JPH07207362A - Device for refining molten al or al alloy - Google Patents

Device for refining molten al or al alloy

Info

Publication number
JPH07207362A
JPH07207362A JP6003266A JP326694A JPH07207362A JP H07207362 A JPH07207362 A JP H07207362A JP 6003266 A JP6003266 A JP 6003266A JP 326694 A JP326694 A JP 326694A JP H07207362 A JPH07207362 A JP H07207362A
Authority
JP
Japan
Prior art keywords
container
alloy
molten
temperature control
refining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6003266A
Other languages
Japanese (ja)
Inventor
Shingo Ninagawa
伸吾 蜷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP6003266A priority Critical patent/JPH07207362A/en
Publication of JPH07207362A publication Critical patent/JPH07207362A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

PURPOSE:To improve a separating efficiency with suppressing the turbulent component in the vertical direction of horizontal rotating flow by making a container accommodating Al or Al alloy truncated cone shape. CONSTITUTION:A truncated cone-shaped part 2 is protruded in the bottom center of a container 1 accommodating Al or Al alloy. A cooling body 7 is immersed in the container 1. A revolving magnetic field generating device 11 is placed near the outer circumferential wall of the container 1. By impressing an induction current to molten Al in the container 1, the molten Al is horizontally revolved by the electromagnetic force due to the interaction with the revolving magnetic field. When the molten Al is horizontally revolved, at the bottom face of the container 1 and on the surface of the cooling body 7, the liquid phase Al, which contains much of the concentrated impurities existing in the dentrite grown along with progress of solidification, is diffused in remote part from solidification progressing face. A concentration of the impurities of a remaining liquid phase is uniformized and high purity Al is crystallized to the cooling body 7. The remaining liquid phase Al containing much impurities is discharged from a flow out route 4 placed on the top part of the truncated core-shaped part 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は不純物を含む溶融Alま
たはAl合金から、偏析法の原理を用いて介在物を低減
させた高純度のAlまたはAl合金を回収するAlまた
はAl合金溶湯の精製装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is for refining molten Al or Al alloy containing impurities to recover high-purity Al or Al alloy with reduced inclusions using the principle of the segregation method. It relates to the device.

【0002】[0002]

【従来の技術】従来、偏析法の原理、すなわち状態図的
に溶融金属の凝固において純度の高い部分が先に凝固す
るという原理を用いて、不純物を含む溶融Alから高純
度のAlを分離精製する方法が種々提案されている(特
公昭49−5806号公報参照)。しかしながら、この種の偏
析法は、一般に凝固速度を速くすることができないため
生産性が悪いという問題と、高純度の凝固体と不純物を
多く含んだ残液相Alの分離効率が悪いため、高純度の
Alを得にくいという2つの問題があった。
2. Description of the Related Art Conventionally, a high-purity Al is separated and purified from molten Al containing impurities by using the principle of the segregation method, that is, in the solidification of molten metal, a high-purity portion is solidified first. Various methods have been proposed (see Japanese Patent Publication No. 49-5806). However, this type of segregation method generally has a problem that productivity cannot be increased because the solidification rate cannot be increased, and that the separation efficiency of the high-purity solidified body and the residual liquid phase Al containing a large amount of impurities is poor. There were two problems that it was difficult to obtain pure Al.

【0003】上記した凝固速度を速める方法としては、
不純物濃度の高い残液相のAlを何らかの手段で十分攪
拌し、液相内部の不純物濃度をいち早く均一化する方法
が有効とされている。その攪拌手段としては、例えば特
公昭62−11049 号に示されるように、外部から回転磁界
を与える方法があり、このような方法によれば回転攪拌
子を用いる方法に比べ設備の保守管理が容易であるとい
う利点がある。しかしながら、上記回転磁界による攪拌
流速の分布は容器外周ほど速くなるものの、容器中心部
では遅くなってしまい、攪拌による効果が減少すること
になり、凝固速度を速めて生産性を向上させることがで
きないという問題があった。また、この水平回転攪拌流
は、上下方向の乱流を引き起こしており、この乱流は、
残液相Al中の不純物濃度を均一化するのには役立って
はいるが、その一方で、凝固進行を不均一なものとする
ばかりか、凝固進行面での攪拌流速をも不均一にしてし
まい、その結果、不純物濃度が均一な凝固体の精製を困
難にしている。
As a method for increasing the above-mentioned solidification rate,
It is considered effective to sufficiently stir Al in the residual liquid phase having a high impurity concentration by some means to make the impurity concentration inside the liquid phase uniform quickly. As the stirring means, for example, as shown in Japanese Patent Publication No. 62-11049, there is a method of applying a rotating magnetic field from the outside, and such a method facilitates maintenance and management of equipment as compared with a method using a rotating stirrer. The advantage is that However, although the distribution of the stirring flow velocity due to the rotating magnetic field becomes faster toward the outer periphery of the container, it becomes slower at the center of the container, and the effect of stirring is reduced, and the solidification speed cannot be increased to improve the productivity. There was a problem. In addition, this horizontal rotary stirring flow causes vertical turbulence, and this turbulence is
Although it is useful for making the impurity concentration in the residual liquid phase Al uniform, on the other hand, it not only makes the solidification progress non-uniform, but also makes the stirring flow velocity on the solidification progress surface non-uniform. As a result, it is difficult to purify a solidified body having a uniform impurity concentration.

【0004】また、高純度の凝固体と不純物を多く含む
残液相を効率よく分離する方法として特開平5−148559
号に示される様に、回転磁界発生装置を全周に対して9
0°〜180°までの角度とし、容器を傾転可能にする
方法が知られている。しかしながら、この分離方法で
は、回転磁界による溶融Alの回転効率が悪いため、よ
り高出力の回転磁界発生装置が必要となるばかりか、そ
の回転磁界発生装置の移動機構、さらには容器を傾転す
るための油圧機構等が必要となり、結果として設備コス
トが高くなるという問題があった。
Further, as a method for efficiently separating a high-purity coagulum and a residual liquid phase containing a large amount of impurities, JP-A-5-148559
As shown in No. 9, the rotating magnetic field generator is
A method is known in which the container is tiltable by setting an angle of 0 ° to 180 °. However, in this separation method, since the rotating efficiency of the molten Al due to the rotating magnetic field is poor, not only a higher output rotating magnetic field generator is required, but also the moving mechanism of the rotating magnetic field generator and the container are tilted. Therefore, there is a problem that a hydraulic mechanism or the like is required, resulting in an increase in equipment cost.

【0005】[0005]

【発明が解決しようとする課題】本発明は上記した事情
を考慮してなされたものであり、低コストで生産性が高
く、分離効率に優れ、介在物を低減させた高純度のAl
またはAl合金を得ることのできる、AlまたはAl合
金溶湯の精製装置を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in consideration of the above circumstances, and it is a high-purity Al with low cost, high productivity, excellent separation efficiency, and reduced inclusions.
Another object of the present invention is to provide a refining apparatus for molten Al or molten Al alloy that can obtain an Al alloy.

【0006】[0006]

【課題を解決するための手段】請求項1の本発明は、A
lまたはAl合金溶湯を収納した容器を回転磁界中に入
れ、容器内のAlまたはAl合金溶湯に水平回転流を与
えながら、容器内の溶湯に対し、温度制御機構による温
度管理下に偏析法を利用してAlまたはAl合金を凝固
精製する装置において、容器の形状を、水平回転流の上
下方向乱流成分を抑制し得る円錐台形状としたAlまた
はAl合金溶湯の精製装置である。
According to the present invention of claim 1,
1 or a container containing the molten Al alloy is placed in a rotating magnetic field, and the segregation method is applied to the molten metal in the container under temperature control by a temperature control mechanism while applying a horizontal rotating flow to the molten Al or Al alloy in the container. In the apparatus for solidifying and refining Al or Al alloy by utilizing it, the apparatus is a refining apparatus for molten Al or Al alloy in which the shape of the container is a truncated cone shape capable of suppressing the vertical turbulent component of the horizontal rotary flow.

【0007】請求項2の本発明は、AlまたはAl合金
溶湯を収納した容器を回転磁界中に入れ、容器内のAl
またはAl合金溶湯に水平回転流を与えながら、容器内
の溶湯に対し、温度制御機構による温度管理下に偏析法
を利用してAlまたはAl合金を凝固精製する装置にお
いて、容器の回転中央部分に、溶湯排斥用の突出部を設
けたAlまたはAl合金溶湯の精製装置である。
According to the second aspect of the present invention, a container containing Al or molten Al alloy is placed in a rotating magnetic field, and Al in the container is placed.
Alternatively, in a device for solidifying and refining Al or Al alloy by utilizing the segregation method under the temperature control by a temperature control mechanism for the molten metal in the container while applying a horizontal rotating flow to the molten aluminum alloy, The apparatus for refining molten Al or molten Al alloy is provided with a protrusion for discharging the molten metal.

【0008】請求項3の本発明は、請求項1の構成と請
求項2の構成を併用したAlまたはAl合金溶湯の精製
装置である。請求項4の本発明は、請求項3の精製装置
において前記容器底部の外周側寄り部位および前記突出
部の頂部に、開閉弁を有する流出路を接続したことを特
徴とする。
A third aspect of the present invention is an apparatus for refining an Al or Al alloy molten metal, which uses the configuration of the first aspect and the configuration of the second aspect together. According to a fourth aspect of the present invention, in the purifying apparatus of the third aspect, an outflow passage having an on-off valve is connected to the outer peripheral side portion of the container bottom and the top of the protrusion.

【0009】請求項5の本発明は、請求項3の精製装置
において前記温度制御機構が、前記容器の少なくとも底
部外側、前記突出部の頂部内側に配設されていることを
特徴とする。請求項6の本発明は、請求項1〜5のいず
れかの精製装置に、前記溶湯中に浸漬されその表面にA
lを凝固させる冷却体及びその冷却体表面から任意に凝
固体を剥離させる表面温度制御機構から構成される冷却
体装置をさらに備えていることを特徴とする。
According to a fifth aspect of the present invention, in the refining apparatus of the third aspect, the temperature control mechanism is arranged at least on the outer side of the bottom of the container and on the inner side of the top of the protrusion. According to a sixth aspect of the present invention, the refining apparatus according to any one of the first to fifth aspects is immersed in the molten metal to form A on the surface thereof.
It is characterized by further comprising a cooling body device constituted by a cooling body for solidifying 1 and a surface temperature control mechanism for arbitrarily peeling the solidified body from the surface of the cooling body.

【0010】[0010]

【作用】請求項1の本発明に従えば、円錐台状の容器に
より水平回転流の上下方向乱流成分が抑制されて回転流
が整流され、回転流の周速度が高められることにより樹
枝状晶間に濃縮した不純物の撹拌効果が高められる。請
求項2に従えば、容器底部内側の中心部から突設された
突出部により、水平回転流の低速領域における凝固進行
が排斥される。
According to the first aspect of the present invention, the frustoconical container suppresses the vertical turbulence component of the horizontal rotary flow to rectify the rotary flow and increase the peripheral velocity of the rotary flow, thereby increasing the dendritic shape. The stirring effect of impurities concentrated between the crystals is enhanced. According to the second aspect, the progress of solidification in the low-speed region of the horizontal rotational flow is rejected by the projecting portion projecting from the center inside the container bottom.

【0011】請求項3に従えば、回転流が整流されると
ともに、水平回転流れの低速領域である回転中心付近で
の凝固進行が排斥される。請求項4に従えば、容器底部
の外周側に備えられた流出路から介在物を低減させた高
純度の溶融AlまたはAl合金が取り出され、突出部の
頂部に備えられた流出路からは不純物を含む残液相Al
が取り出される。
According to claim 3, the rotating flow is rectified, and the progress of solidification in the vicinity of the center of rotation, which is a low speed region of the horizontal rotating flow, is rejected. According to claim 4, high-purity molten Al or Al alloy with reduced inclusions is taken out from the outflow passage provided on the outer peripheral side of the container bottom, and impurities are extracted from the outflow passage provided at the top of the protrusion. Residual liquid phase containing Al
Is taken out.

【0012】請求項5に従えば、容器底部からのAl凝
固速度,進行面が均一化される。請求項6に従えば、冷
却体の表面に晶出させた高純度Al凝固体を任意に剥離
させることができる。
According to claim 5, the Al solidification rate from the bottom of the container and the advancing surface are made uniform. According to claim 6, the high-purity Al solidified body crystallized on the surface of the cooling body can be arbitrarily peeled off.

【0013】[0013]

【実施例】以下、本発明を図面に基づいて詳細に説明す
る。図1はAlまたはAl合金溶湯の分離精製装置の一
実施例を示す概略縦断面図である。同図において1は原
料溶融Alを貯留するための保持容器(以下単に容器1
と呼ぶ)、2はその容器1の底面中央部から突設された
突出部としての円錐台状部、3は再溶融させた高純度溶
融Alを取り出すための高純度溶融Al用排出路、4は
不純物を多く含んだ残液相Alを取り出すための残液相
Al用排出路、5aは容器1底部外側に設けられた温度
制御機構、5bは円錐台状部2の頂部内側に設けられた
温度制御機構、6は容器1外周壁に設けられた温度制御
機構、7は溶融Al中に浸漬され、その表面に高純度A
lを晶出させるための冷却体、8は冷却体表面温度を制
御するための冷却体表面温度制御機構、9及び10は溶
融Alの排出路に設けられた開閉弁、11は連続または
不連続に容器1の周囲に環状に設けられ容器1内の溶融
Alに回転力を与える回転磁界発生装置、12は精製初
期段階で容器1内に凝固した高純度Al凝固体、13及
び14は冷却体7表面に晶出した凝固体及びその剥離凝
固体、15は容器1内の精製末期での高純度凝固体、1
6は不純物を多く含む残液相Alである。なお、上記温
度制御機構はヒータ、それに通電する回路及び通電を制
御する制御回路等から構成される。また、上記冷却体7
及び冷却体表面温度制御機構は冷却体装置としてみなす
ことができる。
The present invention will be described in detail below with reference to the drawings. FIG. 1 is a schematic vertical cross-sectional view showing an embodiment of an apparatus for separating and refining molten aluminum or aluminum alloy. In the figure, 1 is a holding container for storing the raw material molten Al (hereinafter simply referred to as container 1
2) is a truncated cone-shaped portion as a projecting portion protruding from the center of the bottom surface of the container 1, 3 is a discharge passage for high-purity molten Al for taking out remelted high-purity molten Al, 4 Is a discharge passage for residual liquid phase Al containing a large amount of impurities, 5a is a temperature control mechanism provided outside the bottom of the container 1, and 5b is provided inside the top of the truncated cone 2. Temperature control mechanism, 6 is a temperature control mechanism provided on the outer peripheral wall of the container 1, 7 is immersed in molten Al, and high purity A
Cooling body for crystallizing l, 8 is a cooling body surface temperature control mechanism for controlling the cooling body surface temperature, 9 and 10 are opening / closing valves provided in the discharge passage of molten Al, 11 is continuous or discontinuous A rotating magnetic field generator provided annularly around the container 1 for applying a rotating force to the molten Al in the container 1, 12 is a high-purity Al solidified body solidified in the container 1 in the initial stage of refining, and 13 and 14 are cooling bodies. 7 solidified body crystallized on the surface and its separated solidified body, 15 is a high-purity solidified body at the end of purification in the container 1, 1
6 is a residual liquid phase Al containing a large amount of impurities. The temperature control mechanism includes a heater, a circuit for energizing the heater, a control circuit for controlling energization, and the like. In addition, the cooling body 7
And the cooling body surface temperature control mechanism can be regarded as a cooling body device.

【0014】以下、本実施例の精製装置の各部の構成
を、Alを分離精製する場合を例に取りさらに具体的に
説明する。まず、別途溶解された原料Alは、容器1中
に溶融状態で供給され保持される。その容器1は、容器
底部外側、容器外周壁にそれぞれ温度制御機構5a、6
を有し、容器1底面からの凝固速度、進行面が均一化す
るよう管理されている。なお、容器1外周壁に配置され
た温度制御機構6は、必要により容器1の高さ方向につ
いて温度分布を有するものであってもよい。すなわち、
ヒータの通電を容器1の底側から上面側に向けて段階的
にOFFしていけるように構成してもよい。また、円錐
台状部2の頂部内側に配置された温度制御機構5bは、
円錐台状部2の頂部からの凝固を防ぐため、保温,加熱
を目的とするものである。
The structure of each part of the refining apparatus of this embodiment will be described more concretely by taking the case of separating and refining Al as an example. First, the separately dissolved raw material Al is supplied and held in the container 1 in a molten state. The container 1 includes temperature control mechanisms 5a and 6 on the outside of the bottom of the container and the outer peripheral wall of the container, respectively.
And is controlled so that the solidification rate from the bottom surface of the container 1 and the advancing surface become uniform. The temperature control mechanism 6 arranged on the outer peripheral wall of the container 1 may have a temperature distribution in the height direction of the container 1 if necessary. That is,
The heater may be energized so as to be gradually turned off from the bottom side to the top side of the container 1. In addition, the temperature control mechanism 5b arranged inside the top of the truncated cone 2 is
In order to prevent solidification from the top of the truncated cone portion 2, the purpose is to keep heat and heat.

【0015】また、上記容器1には、必要に応じて冷却
体7が回転可能に浸漬されるようになっており、その表
面温度制御機構8により、冷却体7表面でのAl晶出お
よび凝固体の剥離が所定の時間で行えるように構成され
ている。その剥離された高純度の凝固体は、液相との比
重差により沈降し、容器1内の底部における凝固進行面
に固着することになる。すなわち、本実施例において
は、凝固手段として容器底部と外周壁に配設された温
度制御機構5a,6と、冷却体7との組み合わせて使
用することにより、容器1底部からの総合的な凝固速度
を速め、生産性を向上させることができるようになって
いる。
The cooling body 7 is rotatably immersed in the container 1 as required, and the surface temperature control mechanism 8 thereof causes Al crystallization and solidification on the surface of the cooling body 7. It is configured so that the body can be peeled off in a predetermined time. The separated high-purity solidified body settles due to the difference in specific gravity from the liquid phase, and adheres to the solidification progressing surface at the bottom of the container 1. That is, in the present embodiment, the temperature control mechanisms 5a and 6 arranged on the bottom and the outer peripheral wall of the container as the solidification means and the cooling body 7 are used in combination, whereby the total solidification from the bottom of the container 1 is performed. It has become possible to increase speed and improve productivity.

【0016】容器1の外周壁近傍には、上記したように
回転磁界発生装置11が配置され、容器1内の溶融Al
に誘導電流を印加し、回転磁場との相互作用による電磁
力により、溶融Alを水平回転させるようになってい
る。このように溶融Alを水平回転させれば、容器1底
面部および冷却体7表面にて凝固の進行に伴って成長す
る樹枝状晶間に存在する、濃縮された不純物を多く含む
液相Alを、凝固進行面から遠隔部に十分拡散させるこ
とができるようになり、残液相の不純物濃度を均一化
し、純度の高いAlを晶出させることができるようにな
る。この場合、容器1を従来用いられているような円柱
形状とすると、溶融Alの水平回転流には上下方向の乱
流成分が発生するため、容器1の底面からの凝固進行を
均一にすることができなくなり、それによりフラットな
凝固進行面が得られず、結果として凝固進行面における
流速分布も不均一となる。そこで、本実施例のように容
器1を円錐台形状とすれば、上下方向の乱流成分が抑制
されて凝固進行が均一化され、凝固進行面の平滑性を維
持できることにより、凝固速度の向上および凝固体の高
純度化が実現できるようになる。
The rotating magnetic field generator 11 is arranged near the outer peripheral wall of the container 1 as described above, and the molten Al in the container 1 is melted.
An inductive current is applied to and the molten Al is horizontally rotated by the electromagnetic force due to the interaction with the rotating magnetic field. By horizontally rotating the molten Al in this manner, the liquid Al containing a large amount of concentrated impurities existing between the dendrites that grow with the progress of solidification on the bottom surface of the container 1 and the surface of the cooling body 7 can be obtained. As a result, it becomes possible to sufficiently diffuse away from the surface where solidification proceeds, to make the impurity concentration of the residual liquid phase uniform, and to crystallize high-purity Al. In this case, if the container 1 has a columnar shape as conventionally used, vertical turbulence components are generated in the horizontal rotating flow of molten Al, so that the solidification progress from the bottom surface of the container 1 is made uniform. Cannot be obtained, and as a result, a flat coagulation progressing surface cannot be obtained, and as a result, the flow velocity distribution on the coagulation progressing surface becomes non-uniform. Therefore, if the container 1 is shaped like a truncated cone as in the present embodiment, the turbulent flow components in the vertical direction are suppressed, the progress of solidification is made uniform, and the smoothness of the solidification progress surface can be maintained, thereby improving the solidification rate. Further, it becomes possible to realize high purification of the solidified body.

【0017】上記乱流成分を抑制することはまた、上述
したように冷却体7表面で凝固、剥離した凝固体の沈降
速度を速め、浮遊中の再溶融を防いで底面への固着を均
一化するように作用する。それにより、容器1底部から
の総合的な凝固速度を速めることが可能となり、結果と
して生産性を向上させることができるようになる。
Suppressing the above-mentioned turbulent components also accelerates the sedimentation speed of the solidified and separated solidified body on the surface of the cooling body 7 as described above, prevents remelting during floating, and makes sticking to the bottom uniform. Act as you do. As a result, it is possible to increase the overall solidification rate from the bottom of the container 1, and as a result, it is possible to improve productivity.

【0018】また、従来の円柱形状の容器では、回転磁
界による水平回転流は回転中心付近での流速が遅くなる
ため、その回転中心付近での濃縮不純液相Alの拡散速
度が遅く、凝固速度を速めることはできなかった。そこ
で、本実施例のごとく容器1内側底部に円錐台状部2を
設ければ、回転中心での凝固を排斥することができ、比
較的均一な攪拌流速が得られる円錐台状部2外周側の容
器1底面からのみ凝固が行われることになり、凝固速度
を速めることが可能となる。
Further, in the conventional cylindrical container, since the horizontal rotating flow due to the rotating magnetic field has a low flow velocity near the center of rotation, the diffusion speed of the concentrated impure liquid phase Al near the center of rotation is slow, and the solidification rate is Could not be speeded up. Therefore, if the truncated cone-shaped portion 2 is provided on the inner bottom portion of the container 1 as in the present embodiment, the solidification at the rotation center can be rejected and the outer peripheral side of the truncated cone-shaped portion 2 where a relatively uniform stirring flow velocity can be obtained. Since the coagulation is performed only from the bottom surface of the container 1, the coagulation rate can be increased.

【0019】また、円錐台状部2の頂部に配設された流
出路4は、不純物を多く含んだ残液相Al用のものであ
る。すなわち、精製末期では、凝固体15の凝固進行面
は、円錐台状部2の頂部と容器1の外周壁とにそれぞれ
設けられた温度制御機構5b、6とに温度制御された結
果、凹状に形成される。ここで、開閉弁10を解放する
ことにより、残液相Alは、容器1外へ排出され不純ス
クラップとして処理される。
The outflow passage 4 provided at the top of the truncated cone portion 2 is for the residual liquid phase Al containing a large amount of impurities. That is, in the final stage of purification, the solidification progressing surface of the solidified body 15 becomes concave as a result of temperature control by the temperature control mechanisms 5b and 6 provided on the top of the truncated cone 2 and the outer peripheral wall of the container 1, respectively. It is formed. Here, by opening the on-off valve 10, the residual liquid phase Al is discharged to the outside of the container 1 and treated as impure scrap.

【0020】同様に、流出路3は、高純度Al排出用で
あり、不純物を多く含んだ残液相Al排出後、凝固体1
5を容器1内で再加熱して溶融状態にし、弁9を解放し
て流出路3より排出し、鋳固めることにより高純度地金
として取得するものである。この方法によれば、従来装
置のような容器を傾転させるための油圧機構、回転磁界
発生装置の移動機構等を必要とせず、容易に且つ安価
に、不純物を多く含む残液相と高純度の凝固体の分離取
得を可能とすることができる。
Similarly, the outflow passage 3 is for discharging high-purity Al, and after the residual liquid phase Al containing a large amount of impurities is discharged, the solidified body 1 is discharged.
5 is reheated in the container 1 to be in a molten state, the valve 9 is opened, the material is discharged from the outflow passage 3 and cast to obtain high purity metal. According to this method, there is no need for a hydraulic mechanism for tilting the container, a moving mechanism for a rotating magnetic field generator, etc., unlike the conventional device, and the residual liquid phase containing a large amount of impurities and high purity can be easily and inexpensively obtained. It is possible to separate and obtain the solidified body of.

【0021】[実施例1]図2に示す装置において、上
記円錐台状容器の効果を実証する実験を行った。99.
99%純度Al地金を別途溶解炉で700℃にて溶解保
持し、Fe、Si合わせて0.1重量%となるように調
整した後、容器1a内に約3t投入し、回転磁界発生装
置11に5Hz、200Aの交流電流を通電し、容器1
a内の溶融Alを回転させた。凝固は、容器1aの外側
底面部及び外周壁に配設した温度制御機構5c及び6を
用いて、容器1a底部から均一に行い、投入した原料A
l全量が凝固するまで、溶融Alを回転し続けた。次い
で凝固析出完了後、凝固体を容器1aから取り出し、2
等分となる位置で水平方向に切断し、高純度Alの凝固
体である底面側凝固体を再溶融し、精製Alとして分離
取得し分析した。凝固析出が完了するまでの処理時間を
2〜12時間、容器1aの形状として、底面の直径を一
定とし容器側面と容器底面のなす角度aを90゜, 80
゜, 60°と、それぞれ変化させて、精製試験を実施し
た。得られた精製Alの分析結果を図3にまとめて示
す。図3において横軸は凝固完了するまでの処理時間、
縦軸は不純物濃度としてFeとSiを合わせた濃度を示
している。
Example 1 An experiment was carried out to verify the effect of the above truncated cone-shaped container in the apparatus shown in FIG. 99.
A 99% pure Al ingot is separately melted and held at 700 ° C. in a melting furnace and adjusted so that Fe and Si are 0.1 wt% in total. 11 AC current of 5Hz, 200A is applied to the container 1
The molten Al in a was rotated. The solidification is uniformly performed from the bottom of the container 1a by using the temperature control mechanisms 5c and 6 arranged on the outer bottom surface and the outer peripheral wall of the container 1a, and the supplied raw material A is added.
l The molten Al was kept rotating until all solidified. Then, after completion of solidification and precipitation, the solidified body is taken out of the container 1a, and 2
The bottom side solidified body, which is a solidified body of high-purity Al, was remelted by cutting in the horizontal direction at equal positions, and separated and obtained as purified Al for analysis. The processing time until the solidification and precipitation is completed is 2 to 12 hours, the shape of the container 1a is such that the bottom surface has a constant diameter, and the angle a between the container side surface and the container bottom surface is 90 °, 80.
Purification tests were conducted by changing the angle from 60 ° to 60 °. The analysis results of the obtained purified Al are collectively shown in FIG. In FIG. 3, the horizontal axis represents the processing time until the solidification is completed,
The vertical axis represents the total concentration of Fe and Si as the impurity concentration.

【0022】図3から明かな様に、容器1aが円柱形状
となるa=90°の時に比べ、本実施例に示すようにa
=80゜, 60°と傾斜させた円錐台状容器の方が、よ
り高純度の精製Alがより短い凝固時間で得られている
ことがわかる。また、a=60°に比べ、a=80°の
方が、より高純度の精製Alが得られており、円錐台状
容器における、側面と底面のなす角度aには最適値が存
在することがわかる。その角度aの好ましい範囲として
は70゜≦a≦85゜であり、角度aが70゜より小さ
くなると回転磁界発生装置11と容器1aとの距離が離
れすぎてしまい、電磁力が十分に作用せずに流速が低下
することになる。また、角度aが85゜より大きくなる
と、上下方向の乱流の影響が顕著に現れるようになる。
As is clear from FIG. 3, as compared with the case where the container 1a has a cylindrical shape and a = 90 °, a
It can be seen that, in the truncated cone-shaped container inclined at 80 ° and 60 °, higher purity purified Al can be obtained in a shorter solidification time. Further, as compared with a = 60 °, a = 80 ° provides purified Al of higher purity, and an optimum value exists for the angle a formed between the side surface and the bottom surface in the truncated cone container. I understand. The preferable range of the angle a is 70 ° ≦ a ≦ 85 °, and when the angle a is smaller than 70 °, the distance between the rotating magnetic field generator 11 and the container 1a becomes too large, and the electromagnetic force does not sufficiently act. Instead, the flow velocity will decrease. Further, when the angle a becomes larger than 85 °, the influence of the turbulent flow in the vertical direction becomes remarkable.

【0023】なお、回転磁界発生装置11を容器1aの
勾配と対応させて傾斜配置させれば、回転磁界発生装置
11と容器1aとの距離が離れることはなくなり70゜
以下にすることも可能である。しかしながら、溶融Al
を収納する容器としてメンテナンス等の作業性が損なわ
れない点を考慮すると、このように構成した場合の角度
aの好ましい範囲は55゜≦a≦85゜となる。
If the rotating magnetic field generator 11 is tilted so as to correspond to the gradient of the container 1a, the distance between the rotating magnetic field generator 11 and the container 1a will not be separated, and it can be set to 70 ° or less. is there. However, molten Al
Considering that workability such as maintenance is not impaired as a container for storing the above, the preferable range of the angle a in such a configuration is 55 ° ≦ a ≦ 85 °.

【0024】[実施例2]図4に示す装置において、容
器1b底面に円錐台状部2を設けた効果、及びその円錐
台状部2と円錐台状容器1bと組み合わせた効果を実証
する実験を同様に行なった。ここでは、容器1b内側の
底部に円錐台状部2が有る場合と無い場合について実施
しており、容器形状としてはその側面と底面のなす角度
a=80°とし、他の条件は実施例1と全く同様とし
た。また、円錐台状部2の寸法として、円錐台状部2の
底部直径を容器1bの底部直径の1/2とし、高さは容
器高さの1/2高さとし、円錐台状部2の側面と底面の
なす角度bは、容器1bの側面と底面のなす角度aと同
じ角度とした。その分析結果を同様に図5に示す。この
ように、円錐台状部2が有る場合と無い場合では、円錐
台状部2が有る場合の方が、より高純度の精製Alがよ
り短い凝固時間で得られており、本発明の有効性が確認
された。なお、本実施例においては突出部の形状を下向
きに裾開きの円錐台状に構成したが、これに限らず、上
向きに裾開きの円錐台状に構成することもでき、さらに
また円柱状に構成してもよく、要するに水平回転流の低
速領域を排斥し得るようなものであれば任意のものを使
用することができる。また、突出部は容器と一体であっ
ても別体であってもよい。
[Embodiment 2] An experiment demonstrating the effect of providing the truncated cone-shaped portion 2 on the bottom surface of the container 1b in the apparatus shown in FIG. 4 and the effect of combining the truncated cone-shaped portion 2 and the truncated cone-shaped container 1b. Was similarly performed. Here, the case where there is a truncated cone part 2 at the bottom inside the container 1b and the case where it is not provided are carried out. As the container shape, the angle a between the side surface and the bottom surface is a = 80 °, and the other conditions are those of the first embodiment. And exactly the same. As the dimensions of the truncated cone portion 2, the diameter of the bottom portion of the truncated cone portion 2 is set to 1/2 of the bottom diameter of the container 1b, and the height is set to 1/2 the height of the container. The angle b between the side surface and the bottom surface was the same as the angle a between the side surface and the bottom surface of the container 1b. The analysis result is also shown in FIG. As described above, in the case of having the truncated cone-shaped portion 2 and the case of not having the truncated cone-shaped portion 2, the purified Al having a higher purity can be obtained in a shorter solidification time in the case of having the truncated cone-shaped portion 2, and thus the present invention is effective. The sex was confirmed. In addition, in the present embodiment, the shape of the protruding portion is configured to be a truncated cone shape that opens downward, but the present invention is not limited to this, and it may be configured to be a truncated cone shape that opens upward, and is also cylindrical. Any structure may be used, and any structure can be used as long as it can reject the low speed region of the horizontal rotary flow. Further, the protruding portion may be integrated with the container or may be a separate body.

【0025】[実施例3]図1に示す装置において、溶
融Al流出路,温度制御機構,冷却体を備えたことによ
る効果を実証する実験を行った。ここでは、容器1の形
状および円錐台状部2の形状を上記実施例2と同様に
し、任意の時間に開閉できる弁を備えた溶融Al流出路
3,4が、容器1底部の外周側寄りの位置、および底面
から突設した円錐台状部2を貫通してその頂部に至るよ
うにそれぞれ配設されている。凝固進行は、容器1底
部外側及びその外周壁に備えた温度制御機構5a,6に
よる温度制御により、容器1底面から均一に進行させる
とともに、容器1中に浸漬された冷却体7の表面温度
制御機構8により、溶融Alの凝固および凝固体の剥離
を行い、剥離した凝固体を容器1底部に堆積させること
により行うことができるものである。
[Embodiment 3] An experiment was carried out to verify the effect of providing the molten Al outflow passage, the temperature control mechanism, and the cooling body in the apparatus shown in FIG. Here, the shape of the container 1 and the shape of the truncated cone portion 2 are the same as those in the above-described Embodiment 2, and the molten Al outflow passages 3 and 4 equipped with valves that can be opened and closed at any time are located near the outer peripheral side of the bottom portion of the container 1. And the truncated cone-shaped portion 2 projecting from the bottom surface to the top. The progress of solidification proceeds uniformly from the bottom surface of the container 1 by the temperature control by the temperature control mechanisms 5a and 6 provided on the outer side of the bottom of the container 1 and the outer peripheral wall thereof, and the surface temperature control of the cooling body 7 immersed in the container 1 is performed. The mechanism 8 solidifies the molten Al and separates the solidified body, and deposits the separated solidified body on the bottom of the container 1.

【0026】上記実施例1,実施例2と同様に、Fe,
Si合わせて0.1重量%を含む原料Al約1tを容器
1内に投入し、回転磁界発生装置11に5Hz,200
Aの交流電流を通電し、溶融Alを回転させながら、凝
固析出を行った。凝固析出量は50重量%までとし、こ
のとき、円錐台状部2の頂部の温度制御機構5bはその
頂部での凝固進行を防ぐように働き、それにより凝固体
15の形状が凹状となるように維持させた。凝固析出量
が50重量%に達した後、開閉弁10を解放し、不純物
を多く含んだ残液相Alを流出路4から排出した。一
方、凝固析出した凝固体は、容器1中で再溶融させた
後、開閉弁9を解放して流出路3より排出し、それによ
り精製Alとして分離取得し、分析を実施した。
As in the first and second embodiments, Fe,
About 1 t of raw material Al containing 0.1% by weight of Si in total was charged into the container 1, and the rotating magnetic field generator 11 was set to 5 Hz, 200
The alternating current of A was applied and the molten Al was rotated to solidify and precipitate. The solidification precipitation amount is up to 50% by weight, and at this time, the temperature control mechanism 5b at the top of the truncated cone portion 2 works to prevent the progress of solidification at the top, so that the solidified body 15 has a concave shape. Maintained. After the solidification precipitation amount reached 50% by weight, the on-off valve 10 was opened, and the residual liquid phase Al containing a large amount of impurities was discharged from the outflow passage 4. On the other hand, the solidified material that solidified and precipitated was re-melted in the container 1, the on-off valve 9 was opened, and the solidified material was discharged from the outflow passage 3, thereby separated and obtained as purified Al, and analyzed.

【0027】図6は上記取得された凝固体において、冷
却体7による凝固と、温度制御機構5a,6による凝固
との割合を寄与率として表したものである。例えば寄与
率10:0は冷却体7のみによる凝固(容器1底面およ
びその側壁の温度を初晶析出温度以上に保持し、底面か
らの凝固進行を実施せず、冷却体7表面からの剥離凝固
体のみを堆積させた場合)を表し、寄与率6:4は冷却
体7による凝固が6に対し温度制御機構5a,6による
凝固が4である場合を表し、寄与率0:10は温度制御
機構5a,6のみによる凝固(容器1底面からの凝固進
行のみ実施)にを表している。
FIG. 6 shows the ratio of the solidification by the cooling body 7 and the solidification by the temperature control mechanisms 5a and 6 in the obtained solidified body as a contribution rate. For example, a contribution ratio of 10: 0 is solidification only by the cooling body 7 (the temperature of the bottom surface and the side wall of the container 1 is maintained at the primary crystal precipitation temperature or higher, solidification does not proceed from the bottom surface, and the solidification from the surface of the cooling body 7 is performed. (When only the body is deposited), the contribution ratio 6: 4 represents the case where the solidification by the cooling body 7 is 6 and the solidification by the temperature control mechanisms 5a and 6 is 4, and the contribution ratio 0:10 is the temperature control. Solidification by only the mechanisms 5a and 6 (only the progress of solidification from the bottom surface of the container 1 is performed) is shown.

【0028】凝固進行に及ぼす冷却体7の寄与率を0〜
10に変化させるとともに、50重量%凝固析出が完了
するまでの時間を1〜6時間と変化させた結果を図6に
示す。同図に示すように、寄与率を2:8とすること
で、より高純度な精製Alがより短い凝固処理時間で得
られており、本発明の有効性が確認された。尚、本発明
は、上記実施例では高純度のAlを精製する場合につい
て説明したが、Al合金から介在物を低減させる場合に
ついても適用できる。
The contribution rate of the cooling body 7 to the progress of solidification is 0 to
FIG. 6 shows the results obtained by changing the time to 10 and changing the time until the completion of 50% by weight solidification precipitation to 1 to 6 hours. As shown in the figure, by setting the contribution ratio to 2: 8, higher-purity purified Al was obtained in a shorter solidification treatment time, confirming the effectiveness of the present invention. Although the present invention has been described with reference to the case of refining high-purity Al in the above-mentioned embodiment, the present invention can be applied to the case of reducing inclusions from an Al alloy.

【0029】[0029]

【発明の効果】以上説明したことから明かなように、本
発明のAlまたはAl合金溶湯の精製装置によれば、低
コストで生産性が高く、分離効率に優れ、介在物を低減
させた高純度のAlまたはAl合金を工業的に分離取得
することができる。
As described above, according to the refining apparatus for molten Al or Al alloy of the present invention, the productivity is low, the productivity is high, and the inclusion efficiency is high. It is possible to industrially separate and obtain pure Al or Al alloy.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係るAlまたはAl合金溶
湯の精製装置の概略縦断面図である。
FIG. 1 is a schematic vertical cross-sectional view of a refining device for molten Al or Al alloy according to an embodiment of the present invention.

【図2】実施例1に係る溶融Alの分離精製装置の概略
縦断面図である。
FIG. 2 is a schematic vertical sectional view of a molten Al separating and refining apparatus according to a first embodiment.

【図3】図2の装置を用いた溶融Alの分離精製の効果
を示す特性図である。
FIG. 3 is a characteristic diagram showing the effect of separating and refining molten Al using the apparatus of FIG.

【図4】実施例2に係る溶融Alの分離精製装置の概略
縦断面図である。
FIG. 4 is a schematic vertical sectional view of a molten Al separating and refining device according to a second embodiment.

【図5】図4の装置を用いた溶融Alの分離精製の効果
を示す特性図である。
5 is a characteristic diagram showing the effect of separating and refining molten Al using the apparatus of FIG.

【図6】図1の装置を用いた溶融Alの分離精製の効果
を示す特性図である。
FIG. 6 is a characteristic diagram showing the effect of separating and refining molten Al using the apparatus of FIG.

【符号の説明】[Explanation of symbols]

1 原料溶融Al保持容器 2 円錐台状部 3 高純度溶融Al用排出路 4 残液相Al用排出路 5a 容器底部の温度制御機構 5b 円錐台状部の頂部の温度制御機構 6 容器外周壁の温度制御機構 7 冷却体 8 冷却体の表面温度制御機構 9,10 開閉弁 11 回転磁界発生装置 12 精製初期段階で凝固した高純度Al凝固体 13 冷却体表面に析出した凝固体 14 剥離凝固体 15 精製末期での高純度凝固体 16 不純物を多く含む残液相Al DESCRIPTION OF SYMBOLS 1 Raw material molten Al holding container 2 Cone trapezoidal part 3 High-purity molten Al discharge path 4 Residual liquid phase Al discharge path 5a Temperature control mechanism at the bottom of the container 5b Temperature control mechanism at the top of the truncated cone part 6 Container outer peripheral wall Temperature control mechanism 7 Cooling body 8 Cooling body surface temperature control mechanism 9,10 Opening / closing valve 11 Rotating magnetic field generator 12 High-purity Al solidified body solidified in the initial stage of refining 13 Solidified body 14 deposited on the surface of the cooling body 14 Exfoliated solidified body 15 High-purity solidified body at the end of refining 16 Residual liquid phase Al containing many impurities

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 AlまたはAl合金溶湯を収納した容器
を回転磁界中に入れ、前記容器内のAlまたはAl合金
溶湯に水平回転流を与えながら、前記容器内の溶湯に対
し、温度制御機構による温度管理下に偏析法を利用して
AlまたはAl合金を凝固精製する装置において、 前記容器の形状を、前記水平回転流の上下方向乱流成分
を抑制し得る円錐台形状としたことを特徴とするAlま
たはAl合金溶湯の精製装置。
1. A container containing an Al or Al alloy molten metal is placed in a rotating magnetic field, and a temperature control mechanism is applied to the molten metal in the container while applying a horizontal rotating flow to the Al or Al alloy molten metal in the container. In an apparatus for solidifying and refining Al or Al alloy using a segregation method under temperature control, the shape of the container is a truncated cone shape capable of suppressing a vertical turbulent component of the horizontal rotary flow. Equipment for refining molten Al or molten Al alloy.
【請求項2】 AlまたはAl合金溶湯を収納した容器
を回転磁界中に入れ、前記容器内のAlまたはAl合金
溶湯に水平回転流を与えながら、前記容器内の溶湯に対
し、温度制御機構による温度管理下に偏析法を利用して
AlまたはAl合金を凝固精製する装置において、 前記容器の回転中央部分に、前記溶湯排斥用の突出部を
設けたことを特徴とするAlまたはAl合金溶湯の精製
装置。
2. A container containing an Al or Al alloy melt is placed in a rotating magnetic field, and a temperature control mechanism is applied to the molten metal in the container while a horizontal rotating flow is applied to the Al or Al alloy melt in the container. An apparatus for solidifying and refining Al or Al alloy by utilizing a segregation method under temperature control, characterized in that a protrusion for discharging the molten metal is provided at a rotation center portion of the container. Refining equipment.
【請求項3】 AlまたはAl合金溶湯を収納した容器
を回転磁界中に入れ、前記容器内のAlまたはAl合金
溶湯に水平回転流を与えながら、前記容器内の溶湯に対
し、温度制御機構による温度管理下に偏析法を利用して
AlまたはAl合金を凝固精製する装置において、 前記容器の形状を、前記水平回転流の上下方向乱流成分
を抑制し得る円錐台形状とし、前記容器の回転中央部分
に、前記溶湯排斥用の突出部を設けたことを特徴とする
AlまたはAl合金溶湯の精製装置。
3. A container containing an Al or Al alloy molten metal is placed in a rotating magnetic field, and a temperature control mechanism is applied to the molten metal in the container while applying a horizontal rotating flow to the Al or Al alloy molten metal in the container. In an apparatus for solidifying and refining Al or Al alloy by utilizing a segregation method under temperature control, the shape of the container is a truncated cone shape capable of suppressing a vertical turbulent component of the horizontal rotating flow, and the container is rotated. A refining apparatus for molten Al or Al alloy, characterized in that a protrusion for discharging the molten metal is provided in a central portion.
【請求項4】 前記容器底部の外周側寄り部位および前
記突出部の頂部に、開閉弁を有する流出路を接続した請
求項3に記載の精製装置。
4. The refining device according to claim 3, wherein an outflow passage having an on-off valve is connected to a portion of the container bottom portion on the outer peripheral side and a top portion of the protruding portion.
【請求項5】 前記温度制御機構が、前記容器の少なく
とも底部外側、前記突出部の頂部内側に配設されたもの
である請求項3に記載の精製装置。
5. The refining device according to claim 3, wherein the temperature control mechanism is arranged at least outside the bottom of the container and inside the top of the protrusion.
【請求項6】 前記溶湯中に浸漬され、その表面にAl
を凝固させる冷却体及びその冷却体表面から任意に凝固
体を剥離させる表面温度制御機構から構成される冷却体
装置をさらに備えてなる請求項1〜5のいずれかに記載
の精製装置。
6. The surface of the molten metal immersed in the molten metal
The refining device according to any one of claims 1 to 5, further comprising a cooling body device configured by a cooling body for solidifying the cooling body and a surface temperature control mechanism for arbitrarily separating the solidification body from a surface of the cooling body.
JP6003266A 1994-01-17 1994-01-17 Device for refining molten al or al alloy Withdrawn JPH07207362A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6003266A JPH07207362A (en) 1994-01-17 1994-01-17 Device for refining molten al or al alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6003266A JPH07207362A (en) 1994-01-17 1994-01-17 Device for refining molten al or al alloy

Publications (1)

Publication Number Publication Date
JPH07207362A true JPH07207362A (en) 1995-08-08

Family

ID=11552663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6003266A Withdrawn JPH07207362A (en) 1994-01-17 1994-01-17 Device for refining molten al or al alloy

Country Status (1)

Country Link
JP (1) JPH07207362A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002241860A (en) * 2001-02-09 2002-08-28 Furukawa Co Ltd Method of refining metal
JP2008163418A (en) * 2006-12-28 2008-07-17 Showa Denko Kk Metal-refining method and apparatus, refined metal, casting, metal product and electrolytic capacitor
KR101340938B1 (en) * 2012-01-13 2013-12-13 한국기술교육대학교 산학협력단 REDUCING METHOD OF Fe IN Al-Si ALLOY USING CENTRIFUGAL SEPARATION AND MANUFACTURED Al-Si ALLOY USING THE SAME
CN106563777A (en) * 2015-10-08 2017-04-19 富准精密工业(深圳)有限公司 Preparation method and device for semi-solid metal slurry
JP2021095621A (en) * 2019-12-19 2021-06-24 国立研究開発法人産業技術総合研究所 Refining method and refining apparatus of metal

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002241860A (en) * 2001-02-09 2002-08-28 Furukawa Co Ltd Method of refining metal
JP4657466B2 (en) * 2001-02-09 2011-03-23 古河機械金属株式会社 Metal purification methods
JP2008163418A (en) * 2006-12-28 2008-07-17 Showa Denko Kk Metal-refining method and apparatus, refined metal, casting, metal product and electrolytic capacitor
KR101340938B1 (en) * 2012-01-13 2013-12-13 한국기술교육대학교 산학협력단 REDUCING METHOD OF Fe IN Al-Si ALLOY USING CENTRIFUGAL SEPARATION AND MANUFACTURED Al-Si ALLOY USING THE SAME
CN106563777A (en) * 2015-10-08 2017-04-19 富准精密工业(深圳)有限公司 Preparation method and device for semi-solid metal slurry
JP2021095621A (en) * 2019-12-19 2021-06-24 国立研究開発法人産業技術総合研究所 Refining method and refining apparatus of metal

Similar Documents

Publication Publication Date Title
CN110280746A (en) The method that a kind of high-strength ultrasonic wave added in list source casts big specification 2XXX line aluminium alloy billet
US8580036B2 (en) Method and apparatus for refining a molten material
EP0027052B1 (en) Process for purifying aluminum
JP3329013B2 (en) Continuous refining method and apparatus for Al-Si aluminum scrap
WO2017209034A1 (en) Material purification method and device, molten metal heating and retaining device, and continuous purification system for material with high purity
EP0375308A1 (en) Process and apparatus for producing high purity aluminum
JPH07207362A (en) Device for refining molten al or al alloy
JPH05254817A (en) Production of polycrystal silicon ingot
CN110280745A (en) A kind of multi-source ultrasound supervision method controlling 1 meter level of diameter, 2219 aluminum alloy round ingot component segregation
JP3531450B2 (en) Aluminum purification method
JPH08217436A (en) Solidification and purification of metal silicon, device therefor, and mold used for the device
JP2010159490A (en) Method and apparatus for refining metal, refined metal, casting, metal product and electrolytic capacitor
JPH07207361A (en) Method for refining molten al or al alloy
JP6751604B2 (en) Material purification method and equipment, continuous purification system for high-purity substances
CN106282869B (en) A kind of device and method of light-alloy melt magneto vibration solidification
JPH08295963A (en) Aluminium scrap refining method and device therefor
Wang et al. Effects of Electromagnetic Agitation on Crystal Growth during the Pure Aluminum Slow Cooling Process
CN113857449B (en) Preparation method of oriented silicon steel casting blank and casting blank system
JPH06299265A (en) Method for refining aluminum scrap
JPH05148559A (en) Refining device for molten aluminum
JPH0754065A (en) Refining method and recycling method for aluminum scrap
RU2275983C2 (en) Process for casting aluminum protectors
RU2080206C1 (en) Method of production of ingots
JPS592728B2 (en) Aluminum refining method
JPS5941498B2 (en) Aluminum refining method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010403