08 2009-11-20 Apollon Solar DEVICE AND METHOD FOR MANUFACTURING SELF-SUPPORTED PLATES OF SILICON OR OTHER CRYSTALLINE MATERIALS.
US20110168081A1 (en) * 2010-01-12 2011-07-14 Tao Li Apparatus and Method for Continuous Casting of Monocrystalline Silicon Ribbon
NL2004209C2 (en) * 2010-02-08 2011-08-09 Rgs Dev B V Apparatus and method for the production of semiconductor material foils.

Also Published As

Publication number Publication date
JPS61296940A (en) 1986-12-27

Similar Documents

Publication Publication Date Title
GB1369270A (en) Casting of directionally solidified articles
US20030106664A1 (en) Method and apparatus for manufacturing copper and/or copper alloy ingot having no shrinkage cavity and having smooth surface without wrinkles
DE59105810D1 (en) Process for the production of monotectic alloys.
JPH051102B2 (en)
JPS63199050A (en) Drawing-up continuous casting method without using mold and its apparatus
JPH03243247A (en) Horizontal type continuous casting method for hoop cast metal and apparatus thereof
JPH0620601B2 (en) Continuous casting method
US4577676A (en) Method and apparatus for casting ingot with refined grain structure
JPH05254817A (en) Production of polycrystal silicon ingot
CN108326263B (en) Alloy casting ultra-strong traveling wave magnetic field continuous treatment directional solidification method
JP3152971B2 (en) Manufacturing method of high purity copper single crystal ingot
JPS62292242A (en) Method and apparatus for continuous casting of metallic material
JP4672203B2 (en) Method for producing ingot for gold bonding wire
JPH08217436A (en) Solidification and purification of metal silicon, device therefor, and mold used for the device
JP2003064424A (en) Solidifying method for solvent material, and solvent material solidifying apparatus
JPH0217260B2 (en)
JPS61291487A (en) Production of single crystal fiber
JP2531629B2 (en) Video and / or television wire manufacturing method
JPS61193743A (en) Continuous casting device
JPH05131B2 (en)
Ohno Grain growth control by solidification technology
JPH0243569B2 (en)
JPS62107844A (en) Mold for continuous casting billet
JPH1110312A (en) Method for continuously producing single crystal
JPH0476926B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees