JPH10139415A - Solidification and purification of molten silicon - Google Patents

Solidification and purification of molten silicon

Info

Publication number
JPH10139415A
JPH10139415A JP28821996A JP28821996A JPH10139415A JP H10139415 A JPH10139415 A JP H10139415A JP 28821996 A JP28821996 A JP 28821996A JP 28821996 A JP28821996 A JP 28821996A JP H10139415 A JPH10139415 A JP H10139415A
Authority
JP
Japan
Prior art keywords
silicon
molten silicon
molten
solidification
electron beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP28821996A
Other languages
Japanese (ja)
Inventor
Kazuhiro Hanazawa
和浩 花澤
Kenkichi Yushimo
憲吉 湯下
Yasuhiko Sakaguchi
泰彦 阪口
Yoshihide Kato
嘉英 加藤
Matao Araya
復夫 荒谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP28821996A priority Critical patent/JPH10139415A/en
Publication of JPH10139415A publication Critical patent/JPH10139415A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)
  • Silicon Compounds (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for solidification and purification of molten silicon to remove elemental impurities therefrom to an extent allowable as a preliminary purification step for production of solar cells. SOLUTION: This method passes silicon 6 molten under a vacuum, irradiated with electron beams 5 to heat the surface, to a cast container 3 while successively overflowing it at given time intervals, to solidify the molten silicon 6 unidirectionally from the bottom upwards, where an overflow rate is set to keep the quantity of the molten silicon 6 in the container 3 at <= (density (kg/cm<3> ) × surface area (cm<2> )×thickness 0.1(cm) kg and irradiation density of the electron beams 5 at 0.07 to 0.40kW/cm<2> .

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、溶融シリコンの凝
固精製方法に関し、詳しくは、金属シリコンから太陽電
池用シリコンを冶金プロセスを用いて製造する過程にお
いて、溶融シリコン中の不純物元素を所謂1方向凝固を
用いて除去する技術に係わる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for solidifying and refining molten silicon, and more particularly, to a method of producing silicon for a solar cell from metallic silicon by using a metallurgical process to remove impurity elements in molten silicon in one direction. The present invention relates to a technique of removing using coagulation.

【0002】[0002]

【従来の技術】金属の純度を上げる技術の1つに、凝固
精製法がある。それは、精製対象の金属元素(ここで
は、シリコン)と除去対象の不純物元素(例えば、A
l,Fe,Ti等)との間に成立している平衡状態図を
利用するものである。すなわち、ある濃度(e重量%)
の不純物元素(B)を含む精製対象金属(A)の固相線
と液相線とが図2に示すような関係にある場合、不純物
元素Bが、精製対象金属Aの凝固時に固相から液相に排
出され、液相中に濃化する(Bの濃度は、e点からf点
へ、Aの濃度は、e点からd点へ移動)。具体的には、
鋳型内に保持した精製対象金属を、例えば底部から上方
へ1方向に向けて凝固すると、不純物濃度は鋳塊の下方
で低くなり、最後に凝固する上部に濃縮される。従っ
て、鋳塊の上部(濃縮部)を切断破棄すれば、純度の高
い精製対象金属が得られることになる。
2. Description of the Related Art One of the techniques for increasing the purity of a metal is a solidification refining method. It consists of a metal element to be purified (here, silicon) and an impurity element to be removed (for example, A
1, Fe, Ti, etc.). That is, a certain concentration (e weight%)
When the solidus line and the liquidus line of the metal to be purified (A) containing the impurity element (B) have a relationship as shown in FIG. It is discharged into the liquid phase and concentrated in the liquid phase (the concentration of B moves from point e to point f, and the concentration of A moves from point e to point d). In particular,
When the metal to be purified held in the mold is solidified, for example, in one direction upward from the bottom, the impurity concentration decreases below the ingot, and is concentrated at the upper portion where the metal finally solidifies. Therefore, if the upper part (concentrated part) of the ingot is cut and discarded, a high-purity metal to be purified can be obtained.

【0003】一方、太陽電池用シリコン基板が、所要の
半導体特性を発揮するためには、シリコン中の不純物元
素を許容以下に低減しなければならない。そのため、従
来、太陽電池用シリコンは、図3に示すように、塩酸と
反応させてトリクロロ・シランとしてガス化し、該ガス
を精留して不純物元素を除き、水素ガスと反応させる所
謂CVD法でガスから析出させていた。したがって、得
られたシリコンは、所謂イレブン・ナインの非常に高純
度なものであった。
On the other hand, in order for a silicon substrate for a solar cell to exhibit required semiconductor characteristics, the impurity element in silicon must be reduced to an unacceptable level. Conventionally, as shown in FIG. 3, so-called CVD method is used in which silicon for solar cells is reacted with hydrochloric acid to gasify it as trichlorosilane, and the gas is rectified to remove impurity elements and react with hydrogen gas. Had been precipitated from the gas. Therefore, the obtained silicon was a very high-purity so-called Eleven Nine.

【0004】しかしながら、かかる従来のシリコン製造
方法は、せっかく半導体用にまで高純度にしたインゴッ
トを、再度、太陽電池用に適するように成分調整した
り、精製や鋳造をしなければならないので、手間がかか
る上に、歩留が悪く、再溶解の設備、エネルギーも別途
必要で、製造費用が嵩む。そのため、上記したように、
現在入手可能な太陽電池は高価なものとなり、一般的な
普及の障害となっている。また、化学プロセスでの金属
シリコンの高純度化には、シラン、塩化物等の公害物質
の多量発生が避けられず、量産の障害になるという問題
もあった。
[0004] However, such a conventional method for producing silicon requires time-consuming adjustment of components, refining and casting of an ingot which has been highly purified even for a semiconductor, so as to be suitable for a solar cell. In addition to this, the yield is low, remelting equipment and energy are separately required, and the production cost increases. So, as mentioned above,
Currently available solar cells are expensive and are an obstacle to their general spread. In addition, in purifying metallic silicon in a chemical process, there is a problem that a large amount of pollutants such as silane and chloride is inevitably generated, which hinders mass production.

【0005】そこで、発明者は、上記のような化学プロ
セスによる金属シリコンの高純度化を改め、冶金プロセ
スのみで太陽電池に適した純度のシリコンを製造し、そ
れを鋳造して一気にシリコン基板までにする方法(図4
参照)を検討している。そして、その一環として、上記
凝固精製法を利用して、金属シリコンの純度を高めるこ
とを試みている。
Therefore, the inventor has improved the purity of metallic silicon by the above-described chemical process, manufactured silicon having a purity suitable for a solar cell only by a metallurgical process, and cast it to a silicon substrate at a stretch. (Fig. 4
See). Then, as one of the measures, an attempt is made to increase the purity of metallic silicon by utilizing the solidification purification method described above.

【0006】ところで、1方向凝固は、図5に示すよう
に、従来も多結晶の太陽電池用シリコン基板の製造に用
いられていた。例えば、特開昭62−260710号公
報は、「減圧室1内に、溶解炉2(水冷ハース)と水冷
鋳型3とを上下に設け、溶解炉に供給した固体(金属)
シリコン4を電子ビーム5で溶解し、その溶湯(溶融シ
リコン)6を溶解炉2からオーバフローさせて上記鋳型
3に連続的に供給して、該鋳型3の底部から上方に1方
向凝固させる」技術を開示している。
Meanwhile, as shown in FIG. 5, one-way solidification has been conventionally used for producing a polycrystalline silicon substrate for a solar cell. For example, Japanese Unexamined Patent Publication No. 62-260710 discloses that “a melting furnace 2 (water-cooled hearth) and a water-cooled mold 3 are provided vertically in a decompression chamber 1 and solid (metal) supplied to the melting furnace is provided.
A technique in which silicon 4 is melted by an electron beam 5 and its molten metal (molten silicon) 6 overflows from a melting furnace 2, is continuously supplied to the mold 3, and solidifies in one direction upward from the bottom of the mold 3. Is disclosed.

【0007】しかしながら、この公報では、使用するシ
リコンが高純度で精製を必要としないためか、生産性の
向上が主体で、精製技術については何ら記載がない。ま
た、そこに記載された方法を実施すると、鋳型内面に塗
布した窒化珪素、酸化珪素等が真空、高温下で分解し、
安定した電子ビームの照射ができないことが予想され
る。さらに、鋳型3の上方に設置したヒータ(図示せ
ず)によって電磁場が生じ、同様に、電子ビーム5の照
射を不安定にし、凝固界面の安定した移動ができないと
思われる。
However, this publication mainly focuses on improving the productivity because the silicon used is of high purity and does not require refining, and there is no description of refining technology. Further, when the method described therein is performed, silicon nitride, silicon oxide, etc. applied on the inner surface of the mold are decomposed under vacuum and high temperature,
It is expected that stable electron beam irradiation cannot be performed. Furthermore, an electromagnetic field is generated by a heater (not shown) installed above the mold 3, and similarly, it is considered that irradiation of the electron beam 5 becomes unstable and stable movement of the solidification interface is not possible.

【0008】また、シリコンから不純物元素の粗精製を
行ったものとして、特開平5−124809号公報は、
「一度凝固させた鋳塊の一部を再び溶解、凝固させ、シ
リコンの歩留を向上させる」技術を提案した。しかしな
がら、この公報も、実施例において、真空度が10-3
10-4mbarとか,直径35mmの鋳塊を速度2mm
/分で引き下げたとか、再溶解時に電子ビームの出力を
5kWから6.5kWに高めた記述があるが、不純物元
素を効率的に安定して除去することに関しては、何ら記
述されていない。また、不純物元素の濃度に関しても、
Alを1800ppmから360ppm程度に低下させ
たものであり、太陽電池用シリコンの製造で問題になる
1000ppm程度から10ppm以下にする技術では
ない。
Japanese Patent Application Laid-Open No. 5-124809 discloses that impurity elements are roughly purified from silicon.
He proposed a technique to "melt and solidify part of the ingot once solidified to improve the yield of silicon." However, this publication also discloses that in the examples, the degree of vacuum is 10 −3 to 10 −3 .
10 -4 mbar or 35mm diameter ingot with 2mm speed
/ Min, or the output of the electron beam was increased from 5 kW to 6.5 kW at the time of re-melting. However, there is no description about efficient and stable removal of impurity elements. Also, regarding the concentration of the impurity element,
This is a technique in which Al is reduced from about 1800 ppm to about 360 ppm, and is not a technique to reduce Al from about 1000 ppm to 10 ppm or less, which is a problem in the production of silicon for solar cells.

【0009】[0009]

【発明が解決しようとする課題】本発明は、かかる事情
を鑑み、溶融シリコン中の不純物元素を、太陽電池用シ
リコンの粗精製として許容できる程度にまで除去する溶
融シリコンの凝固精製方法を提供することを目的として
いる。
SUMMARY OF THE INVENTION In view of the foregoing, the present invention provides a method for solidifying and refining molten silicon in which impurity elements in the molten silicon are removed to an extent acceptable as coarse refining of silicon for solar cells. It is intended to be.

【0010】[0010]

【課題を解決するための手段】発明者は、上記目的を達
成するため、凝固界面の安定移動に着眼して鋭意研究を
重ね、本発明を完成させた。すなわち、本発明は、減圧
下で溶解した溶融シリコンを鋳造容器に一定時間毎にオ
ーバフローさせて注入し、その表面を電子ビームで加熱
しつつ、該溶融シリコンを底部より上方へ1方向凝固さ
せるに際し、オーバフロー1回当たりの溶融シリコン量
を、上記鋳造容器内シリコンの(密度(kg/cm3
×表面積(cm2 )×厚み0.1(cm))キロ・グラ
ム以下とすると共に、電子ビームの照射密度を0.07
〜0.40kW/cm2 とすることを特徴とする溶融シ
リコンの凝固精製方法である。
Means for Solving the Problems In order to achieve the above-mentioned object, the inventor conducted intensive studies with a focus on stable movement of the solidification interface, and completed the present invention. That is, according to the present invention, when molten silicon melted under reduced pressure is poured into a casting vessel at intervals of a predetermined time, and the surface is heated by an electron beam, the molten silicon is solidified in one direction upward from a bottom. The amount of molten silicon per overflow was determined by the density (kg / cm 3 ) of silicon in the casting vessel.
× surface area (cm 2 ) × thickness 0.1 (cm)) kilograms or less, and the electron beam irradiation density is 0.07
A method for solidifying and refining molten silicon, characterized in that the pressure is set to 0.40 kW / cm 2 .

【0011】また、本発明は、減圧室内の圧力を5×1
-3torr以下に維持し、溶解した溶融シリコンから
気化脱燐することを特徴とする溶融シリコンの凝固精製
方法である。本発明では、溶融シリコンの凝固精製を上
記のような構成で行うようにしたので、凝固界面での固
液共存領域の温度勾配が理想(状態図通り)に近づくと
共に、界面全体で均一になって、界面が安定して上方に
移動するようになる。その結果、最後に凝固する部分に
不純物元素が十分に濃化し、太陽電池用シリコンを得る
ための粗精製として許容できる程度まで溶融シリコンの
純度が向上する。
Further, the present invention provides that the pressure in the decompression chamber is 5 × 1
A method for solidifying and refining molten silicon, comprising maintaining the pressure at 0 -3 torr or less and vaporizing and dephosphorizing the molten silicon. In the present invention, since the solidification purification of the molten silicon is performed with the above-described configuration, the temperature gradient in the solid-liquid coexistence region at the solidification interface approaches an ideal (as shown in the state diagram) and becomes uniform over the entire interface. As a result, the interface stably moves upward. As a result, the impurity element is sufficiently concentrated in the portion that finally solidifies, and the purity of the molten silicon is improved to an extent that can be accepted as a rough refinement for obtaining silicon for solar cells.

【0012】[0012]

【発明の実施の形態】図1に、本発明に係る溶融シリコ
ンの精製方法を実施した装置例を、縦断面で示す。それ
は、減圧室1内に、保持容器2(ハース)及び銅製水冷
ルツボ(鋳造容器、図7(a)参照)3を、溶解された
溶融シリコン6が順次オーバフローで移動できるように
上下に配置されている。そして、原料の金属シリコン4
の溶解と加熱は、上方に配置した電子銃8からの電子ビ
ーム5の照射で行われるようになっている。この照射
は、通常、一定時間の間隔(0.1〜1秒程度)で周期
的に行われる。まず、保持容器2内のシリコン表面を、
電子銃8で図6に示す軌跡になるよう照射し、その後保
持容器2の出湯口11に固化しているシリコンをも照射
するパターンを繰り返すのである。従って、出湯口11
を照射した時に、該保持容器2から下方の銅製水冷ルツ
ボ3ヘ、溶融シリコンがオーバフローするのである。な
お、出湯口11でのシリコンの固化は、該出湯口も水冷
されているので、前回のオーバフロー時の残湯によって
起きる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a longitudinal section of an example of an apparatus for implementing a method for purifying molten silicon according to the present invention. That is, a holding container 2 (hearth) and a copper water-cooled crucible (casting container, see FIG. 7 (a)) 3 are vertically arranged in a decompression chamber 1 so that the molten silicon 6 that has been melted can move sequentially by overflow. ing. And the raw metal silicon 4
Is melted and heated by irradiation of an electron beam 5 from an electron gun 8 arranged above. This irradiation is usually performed periodically at regular time intervals (about 0.1 to 1 second). First, the silicon surface in the holding container 2 is
The pattern of irradiating with the electron gun 8 so as to have the locus shown in FIG. 6 and then irradiating the solidified silicon to the tap hole 11 of the holding container 2 is repeated. Therefore, tap hole 11
Is irradiated, the molten silicon overflows from the holding container 2 to the copper water-cooled crucible 3 below. The solidification of the silicon at the tap hole 11 is caused by the remaining hot water at the time of the previous overflow since the tap hole is also water-cooled.

【0013】本発明は、かかる装置において、金属シリ
コン4の溶解、溶融状態にあるシリコン6からの気化脱
燐と1方向凝固による凝固精製とを、一連の連続した処
理としたものであり、その際の重要ポイントとして、ビ
ーム照射密度と溶融シリコンの鋳型へのオーバフロ量を
下記のように限定したものである。すなわち、本発明
で、保持容器2からのオーバフロー1回当たりの溶融シ
リコン量を、(密度×表面積×厚み0.1)キロ・グラ
ム以下と少なくしたのは、一度に多量のオーバフローが
あると、凝固速度が位置によってバラツキ、製品に成分
偏析が起きるからである。また、電子ビーム5の照射密
度を0.07〜0.40kW/cm2 とした理由は、
0.07未満では、湯面温度が低過ぎて固液領域の温度
勾配が小さ過ぎ、凝固界面が安定しないからである。一
方、0.40超えでは、湯面温度が上昇し過ぎてシリコ
ンの蒸発量が増すと共に、湯面の振動が起きて凝固界面
が乱れ、不純物元素の濃化現象が不十分になるからであ
る。
According to the present invention, in such an apparatus, the dissolution of the metal silicon 4, the vaporization dephosphorization from the molten silicon 6 and the solidification purification by one-way solidification are performed as a series of continuous treatments. As important points in this case, the beam irradiation density and the overflow amount of the molten silicon to the mold are limited as follows. That is, in the present invention, the amount of molten silicon per overflow from the holding container 2 is reduced to (density × surface area × thickness 0.1) kilograms or less because a large amount of overflow occurs at once. This is because the solidification rate varies depending on the position and component segregation occurs in the product. The reason why the irradiation density of the electron beam 5 is set to 0.07 to 0.40 kW / cm 2 is as follows.
If it is less than 0.07, the temperature of the molten metal surface is too low, the temperature gradient in the solid-liquid region is too small, and the solidification interface is not stable. On the other hand, if it exceeds 0.40, the surface temperature rises too much and the evaporation amount of silicon increases, and at the same time, the surface of the surface vibrates to disturb the solidification interface and the impurity element enrichment phenomenon becomes insufficient. .

【0014】また、本発明では、減圧室の圧力を5×1
-3torr以下としたが、この値超では、シリコンか
らの気化脱燐が著しく低減するからである。なお、本発
明では、溶解容器や保持容器2内で溶融シリコンを15
00℃以上に保持するので、必要な場合には、上記電子
銃8以外の加熱源を補助的に設置しても良い。但し、こ
の場合、電熱を利用する際には、電磁場による電子ビー
ムの進行方向の乱れに十分な注意が必要となる。また、
保持容器2は、通常、銅製水冷ジャケットで形成される
が、そこで効率的な気化脱燐を行わせる場合には、発明
者が別途出願中である黒鉛容器を利用しても良い。ま
た、銅製水冷ルツボ3の材質に関しても保持容器2と同
じである。さらに、本発明では、銅製水冷ルツボ3に替
え、図7(b)に示すような底部が上下に昇降可能な鋳
型を用い、インゴットを連続的に下方へ引き抜くことも
可能である。
In the present invention, the pressure in the decompression chamber is set to 5 × 1
Although it is set to 0 -3 torr or less, when it exceeds this value, the vapor dephosphorization from silicon is significantly reduced. In the present invention, the molten silicon is melted in the melting vessel or holding vessel 2 for 15 minutes.
Since the temperature is maintained at 00 ° C. or higher, a heating source other than the electron gun 8 may be additionally provided if necessary. However, in this case, when utilizing the electric heat, it is necessary to pay sufficient attention to the disturbance of the traveling direction of the electron beam due to the electromagnetic field. Also,
The holding container 2 is usually formed of a copper water-cooled jacket. However, in the case where efficient vaporization and dephosphorization is performed there, a graphite container which is separately filed by the inventor may be used. The material of the copper water-cooled crucible 3 is the same as that of the holding container 2. Further, in the present invention, instead of the copper water-cooled crucible 3, it is possible to use a mold whose bottom can be moved up and down as shown in FIG.

【0015】[0015]

【実施例】減圧室1内で、上方に備えた出力300kW
の電子銃8から100kWの電子ビーム5を発射し、溶
解容器7に連続的に6kg/時間で供給されてくる金属
シリコン4を溶解した。溶解した溶融シリコン6の一部
を、溶解容器7の上方から一定時間毎にオーバフローさ
せて、下方に位置する前記黒鉛製の保持容器2に注い
だ。その間、減圧室1の圧力は1×10-4torrに維
持したので、溶融シリコン6からは、燐やAl,Caの
一部が気化して除去された。次に、該保持容器2の上方
から、溶融シリコン6の一部を一定時間毎に銅製水冷ル
ツボ3にオーバフローさせ、該ルツボの底部から上方に
向けて0.6mm/minの凝固速度になるように、金
属シリコンの供給速度を調整して1方向凝固させた。な
お、銅製水冷ルツボ3の上方からは、本発明に従い、照
射密度0.23kW/cm2 で電子ビーム5を発射し
て、溶融シリコン6の表面を加熱した。また、銅製水冷
ルツボ3への1回当たりのオーバフロー量は、該ルツボ
3の直径が300mmであったので、平均して約100
gとなるようにした。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the decompression chamber 1, an output of 300 kW provided above
An electron beam 5 of 100 kW was emitted from the electron gun 8 of the above, and the metal silicon 4 continuously supplied to the melting vessel 7 at 6 kg / hour was melted. A part of the melted molten silicon 6 overflowed from above the melting vessel 7 at regular intervals, and was poured into the graphite holding vessel 2 located below. During this time, since the pressure in the decompression chamber 1 was maintained at 1 × 10 −4 torr, a part of phosphorus, Al and Ca was vaporized and removed from the molten silicon 6. Next, a part of the molten silicon 6 is caused to overflow into the copper water-cooled crucible 3 at regular intervals from above the holding container 2 so that the solidification rate becomes 0.6 mm / min from the bottom of the crucible upward. Then, the supply speed of metallic silicon was adjusted to solidify in one direction. An electron beam 5 was emitted from above the copper water-cooled crucible 3 at an irradiation density of 0.23 kW / cm 2 to heat the surface of the molten silicon 6 according to the present invention. The amount of overflow to the copper water-cooled crucible 3 per one time was about 100 on average because the diameter of the crucible 3 was 300 mm.
g.

【0016】そして、50kgのインゴット9を得たと
ころで、操業を停止して、該インゴット9を1500℃
から200℃まで1時間かけて冷却した。そして、該イ
ンゴット9の上部20%を切断除去し、残りの部分から
試料を採取した。該試料の分析結果を表1に示す。表1
より、本発明によって製造したシリコンの不純物元素
は、出発原料の値より大幅に低減しており、太陽電池用
シリコンの粗精製としては十分な値になっていることが
明らかである。
When the ingot 9 of 50 kg was obtained, the operation was stopped and the ingot 9 was cooled to 1500 ° C.
To 200 ° C. over 1 hour. Then, the upper 20% of the ingot 9 was cut and removed, and a sample was taken from the remaining portion. Table 1 shows the analysis results of the sample. Table 1
It is clear from the above that the impurity element of silicon produced according to the present invention is significantly reduced from the value of the starting material, which is a sufficient value for rough purification of silicon for solar cells.

【0017】[0017]

【表1】 [Table 1]

【0018】[0018]

【発明の効果】以上述べたように、本発明により、溶融
シリコン中の不純物元素を、太陽電池用シリコンとして
許容できる程度まで除去できるようになった。その結
果、本技術の採用で、安価な太陽電池用シリコン基板の
生産が期待できる。
As described above, according to the present invention, impurity elements in molten silicon can be removed to an extent acceptable as silicon for solar cells. As a result, with the adoption of this technology, the production of inexpensive silicon substrates for solar cells can be expected.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る溶融シリコンの凝固精製方法を実
施する装置例を示す縦断面図である。
FIG. 1 is a longitudinal sectional view showing an example of an apparatus for performing a method for solidifying and refining molten silicon according to the present invention.

【図2】2成分系の平衡状態図の一部分を示す図であ
る。
FIG. 2 is a diagram showing a part of an equilibrium diagram of a two-component system.

【図3】従来の太陽電池用シリコン基板の製造方法を示
す流れ図である。
FIG. 3 is a flowchart showing a conventional method for manufacturing a silicon substrate for a solar cell.

【図4】発明者らの研究開発した太陽電池用シリコン基
板の製造方法を示す流れ図である。
FIG. 4 is a flowchart showing a method of manufacturing a silicon substrate for a solar cell, which was researched and developed by the inventors.

【図5】特開昭62−260710号記載の溶融シリコ
ンを1方向凝固する装置である。
FIG. 5 is an apparatus for unidirectionally solidifying molten silicon described in JP-A-62-260710.

【図6】保持容器内のシリコンに電子ビームを照射する
パターンを説明する図である。
FIG. 6 is a diagram illustrating a pattern in which silicon in a holding container is irradiated with an electron beam.

【図7】シリコンの凝固に用いる容器の図であり、
(a)は銅製水冷ルツボ、(b)は底部が昇降自在の水
冷鋳型である。
FIG. 7 is a view of a container used for solidifying silicon,
(A) is a water-cooled copper crucible, and (b) is a water-cooled mold whose bottom can be raised and lowered.

【符号の説明】[Explanation of symbols]

1 減圧室 2 保持容器(ハース) 3 銅製水冷ルツボ(鋳造容器) 4 固体(金属)シリコン 5 電子ビーム 6 溶融シリコン 7 溶解容器(ハース) 8 電子銃 9 インゴット 10 冷却水 11 出湯口 DESCRIPTION OF SYMBOLS 1 Decompression room 2 Holding vessel (hearth) 3 Water-cooled crucible made of copper (casting vessel) 4 Solid (metal) silicon 5 Electron beam 6 Melted silicon 7 Melting vessel (Heath) 8 Electron gun 9 Ingot 10 Cooling water 11 Outlet

───────────────────────────────────────────────────── フロントページの続き (72)発明者 阪口 泰彦 千葉市中央区川崎町1番地 川崎製鉄株式 会社技術研究所内 (72)発明者 加藤 嘉英 千葉市中央区川崎町1番地 川崎製鉄株式 会社技術研究所内 (72)発明者 荒谷 復夫 千葉市中央区川崎町1番地 川崎製鉄株式 会社技術研究所内 ──────────────────────────────────────────────────の Continuing on the front page (72) Inventor Yasuhiko Sakaguchi 1 Kawasaki-cho, Chuo-ku, Chiba-shi Kawasaki Steel Engineering Co., Ltd. (72) Inventor Yoshihide Kato 1-Kawasaki-cho, Chuo-ku, Chiba-shi Kawasaki Steel Technical Research In-house (72) Inventor Kazuo Aratani 1 Kawasaki-cho, Chuo-ku, Chiba-shi Kawasaki Steel Corporation Technical Research Institute

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 減圧下で溶解した溶融シリコンを鋳造容
器に一定時間毎に順次オーバフローさせて注入し、その
表面を電子ビームで加熱しつつ、該溶融シリコンを底部
より上方へ1方向凝固させるに際し、 オーバフロー1回当たりの溶融シリコン量を、上記鋳造
容器内シリコンの(密度(kg/cm3 )×表面積(c
2 )×厚み0.1(cm))キロ・グラム以下とする
と共に、電子ビームの照射密度を0.07〜0.40k
W/cm2 とすることを特徴とする溶融シリコンの凝固
精製方法。
1. A method in which molten silicon melted under reduced pressure is poured into a casting vessel in such a manner that the molten silicon is sequentially overflowed at predetermined time intervals and the surface thereof is heated by an electron beam while solidifying the molten silicon in one direction upward from a bottom. The amount of molten silicon per overflow is calculated as (density (kg / cm 3 ) × surface area (c) of silicon in the casting container.
m 2 ) × thickness 0.1 (cm)) kilogram or less, and the electron beam irradiation density is 0.07 to 0.40 k.
A method for solidifying and refining molten silicon, wherein the method is W / cm 2 .
【請求項2】 減圧室内の圧力を5×10-3torr以
下に維持し、溶解した溶融シリコンから気化脱燐するこ
とを特徴とする請求項1記載の溶融シリコンの凝固精製
方法。
2. The method for solidifying and refining molten silicon according to claim 1, wherein the pressure in the decompression chamber is maintained at 5 × 10 −3 torr or less, and the molten silicon is vaporized and dephosphorized.
JP28821996A 1996-10-30 1996-10-30 Solidification and purification of molten silicon Withdrawn JPH10139415A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28821996A JPH10139415A (en) 1996-10-30 1996-10-30 Solidification and purification of molten silicon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28821996A JPH10139415A (en) 1996-10-30 1996-10-30 Solidification and purification of molten silicon

Publications (1)

Publication Number Publication Date
JPH10139415A true JPH10139415A (en) 1998-05-26

Family

ID=17727369

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28821996A Withdrawn JPH10139415A (en) 1996-10-30 1996-10-30 Solidification and purification of molten silicon

Country Status (1)

Country Link
JP (1) JPH10139415A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7727502B2 (en) 2007-09-13 2010-06-01 Silicum Becancour Inc. Process for the production of medium and high purity silicon from metallurgical grade silicon
WO2014010825A1 (en) * 2012-07-10 2014-01-16 한국에너지기술연구원 Silicon refining apparatus
KR101394161B1 (en) * 2012-08-23 2014-05-15 한국에너지기술연구원 Apparatus for Refining Silicon
KR101397979B1 (en) * 2012-07-10 2014-05-30 한국에너지기술연구원 Apparatus for Refining Silicon
KR101401347B1 (en) * 2012-07-10 2014-06-03 한국에너지기술연구원 Apparatus for Refining Silicon
KR101475755B1 (en) * 2012-08-23 2014-12-30 한국에너지기술연구원 Apparatus for Refining Silicon

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7727502B2 (en) 2007-09-13 2010-06-01 Silicum Becancour Inc. Process for the production of medium and high purity silicon from metallurgical grade silicon
WO2014010825A1 (en) * 2012-07-10 2014-01-16 한국에너지기술연구원 Silicon refining apparatus
KR101397979B1 (en) * 2012-07-10 2014-05-30 한국에너지기술연구원 Apparatus for Refining Silicon
KR101401347B1 (en) * 2012-07-10 2014-06-03 한국에너지기술연구원 Apparatus for Refining Silicon
KR101441856B1 (en) * 2012-07-10 2014-09-19 한국에너지기술연구원 Apparatus for Refining Silicon
KR101394161B1 (en) * 2012-08-23 2014-05-15 한국에너지기술연구원 Apparatus for Refining Silicon
KR101475755B1 (en) * 2012-08-23 2014-12-30 한국에너지기술연구원 Apparatus for Refining Silicon

Similar Documents

Publication Publication Date Title
JP3325900B2 (en) Method and apparatus for producing polycrystalline silicon, and method for producing silicon substrate for solar cell
US5972107A (en) Method for purifying silicon
JP4523274B2 (en) High purity metallic silicon and its smelting method
US7682585B2 (en) Silicon refining process
US5510095A (en) Production of high-purity silicon ingot
JP3473369B2 (en) Silicon purification method
EP0869102B1 (en) Process and apparatus for preparing polycrystalline silicon and process for preparing silicon substrate for solar cell
JPH10245216A (en) Production of silicon for solar cell
CN1221470C (en) High purity silicon and productive method thereof
US20100178195A1 (en) Method of solidifying metallic silicon
JPH05262512A (en) Purification of silicon
JPH10273313A (en) Production of polycrystal silicon ingot
JP2009114026A (en) Method for refining metal silicon
JPH10139415A (en) Solidification and purification of molten silicon
JPH10273311A (en) Purification of silicon for solar battery and apparatus therefor
JP2000247623A (en) Method for refining silicon and apparatus therefor
JP5277654B2 (en) Method for producing boron-doped silicon
JPH10251008A (en) Method for solidifying and refining metal silicon
JPH07267624A (en) Purification of silicon and apparatus therefor
JP2009018958A (en) Method for melting silicon and method for purifying silicon
JPH10182135A (en) Solidification refining of silicon
US9352970B2 (en) Method for producing silicon for solar cells by metallurgical refining process
JP3300425B2 (en) Silicon purification method
JPH10251009A (en) Method for solidifying and refining silicon for solar battery
JP2000327488A (en) Production of silicon substrate for solar battery

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040106