JPH08217436A - Solidification and purification of metal silicon, device therefor, and mold used for the device - Google Patents

Solidification and purification of metal silicon, device therefor, and mold used for the device

Info

Publication number
JPH08217436A
JPH08217436A JP2950095A JP2950095A JPH08217436A JP H08217436 A JPH08217436 A JP H08217436A JP 2950095 A JP2950095 A JP 2950095A JP 2950095 A JP2950095 A JP 2950095A JP H08217436 A JPH08217436 A JP H08217436A
Authority
JP
Japan
Prior art keywords
silicon
mold
liquid phase
melted
solidifying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2950095A
Other languages
Japanese (ja)
Inventor
Yasuhiko Sakaguchi
泰彦 阪口
Hisae Terajima
久榮 寺嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP2950095A priority Critical patent/JPH08217436A/en
Publication of JPH08217436A publication Critical patent/JPH08217436A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Silicon Compounds (AREA)

Abstract

PURPOSE: To continuously produce a purified long silicon ingot in good productivity by continuously solidifying melted metal silicon in a direction to concentrate impurities in a liquid phase, and subsequently discharging the concentrated liquid phase from a mold. CONSTITUTION: A silicon rod 7 containing impure elements is thermally melted with electron beams 9 from an electron gun 1 at a place above a water-cooling copper mold 2, and the melted product is dropped into the water-cooling mold 2. When the dropped melted silicon 9 is gradually lowered with a lowering device 4, the melted silicon 9 is solidified in a direction from the lowest part to the upper direction to given silicon ingot 3. The impure elements are concentrated in the non-solidified melted silicon 9. When the concentration of the impure elements in the silicon liquid phase or in the solid phase reaches a target value, the melting of the silicon rod 7 and the lowering of the ingot 3 are stopped, and the melted silicon 9 in the upper part of the water-cooling mold 2 is discharged from a discharging opening 5 into a receiver 6. Subsequently, the silicon rod 7 is again melted, and the lowering of the silicon ingot 3 is again continued.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、金属シリコンの一方向
凝固による精製方法、その装置及びその装置に用いる鋳
型に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refining method by directional solidification of metallic silicon, an apparatus therefor, and a mold used in the apparatus.

【0002】[0002]

【従来の技術】溶融状態にある金属シリコン中に含まれ
ている多くの金属元素は、凝固時の分配係数が小さいた
め、上記溶融金属シリコンが凝固するに際しては優先的
に液相に排出される。その結果、固相としては、これら
金属元素濃度の低い金属シリコンが得られることにな
る。従来より、この原理を利用して、溶融した金属シリ
コンを一方向から徐々に凝固することによって、精製前
の金属シリコンよりも金属不純物濃度が小さい鋳塊を製
造している。
2. Description of the Related Art Many metallic elements contained in molten metallic silicon have a small distribution coefficient at the time of solidification, and therefore are preferentially discharged into a liquid phase when the molten metallic silicon solidifies. . As a result, metallic silicon having a low concentration of these metal elements can be obtained as a solid phase. Conventionally, by utilizing this principle, molten metal silicon is gradually solidified from one direction to manufacture an ingot having a smaller metal impurity concentration than the metal silicon before refining.

【0003】しかしながら、液相中に排出された金属不
純物元素は最後に凝固する部分に濃縮されるので、従来
は、該濃縮部分を凝固完了後に切断除去するのが一般的
であった。つまり、該従来法で精製する場合、精製して
得られるシリコン鋳塊の長さは、精製前の金属シリコン
中に含まれる不純物元素の初期濃度に依存し、ユーザの
希望する長さにできないという問題点があった。そこ
で、改善手段として、特開平5−124809号公報に
開示された方法が提案された。それは、一方向凝固中の
固相に含まれる不純物元素の濃度が所定の目標値に近づ
いたときに、鋳型内にある鋳塊の一部を電子ビームで再
溶解し、再度凝固させて液相に不純物元素を濃縮させ、
少しでも長い鋳塊を得ようというものであった。
However, since the metal impurity element discharged into the liquid phase is concentrated in the portion which finally solidifies, conventionally, the concentrated portion has generally been cut and removed after completion of solidification. That is, in the case of refining by the conventional method, the length of the silicon ingot obtained by refining depends on the initial concentration of the impurity element contained in the metallic silicon before refining, and cannot be the length desired by the user. There was a problem. Therefore, the method disclosed in Japanese Patent Laid-Open No. 5-124809 has been proposed as an improvement means. When the concentration of the impurity element contained in the solid phase during directional solidification approaches a predetermined target value, a part of the ingot in the mold is remelted with an electron beam and solidified again to form a liquid phase. Concentrate impurity elements into
The goal was to obtain a long ingot.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、この特
開平5−124809号公報記載の方法を用いても、溶
融金属シリコンの凝固に際しては液相側に不純物元素が
濃縮するので、従来よりは若干長いものが得られるが、
濃縮部分を切捨て除去しなければならないことは同じで
あり、製造されるシリコン鋳塊の長さには限界があっ
た。
However, even when the method disclosed in Japanese Patent Laid-Open No. 5-124809 is used, the impurity element is concentrated on the liquid phase side when solidifying the molten metallic silicon, so that it is slightly longer than the conventional method. You get something,
It is the same that the concentrated portion has to be cut off and removed, and the length of the silicon ingot to be produced is limited.

【0005】本発明は、かかる問題点を解決し、連続的
に長いシリコン鋳塊を生産性良く製造する金属シリコン
の精製方法、その装置及びそれに利用する鋳型を提供す
ることを目的としている。
It is an object of the present invention to solve the above problems and provide a method for refining metallic silicon for continuously producing long silicon ingots with high productivity, an apparatus therefor, and a mold used therefor.

【0006】[0006]

【課題を解決するための手段】発明者は、上記目的を達
成するため、製造した金属シリコンの鋳塊を切捨てず
に、製造歩留りを高めることを検討した。その結果、鋳
造中における溶融金属シリコンの交換を着想し、それを
具現化するに鋭意努力し、本発明を完成させるに至っ
た。すなわち、本発明は、溶融金属シリコンを一方向か
ら凝固し、不純物元素を液相に濃縮させる金属シリコン
の凝固精製に際し、不純物元素の濃縮した液相を鋳型外
に排出すると共に、凝固相の上には新しい溶融金属シリ
コンを補給し、一方向からの凝固を継続させることを特
徴とする金属シリコンの凝固精製方法である。また、本
発明は、精製前の金属シリコンを溶融させる加熱手段
と、溶融金属シリコンを保持する鋳型と、該鋳型内で凝
固しつつある金属シリコンを降下させる引下げ手段とを
備えてなる金属シリコンの凝固精製装置において、不純
物元素の濃縮した該液相を外部に排出する排出手段を配
設したことを特徴とする金属シリコンの凝固精製装置で
あり、その際、上記加熱手段が電子ビームであると好ま
しい。さらに、本発明は、溶融金属シリコンを一方向か
ら凝固し、不純物を液相に濃縮、除去する金属シリコン
の凝固精製用鋳型であって、該鋳型上部に不純物を濃縮
した液相を排出する排出口を設けると共に、該鋳型外周
には排出された液相を保持する収容部を設けたことを特
徴とする金属シリコンの凝固精製用鋳型でもある。
In order to achieve the above object, the inventor has studied to increase the production yield without cutting off the produced ingot of metallic silicon. As a result, they came up with the idea of replacing molten metal silicon during casting, and made an earnest effort to put it into practice, thereby completing the present invention. That is, the present invention is to solidify molten metal silicon from one direction and to concentrate the impurity element in a liquid phase during solidification and refining of the metal silicon. Is a method for solidifying and refining metallic silicon, which is characterized by supplying new molten metallic silicon and continuing solidification from one direction. Further, the present invention provides a method for melting metallic silicon, which comprises heating means for melting unpurified metallic silicon, a mold for holding the molten metallic silicon, and pulling-down means for lowering the metallic silicon that is solidifying in the mold. A solidification / refining apparatus for solidifying and refining metallic silicon, characterized in that a discharging means for discharging the liquid phase in which the impurity elements are concentrated is discharged to the outside, wherein the heating means is an electron beam. preferable. Furthermore, the present invention is a mold for solidifying and purifying metallic silicon for solidifying molten metal silicon from one direction to concentrate and remove impurities into a liquid phase, and to discharge the liquid phase having impurities concentrated above the mold. The mold for solidifying and refining metallic silicon is characterized in that an outlet is provided and an accommodating portion for holding the discharged liquid phase is provided on the outer periphery of the mold.

【0007】[0007]

【作用】本発明では、溶融金属シリコンを一方向から凝
固し、不純物元素を液相に濃縮させる金属シリコンの凝
固精製に際し、予め液相又は固相中の不純物元素濃度を
理論的に推定ないし実験で、雰囲気温度、引下げ速度と
の関連から決定しておき、該条件下における操業で不純
物濃度が目標値となる時間径過後に、該液相を鋳型外に
排出すると共に、凝固相の上には新しい溶融金属シリコ
ンを補給し、一方向からの凝固を継続させるようにした
ので、一部を切捨てることなく、所望の長さの鋳塊を歩
留り良く製造できるようになる。
In the present invention, the concentration of the impurity element in the liquid phase or the solid phase is theoretically estimated or tested before solidifying and refining the metal silicon in which the molten metal silicon is solidified in one direction and the impurity element is concentrated in the liquid phase. At that time, the temperature is determined in relation to the ambient temperature and the pulling rate, and after the passage of the time when the impurity concentration reaches the target value in the operation under the conditions, the liquid phase is discharged out of the mold, Supplies new molten metal silicon and continues solidification from one direction, so that an ingot of a desired length can be produced with good yield without cutting off a part.

【0008】また、本発明では、精製前の金属シリコン
を溶融させる加熱手段と、溶融金属シリコンを保持する
鋳型と、該鋳型内で凝固しつつある金属シリコンを降下
させる引下げ手段とを備えてなる金属シリコンの凝固精
製装置において、不純物元素の濃縮した該液相を外部に
排出する排出手段を配設し、その際、上記加熱手段が電
子ビームであるので、該不純物元素の濃縮した液相を排
出後、凝固相表面がすぐに溶融し、新しく補給された溶
融シリコンとの境界がなくなり、品質上の問題は生じず
に、円滑に安定した凝固精製が行えるようになる。
Further, the present invention comprises a heating means for melting the unpurified metallic silicon, a mold for holding the molten metallic silicon, and a lowering means for lowering the metallic silicon which is solidifying in the mold. In the apparatus for solidifying and refining metallic silicon, a discharging means for discharging the liquid phase concentrated with the impurity element to the outside is provided, and since the heating means is an electron beam, the liquid phase concentrated with the impurity element is removed. After discharging, the surface of the solidified phase is immediately melted, the boundary with the newly supplied molten silicon disappears, and smooth solidification and refining can be performed smoothly without any quality problem.

【0009】さらに、本発明では、溶融金属シリコンを
一方向から凝固し、不純物を液相に濃縮、除去する金属
シリコンの凝固精製用鋳型に、不純物を濃縮した液相を
排出する排出口を設けると共に、該鋳型外周には排出さ
れた液相を保持する収容部を設けるようにしたので、大
掛かりな設備改造の必要がなく安価な設備費で、従来製
造できなかった長さの鋳塊の製造が可能になる。以下
に、図3に基づき、本発明の内容を補足する。
Further, according to the present invention, a mold for solidifying and refining metallic silicon for solidifying molten metal silicon from one direction and concentrating and removing impurities into a liquid phase is provided with an outlet for discharging the liquid phase concentrated with impurities. At the same time, since a container for holding the discharged liquid phase is provided on the outer periphery of the mold, there is no need for large-scale equipment modification and inexpensive equipment costs, and the production of an ingot of a length that could not be conventionally produced. Will be possible. The contents of the present invention will be supplemented below with reference to FIG.

【0010】一般に、濃度X0 の不純物元素を含む溶融
シリコンを液体状態からゆっくりと冷却して凝固させる
過程は、2成分系の場合、図3の状態図で説明される。
すなわち、図3において、溶融シリコンの温度がT1
達すると凝固を開始するが、その際、固相の不純物元素
濃度はS1 となり、上記初期濃度X0 より低くなる。さ
らに、降温し温度がT2 に達すると、凝固した固相中の
不純物元素濃度はS2となるが、一方、液相中には、不
純物元素が濃縮され濃度l2 となる。
In general, the process of slowly cooling molten silicon containing an impurity element with a concentration X 0 from a liquid state to solidify it is explained in the state diagram of FIG. 3 in the case of a two-component system.
That is, in FIG. 3, when the temperature of the molten silicon reaches T 1 , solidification starts, but at that time, the concentration of the impurity element in the solid phase becomes S 1 , which is lower than the initial concentration X 0 . Furthermore, when the cooling temperature reaches T 2, the impurity element concentration in the solid phase was solidified becomes S 2, whereas, in the liquid phase, the concentration l 2 impurity element is concentrated.

【0011】この原理を利用してシリコンの純度を向上
させるのが凝固精製法で、冷却初期に早く凝固した部分
ほど不純物元素の濃度が低く、末期に凝固した部分に不
純物元素が濃縮される。本発明では、固相がある一定の
目標精製濃度に達した後、それ以上に凝固を継続して
も、精製効果を期待することは理論的に不可能であるこ
とから、該目標精製濃度に達する直前に不純物元素の濃
縮した液相を鋳型から排出し、新たに、初期濃度X0
液相を供給するようにしたものである。つまり、この工
程を繰り返すことにより、不純物元素濃度の非常に低い
固相を連続的に製造することが可能となる。
The solidification refining method utilizes this principle to improve the purity of silicon. The concentration of the impurity element is lower in the portion solidified earlier in the initial stage of cooling, and the impurity element is concentrated in the portion solidified in the final stage. In the present invention, it is theoretically impossible to expect a purification effect even if the solid phase reaches a certain target purification concentration and then further coagulates. Immediately before reaching, the liquid phase in which the impurity element is concentrated is discharged from the mold, and a liquid phase having an initial concentration X 0 is newly supplied. That is, by repeating this process, it is possible to continuously manufacture a solid phase having a very low impurity element concentration.

【0012】これを実現するためには、不純物元素の濃
縮した液相を排出する必要があるが、本発明では、鋳型
の液相を保持する部分に排出口を設け、精製中は固体シ
リコン片を用いて封止し、排出時のみ該固体シリコン片
を電子ビームにより溶解し、不純物元素が濃縮した液相
を排出しうるようにした。そして、その排出液相を精製
作業の完了まで装置内に保持しておくため、該鋳型の外
壁側には排出液相の収容部を取付けた。また、該排出口
の固体シリコン片を溶解する手段は、如何なる加熱手段
であっても良いが、他の作業との関係で電子ビームによ
る溶解が最も有効であった。
In order to realize this, it is necessary to discharge the liquid phase in which the impurity element is concentrated. However, in the present invention, a discharge port is provided in a portion of the mold which holds the liquid phase, and solid silicon pieces are put in during purification. The solid silicon piece was melted by an electron beam only at the time of discharging so that the liquid phase in which the impurity element was concentrated could be discharged. Then, in order to keep the discharged liquid phase in the apparatus until the completion of the refining operation, a container for the discharged liquid phase was attached to the outer wall side of the mold. The means for melting the solid silicon pieces at the discharge port may be any heating means, but melting with an electron beam was the most effective in relation to other work.

【0013】[0013]

【実施例】本発明に係る金属シリコンの凝固精製方法を
実施した状況の一例を図1に示す。Al 600pp
m、Fe 500ppm、Ti 20ppm、Ca 3
0ppmを不純物元素として含むシリコンロッド7を、
内径300mmの水冷銅鋳型2の上方において電子銃1
からの電子ビーム8(出力100kw)で溶解し、該水
冷銅鋳型2内に滴下した。その滴下した溶融シリコン9
は、水冷銅鋳型2内にあっても電子銃1からの電子ビー
ム8の照射によって溶融状態が保持される。このような
状態で上部から溶融シリコンを滴下させながら、引下げ
装置4を用いて、引下げ速度 1mm/minで徐々に
鋳型内の溶融シリコン9を下降させていくと、該溶融シ
リコン9は最下部から上方に向けて一方向に凝固し、シ
リコン鋳塊3が得られた。このシリコン鋳塊3は、一方
向に凝固が進行するため、前述したように下方に位置す
る部分ほど不純物元素濃度が低く、上方にいくにしたが
って高くなる。従って、未凝固の溶融シリコン内に不純
物元素は濃縮されていることになる。本実施例では、予
め実施例と同一条件で、液相の排出を行わない、且つシ
リコンの補充を行わないシリコン鋳塊を作製し、該鋳塊
の下層から一定高さごとに分析試料を採取して、不純物
元素濃度の分布を調べておき、実施例における操業で
は、該目標濃度に到達する凝固時間終了直前にシリコン
鋳塊の下降を止め、水冷銅鋳型の上部に設けた排出口5
の前記固体シリコン片に電子ビーム8を照射し、不純物
元素の濃縮した溶融シリコンを該排出口5から収容部6
に排出させた(つまり、操業条件をプリセットする方法
である)。この後直ちに、再びシリコンロッド7を電子
ビームで溶解して溶融シリコンを鋳型内に滴下させ、シ
リコン鋳塊の下降を再開した。
EXAMPLE FIG. 1 shows an example of a situation in which the method for solidifying and refining metallic silicon according to the present invention is carried out. Al 600pp
m, Fe 500 ppm, Ti 20 ppm, Ca 3
A silicon rod 7 containing 0 ppm as an impurity element,
The electron gun 1 is placed above the water-cooled copper mold 2 having an inner diameter of 300 mm.
It was melted with an electron beam 8 (output 100 kw) from and was dropped into the water-cooled copper mold 2. The dropped molten silicon 9
The molten state is maintained by the irradiation of the electron beam 8 from the electron gun 1 even in the water-cooled copper mold 2. In this state, while the molten silicon was dropped from the upper part, the molten silicon 9 in the mold was gradually lowered at the lowering speed of 1 mm / min by using the lowering device 4, and the molten silicon 9 was dropped from the lowermost part. It solidified in one direction upward, and a silicon ingot 3 was obtained. Since this silicon ingot 3 is solidified in one direction, the impurity element concentration is lower in the lower portion and becomes higher in the upper portion as described above. Therefore, the impurity element is concentrated in the unsolidified molten silicon. In the present example, under the same conditions as the example in advance, a silicon ingot that does not discharge the liquid phase and does not replenish silicon is prepared, and an analysis sample is collected from the lower layer of the ingot at a constant height. Then, the distribution of the impurity element concentration is investigated, and in the operation in the embodiment, the descending of the silicon ingot is stopped immediately before the end of the solidification time to reach the target concentration, and the discharge port 5 provided on the upper portion of the water-cooled copper mold is stopped.
The solid silicon piece is irradiated with an electron beam 8 so that the molten silicon in which the impurity element is concentrated is discharged from the discharge port 5 to the container 6
(That is, a method of presetting operating conditions). Immediately after this, the silicon rod 7 was again melted by an electron beam, molten silicon was dropped into the mold, and the descent of the silicon ingot was restarted.

【0014】図2に、本実施例で製造したシリコン鋳塊
中のAlの高さ方向での濃度分布を示す。図2より、鋳
塊全域にわたって精製目標濃度以下を維持できたことが
明らかである。なお、他の不純物元素、Fe、Ti、C
aについても同様に精製することができていた。本実施
例は、濃縮液相の排出を2回行ったものであるが、この
方法では、装置の許す範囲内で、要求される鋳塊長さに
応じて排出回数を決めることができる。
FIG. 2 shows the Al concentration distribution in the height direction in the silicon ingot produced in this example. From FIG. 2, it is clear that the refining target concentration or less could be maintained over the entire ingot. Other impurity elements, Fe, Ti, C
Similarly, a could be purified. In this example, the concentrated liquid phase was discharged twice, but in this method, the discharge frequency can be determined according to the required ingot length within the range allowed by the apparatus.

【0015】また、図1の実施例では、シリコンの供給
にシリコンロッド7を用いているが塊状のシリコンや他
の容器で溶解した溶融シリコンを用いることも可能であ
る。さらに、水冷銅鋳型内シリコンや排出口の固体シリ
コン片を溶解するために、電子ビームを用いる例を示し
たが、プラズマ、イオンビーム等を用いることも可能で
ある。現在、不純物濃度の分析をオンラインで且つ液相
状態で行う方法がないが、将来それが可能になった場合
には、オンライン分析で目標濃度を決めるようにしても
良い。
In the embodiment shown in FIG. 1, the silicon rod 7 is used for supplying silicon, but it is also possible to use lumpy silicon or molten silicon melted in another container. Furthermore, although an example of using an electron beam to dissolve the silicon in the water-cooled copper mold and the solid silicon piece at the outlet has been shown, plasma, ion beam, or the like can also be used. At present, there is no method for performing the analysis of the impurity concentration online and in the liquid phase state, but if it becomes possible in the future, the target concentration may be determined by the online analysis.

【0016】[0016]

【発明の効果】以上述べたように、本発明により、ユー
ザの要求に応じた寸法のシリコン鋳塊を、容易に製造す
ることが可能となった。
As described above, according to the present invention, it becomes possible to easily manufacture a silicon ingot having a size according to a user's request.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る金属シリコンの凝固精製方法を実
施した凝固精製装置を示す図であり、(a)はシリコン
ロッドの溶解作業を、(b)は不純物元素濃縮液相の排
出状況を示す。
FIG. 1 is a diagram showing a coagulation / purification apparatus for carrying out a method for coagulation / purification of metallic silicon according to the present invention, in which (a) shows a melting operation of a silicon rod and (b) shows a discharge state of a liquid phase containing an impurity element concentrated. Show.

【図2】本発明に係る金属シリコンの凝固精製方法を用
いて製造した鋳塊中のAl濃度分布を示す図である。
FIG. 2 is a diagram showing an Al concentration distribution in an ingot manufactured by using the method for solidifying and refining metallic silicon according to the present invention.

【図3】2成分系金属の固相線と液相線の関係を示す状
態図である。
FIG. 3 is a state diagram showing a relationship between a solidus line and a liquidus line of a binary metal.

【符号の説明】[Explanation of symbols]

1 電子銃 2 水冷銅鋳型 3 シリコン鋳塊 4 引下げ装置 5 排出口 6 排出液の収容部 7 シリコンロッド 8 電子ビーム 9 溶融シリコン DESCRIPTION OF SYMBOLS 1 Electron gun 2 Water-cooled copper mold 3 Silicon ingot 4 Pulling device 5 Discharge port 6 Discharge liquid storage part 7 Silicon rod 8 Electron beam 9 Molten silicon

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 溶融金属シリコンを一方向から凝固し、
不純物元素を液相に濃縮させる金属シリコンの凝固精製
に際し、 不純物元素が濃縮した液相を鋳型外に排出すると共に、
凝固相の上には新しい溶融金属シリコンを補給し、一方
向からの凝固を継続させることを特徴とする金属シリコ
ンの凝固精製方法。
1. Solidified molten metal silicon from one direction,
When solidifying and refining metallic silicon for concentrating the impurity element in the liquid phase, the liquid phase in which the impurity element is concentrated is discharged out of the mold, and
A method for solidifying and refining metallic silicon, characterized in that fresh molten metallic silicon is supplied on top of the solidifying phase to continue solidification from one direction.
【請求項2】 精製前の金属シリコンを溶融させる加熱
手段と、溶融金属シリコンを保持する鋳型と、該鋳型内
で凝固しつつある金属シリコンを降下させる引下げ手段
とを備えてなる金属シリコンの凝固精製装置において、 不純物元素の濃縮した該液相を外部に排出する排出手段
を配設したことを特徴とする金属シリコンの凝固精製装
置。
2. Solidification of metallic silicon comprising heating means for melting unpurified metallic silicon, a mold for holding the molten metallic silicon, and lowering means for lowering the metallic silicon that is solidifying in the mold. In the refining apparatus, a discharging unit for discharging the liquid phase in which the impurity element is concentrated is discharged to the outside, the apparatus for solidifying and refining metallic silicon.
【請求項3】 上記加熱手段が電子ビームであることを
特徴とする請求項2記載の金属シリコンの凝固精製装
置。
3. The apparatus for solidifying and refining metallic silicon according to claim 2, wherein the heating means is an electron beam.
【請求項4】 溶融金属シリコンを一方向から凝固し、
不純物を液相に濃縮、除去する金属シリコンの凝固精製
用鋳型であって、 該鋳型上部に不純物を濃縮した液相を排出する排出口を
設けると共に、該鋳型外周には排出された液相を保持す
る収容部を設けたことを特徴とする金属シリコンの凝固
精製用鋳型。
4. Solidified molten silicon from one direction,
A mold for solidifying and refining metallic silicon for concentrating and removing impurities in a liquid phase, wherein an outlet for discharging a liquid phase in which impurities are concentrated is provided on the upper part of the mold, and the discharged liquid phase is provided around the outer periphery of the mold. A mold for solidifying and refining metallic silicon, which is provided with a container for holding.
JP2950095A 1995-02-17 1995-02-17 Solidification and purification of metal silicon, device therefor, and mold used for the device Withdrawn JPH08217436A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2950095A JPH08217436A (en) 1995-02-17 1995-02-17 Solidification and purification of metal silicon, device therefor, and mold used for the device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2950095A JPH08217436A (en) 1995-02-17 1995-02-17 Solidification and purification of metal silicon, device therefor, and mold used for the device

Publications (1)

Publication Number Publication Date
JPH08217436A true JPH08217436A (en) 1996-08-27

Family

ID=12277808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2950095A Withdrawn JPH08217436A (en) 1995-02-17 1995-02-17 Solidification and purification of metal silicon, device therefor, and mold used for the device

Country Status (1)

Country Link
JP (1) JPH08217436A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5961944A (en) * 1996-10-14 1999-10-05 Kawasaki Steel Corporation Process and apparatus for manufacturing polycrystalline silicon, and process for manufacturing silicon wafer for solar cell
JP2006083024A (en) * 2004-09-16 2006-03-30 Kyocera Corp Casting method of polycrystalline silicon ingot, polycrystalline silicon ingot using the same, polycrystalline silicon substrate and solar cell element
WO2010018831A1 (en) * 2008-08-12 2010-02-18 株式会社アルバック Silicon purification method
US7727502B2 (en) 2007-09-13 2010-06-01 Silicum Becancour Inc. Process for the production of medium and high purity silicon from metallurgical grade silicon
US8404016B2 (en) 2008-08-01 2013-03-26 Ulvac, Inc. Method for refining metal

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5961944A (en) * 1996-10-14 1999-10-05 Kawasaki Steel Corporation Process and apparatus for manufacturing polycrystalline silicon, and process for manufacturing silicon wafer for solar cell
JP2006083024A (en) * 2004-09-16 2006-03-30 Kyocera Corp Casting method of polycrystalline silicon ingot, polycrystalline silicon ingot using the same, polycrystalline silicon substrate and solar cell element
JP4726454B2 (en) * 2004-09-16 2011-07-20 京セラ株式会社 Method for casting polycrystalline silicon ingot, polycrystalline silicon ingot using the same, polycrystalline silicon substrate, and solar cell element
US7727502B2 (en) 2007-09-13 2010-06-01 Silicum Becancour Inc. Process for the production of medium and high purity silicon from metallurgical grade silicon
US8404016B2 (en) 2008-08-01 2013-03-26 Ulvac, Inc. Method for refining metal
WO2010018831A1 (en) * 2008-08-12 2010-02-18 株式会社アルバック Silicon purification method
CN102112394A (en) * 2008-08-12 2011-06-29 株式会社爱发科 Silicon purification method
US8409319B2 (en) 2008-08-12 2013-04-02 Ulvac, Inc. Silicon purification method
JP5315345B2 (en) * 2008-08-12 2013-10-16 株式会社アルバック Silicon purification method

Similar Documents

Publication Publication Date Title
US4190404A (en) Method and apparatus for removing inclusion contaminants from metals and alloys
EP0027052B1 (en) Process for purifying aluminum
EP0867405A1 (en) Method for producing silicon for use in solar cells
TWI385284B (en) Method for refining silicon
JP3329013B2 (en) Continuous refining method and apparatus for Al-Si aluminum scrap
WO1998016466A1 (en) Process and apparatus for preparing polycrystalline silicon and process for preparing silicon substrate for solar cell
JPH04314836A (en) Method and equipment for manufacturing alloy composed mainly of titanium and aluminum
CN107385244B (en) A kind of electron beam covers the method that induced coagulation technology High Purity prepares nickel base superalloy
TWI386492B (en) Method of purifying metal
JPH08217436A (en) Solidification and purification of metal silicon, device therefor, and mold used for the device
JP3725620B2 (en) Method and apparatus for producing high purity copper single crystal
JPH05254817A (en) Production of polycrystal silicon ingot
JPH05262512A (en) Purification of silicon
JP2004043972A (en) Method for refining aluminum or aluminum alloy
JP2002155322A (en) Method and equipment for refining aluminum or aluminum alloy
JPH10251008A (en) Method for solidifying and refining metal silicon
JP2010159490A (en) Method and apparatus for refining metal, refined metal, casting, metal product and electrolytic capacitor
JP3263104B2 (en) Purification method of metallic silicon
JPH10139415A (en) Solidification and purification of molten silicon
JPH07207362A (en) Device for refining molten al or al alloy
US3804150A (en) Apparatus for electroslag remelting
JPH0754065A (en) Refining method and recycling method for aluminum scrap
RU2338622C2 (en) Method and device of disk bottom tapping of volkov's system
JPH10182286A (en) Continuous casting method of silicon
JPH10102158A (en) Method for refining aluminum

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020507