JPH10251009A - Method for solidifying and refining silicon for solar battery - Google Patents

Method for solidifying and refining silicon for solar battery

Info

Publication number
JPH10251009A
JPH10251009A JP9061129A JP6112997A JPH10251009A JP H10251009 A JPH10251009 A JP H10251009A JP 9061129 A JP9061129 A JP 9061129A JP 6112997 A JP6112997 A JP 6112997A JP H10251009 A JPH10251009 A JP H10251009A
Authority
JP
Japan
Prior art keywords
silicon
solidification
solidification rate
molten silicon
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9061129A
Other languages
Japanese (ja)
Inventor
Yasuhiko Sakaguchi
泰彦 阪口
Yoshihide Kato
嘉英 加藤
Masamichi Abe
正道 阿部
Kenkichi Yushimo
憲吉 湯下
Tetsuya Fujii
徹也 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP9061129A priority Critical patent/JPH10251009A/en
Publication of JPH10251009A publication Critical patent/JPH10251009A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PROBLEM TO BE SOLVED: To provide a method for solidifying and refining silicon for solar batteries capable of removing metallic impurity elements from metal silicon with the higher efficiency than heretofore. SOLUTION: At the time of casting the molten silicon 4 obtd. by dephosphorizing, deboronizing, decarburizing and deoxidizing from the metal silicon, subjecting the molten silicon to unidirectional solidification and removing the metallic impurity elements contained in the silicon; the solidification rate R meeting the initial concn. of the metallic impurity elements contained in the molten silicon 4 is first determined. The molten silicon is then solidified by setting the solidification rate higher than its in the beginning of the start of the solidification and gradually lowering the rate as time passes by until the average solidification rate during the entire operation attains R.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、太陽電池用シリコ
ンの凝固精製方法に関し、詳しくは、金属シリコンから
脱燐、脱炭、脱ボロンして得た比較的純度の良い溶融金
属シリコンから、さらに、不純物となる金属元素を一方
向凝固法で除去する技術に係わる。
The present invention relates to a method for coagulating and refining silicon for solar cells, and more particularly, to a method for decomposing, decomposing and deboring metallic silicon from relatively pure molten silicon. The present invention relates to a technique for removing a metal element as an impurity by a unidirectional solidification method.

【0002】[0002]

【従来の技術】金属の純度を上げる技術の1つに、凝固
精製法がある。それは、精製対象の金属元素(ここで
は、シリコン)と除去対象の不純物元素(例えば、A
l,P,Ca,Fe,Ti等)との間に成立している平
衡状態図を利用するものである。すなわち、ある濃度
(e重量%)の不純物元素(B)を含む精製対象金属
(A)の固相線と液相線とが図2に示すような関係にあ
る場合、不純物元素Bが、精製対象金属Aの凝固時に固
相から液相に排出され、液相中に濃化する(液相中のB
の濃度は、e点からf点へ、固相中のBの濃度は、d点
からe点へ移動)。具体的には、鋳造容器(以下、鋳型
という)内に保持した精製対象金属を、例えば底部から
上方へ一方向に向けて冷却、凝固すると、不純物濃度は
鋳塊の下方で低くなり、最後に凝固する液に濃縮され
る。従って、鋳塊の上部(濃縮部)を切断破棄すれば、
純度の高い精製対象金属が得られることになる。
2. Description of the Related Art One of the techniques for increasing the purity of a metal is a solidification refining method. It consists of a metal element to be purified (here, silicon) and an impurity element to be removed (for example, A
1, P, Ca, Fe, Ti, etc.). That is, when the solidus line and the liquidus line of the metal to be purified (A) containing a certain concentration (e wt%) of the impurity element (B) have a relationship as shown in FIG. When the target metal A solidifies, it is discharged from the solid phase to the liquid phase, and is concentrated in the liquid phase (B in the liquid phase).
(The concentration of B moves from point e to point f, and the concentration of B in the solid phase moves from point d to point e). Specifically, when the metal to be purified held in a casting vessel (hereinafter, referred to as a mold) is cooled and solidified, for example, in one direction upward from the bottom, the impurity concentration decreases below the ingot, and finally, It is concentrated to a coagulating liquid. Therefore, if the upper part (concentrated part) of the ingot is cut and discarded,
A high-purity metal to be purified can be obtained.

【0003】一方、近年、エネルギー源の多様化要求か
ら、太陽光発電が脚光を浴び、発電に必要な太陽電池用
シリコンの製造が盛んになったが、この発電を行うに
は、シリコン中の不純物元素を許容値以下に低減しなけ
ればならない。そのため、従来は、図3に示すように、
金属シリコンを塩酸と反応させてトリクロロ・シランと
してガス化し、該ガスを精留して不純物元素を除き、水
素ガスと反応させる所謂CVD法でガスから析出させた
シリコンを用いていた。なお、この段階で析出したシリ
コンは、所謂イレブン・ナインと非常に高純度なので、
通常は半導体製造に利用できる。したがって、図3に示
す従来の製造方法は、せっかく半導体用にまで高純度に
したシリコンを、再度、太陽電池用に適するように成分
調整したり、精製や鋳造をしなければならないので、手
間がかかる上に、歩留が悪く、再溶解の設備、エネルギ
ーも別途必要で、製造費用が嵩むという問題があった。
そのため、現在入手可能な太陽電池は高価なものとな
り、一般的な普及の障害となっている。また、上記のよ
うな化学プロセスが主体の金属シリコンの精製では、シ
ラン、塩化物等の公害物質の多量発生が避けられず、量
産の障害になるという問題もあった。
On the other hand, in recent years, photovoltaic power generation has been in the spotlight due to the demand for diversification of energy sources, and the production of silicon for solar cells required for power generation has been prosperous. Impurity elements must be reduced below acceptable values. Therefore, conventionally, as shown in FIG.
Metallic silicon is reacted with hydrochloric acid to gasify it as trichlorosilane, the gas is rectified to remove impurity elements, and silicon precipitated from the gas by a so-called CVD method of reacting with hydrogen gas has been used. The silicon deposited at this stage has a very high purity of so-called Eleven Nine,
Usually it can be used for semiconductor manufacturing. Therefore, in the conventional manufacturing method shown in FIG. 3, it is necessary to adjust the components of silicon, which has been highly purified even for semiconductors, so as to be suitable for solar cells, or to purify and cast again. In addition to this, there is a problem that the yield is poor, re-melting equipment and energy are separately required, and the production cost increases.
As a result, currently available solar cells are expensive and are an obstacle to their general spread. Further, in the purification of metallic silicon mainly based on the above-described chemical process, there is a problem that a large amount of pollutants such as silane and chloride is inevitably generated, which hinders mass production.

【0004】そこで、本出願人は、上記のような化学プ
ロセスによる金属シリコンの高純度化を改め、冶金プロ
セスのみで太陽電池に適した純度のシリコンを製造し、
それを鋳造して一気にシリコン基板までにする方法(図
4参照)を検討している。そして、その一環として、上
記した凝固精製法を利用した金属シリコンの純度向上
を、図4に示す工程では2ケ所(粗凝固精製工程及び仕
上凝固精製工程)で採用して、金属シリコンが含有する
燐、カルシウム、アルミニウム、鉄、チタニウム等の所
謂金属不純物元素を太陽電池用シリコンとしての目標値
まで除去するようにしている。
Therefore, the present applicant has improved the purification of metallic silicon by the above-described chemical process, and manufactured silicon having a purity suitable for solar cells only by a metallurgical process.
We are studying a method of casting it at once to make it into a silicon substrate (see FIG. 4). As a part thereof, the improvement of the purity of metallic silicon using the above-described solidification refining method is adopted in two places (coarse solidification purification step and finish solidification purification step) in the step shown in FIG. So-called metal impurity elements such as phosphorus, calcium, aluminum, iron, and titanium are removed to a target value as silicon for solar cells.

【0005】この凝固精製を実際に行うには、固液界面
の位置を温度計等のセンサで測定し、該固液界面の上方
へ向けての移動速度、つまり凝固速度が一定になるよ
う、鋳型の上方や下方に設置した加熱ヒータの電力、あ
るいは冷却用水冷ジャケットの水量を調整する。本発明
者は、先に特願平8−270814号で、この凝固速度
を鋳型への溶湯鋳造前に予め定め、それを一定に維持す
ることを提案している。
[0005] To actually perform this solidification purification, the position of the solid-liquid interface is measured by a sensor such as a thermometer, and the moving speed of the solid-liquid interface upward, that is, the solidification speed is made constant. The power of the heater installed above or below the mold or the amount of water in the cooling water cooling jacket is adjusted. The present inventor has previously proposed in Japanese Patent Application No. 8-270814 that the solidification rate is predetermined before the molten metal is cast into a mold, and that the solidification rate is maintained constant.

【0006】しかしながら、その後の研究によれば、一
定の凝固速度を維持すると、凝固が進行するにつれて残
液への金属不純物元素の濃縮が遅くれ、精製効率の低下
あるいは、精製不良が起きることが判った。発明者は、
太陽電池用シリコンを、従来より半分以下のコストで製
造することを目指しているが、かかる効率の悪い凝固精
製を改善しなければ、その目標達成はおぼつかない。
However, according to subsequent studies, it has been found that, when a constant coagulation rate is maintained, the concentration of metal impurity elements in the residual liquid is slowed down as coagulation proceeds, resulting in a reduction in purification efficiency or poor purification. understood. The inventor
The goal is to produce silicon for solar cells at less than half the cost of conventional solar cells, but this goal will not be achieved without improving such inefficient coagulation purification.

【0007】[0007]

【発明が解決しようとする課題】本発明は、かかる事情
に鑑み、金属シリコンから金属不純物元素を従来より効
率良く除去可能な太陽電池用シリコンの凝固精製方法を
提供することを目的としている。
SUMMARY OF THE INVENTION In view of the foregoing, an object of the present invention is to provide a method for coagulating and refining silicon for solar cells, which is capable of removing metal impurity elements from metal silicon more efficiently than in the past.

【0008】[0008]

【課題を解決するための手段】発明者は、上記目的を達
成するため、溶融金属の一方向凝固の基礎に立ち返り、
以下の結論を得た。一般に、一方向凝固時の溶融金属と
凝固金属に含まれる不純物元素の分配は、シャイルの式
で表わされる。 CS =k・C0 ・(1−f)k-1 ・・(1)式 k=k0 /{k0 +(1−k0 )・exp(−Ri ・δ/D)}・・(2)式 ここで、CS : 凝固金属中のある不純物元素の濃度
(重量%) C0 : 溶融金属中のある不純物元素の初期濃度(重量
%) k : 実効分配係数(−) k0 : 平衡分配係数(−) f : 固相率(−) Ri : 凝固速度(cm/sec) δ : 拡散層厚さ(cm) D : 拡散係数(cm2 /sec) 一方向凝固を効率良く行うということは、実効分配係数
を平衡分配係数に近かづけることである。従って、
(2)式においてRi 、つまり凝固速度を小さくするこ
とである。しかしながら、Ri を小さくすると、凝固時
間が長くなって生産性が低下するという問題がある。そ
こで、発明者は、凝固時間の延長をできるだけ抑えた状
態で、凝固速度Ri を小さくするのが良いと考え、本発
明を完成させた。
Means for Solving the Problems In order to achieve the above object, the present inventors return to the basis of the unidirectional solidification of molten metal,
The following conclusions were obtained. Generally, the distribution of the impurity element contained in the molten metal and the solidified metal at the time of the unidirectional solidification is expressed by the Schild equation. C S = k · C 0 · (1-f) k−1 ··· (1) Equation k = k 0 / {k 0 + (1-k 0 ) · exp (−R i · δ / D)} · Formula (2) where C S : concentration of a certain impurity element in the solidified metal (% by weight) C 0 : initial concentration of a certain impurity element in the molten metal (% by weight) k: effective distribution coefficient (−) k 0: equilibrium partitioning coefficient (-) f: fraction solid (-) R i: solidification rate (cm / sec) δ: diffusion layer thickness (cm) D: diffusion coefficient (cm 2 / sec) efficiency unidirectional solidification To do well is to bring the effective partition coefficient closer to the equilibrium partition coefficient. Therefore,
In the formula (2), R i , that is, the solidification rate is to be reduced. However, reducing the R i, productivity becomes longer clotting time is reduced. The inventor of the present invention thought that it would be better to reduce the solidification speed R i while keeping the extension of the solidification time as short as possible, and completed the present invention.

【0009】すなわち、本発明は、金属シリコンから脱
燐、脱ボロン、脱炭及び脱酸して得た溶融シリコンを鋳
造し、一方向凝固させて、該シリコンが含有する金属不
純物元素を除去するに際し、まず、前記溶融シリコンの
含有する金属不純物元素の初期濃度に応じた凝固速度R
を求め、凝固開始当初は凝固速度をそのRより大きく、
時間経過につれ漸次低下させ、全操業中の平均凝固速度
が前記Rになるように、前記溶融シリコンを凝固させる
ことを特徴とする太陽電池用シリコンの凝固精製方法で
ある。
That is, according to the present invention, molten silicon obtained by dephosphorization, deboronation, decarburization and deoxidation from metallic silicon is cast and unidirectionally solidified to remove metal impurity elements contained in the silicon. First, the solidification rate R according to the initial concentration of the metal impurity element contained in the molten silicon
At the beginning of solidification, the solidification speed is greater than its R,
A method for solidifying and refining silicon for solar cells, characterized in that the molten silicon is solidified such that the molten silicon is gradually reduced with time and the average solidification rate during the entire operation is R.

【0010】また、本発明は、上記凝固速度Rを,下記
3式のうちの最小の値とすることを特徴とする太陽電池
用シリコンの凝固精製方法である。 金属不純物元素がAlの場合:R1 = 7.0×(Al
初期濃度)-0.21 金属不純物元素がFeの場合:R2 = 6.0×(Fe
初期濃度)-0.18 金属不純物元素がTiの場合:R3 = 6.6×(Ti
初期濃度)-0.18 さらに、本発明は、前記時間の経過に代え、形成された
鋳塊の高さに応じて、凝固速度を階段的に低下させるこ
とを特徴とする太陽電池用シリコンの凝固精製方法でも
ある。
The present invention also provides a method for coagulating and refining silicon for solar cells, wherein the solidification rate R is set to the minimum value of the following three equations. When the metal impurity element is Al: R 1 = 7.0 × (Al
(Initial concentration) -0.21 When metal impurity element is Fe: R 2 = 6.0 × (Fe
(Initial concentration) -0.18 When metal impurity element is Ti: R 3 = 6.6 × (Ti
(Initial concentration) -0.18 Further, according to the present invention, the solidification purification of solar cell silicon is characterized in that the solidification speed is reduced stepwise according to the height of the formed ingot, instead of the lapse of time. It is also a method.

【0011】本発明では、金属シリコンを脱燐、脱ボロ
ン、脱炭及び脱酸して得た溶融シリコンを鋳造して一方
向凝固で太陽電池用インゴットを製造するに際し、溶融
シリコンの含有する金属不純物元素の初期濃度に応じて
凝固速度Rを求め、凝固開始当初は早く、その後漸次遅
くして操業全体の平均凝固速度がそのRになるようにし
たので、従来と同程度の全操業時間で、凝固精製される
部分を従来より高くなる。その結果、従来よりシリコン
歩留が向上し、精製コストの低減が達成され、従来に比
べ半値以下の安価な太陽電池用シリコン基板が製造でき
るようになる。
In the present invention, when a molten silicon obtained by dephosphorizing, deboroning, decarburizing and deoxidizing metallic silicon is cast to produce an ingot for a solar cell by unidirectional solidification, the metal containing molten silicon is used. The solidification rate R was determined according to the initial concentration of the impurity element, and the solidification rate was determined to be early at the beginning of solidification and then gradually reduced so that the average solidification rate of the entire operation would be at that R. The portion to be coagulated and refined is higher than before. As a result, the yield of silicon is improved, the purification cost is reduced, and an inexpensive silicon substrate for a solar cell having a half value or less as compared with the conventional one can be manufactured.

【0012】[0012]

【発明の実施の形態】まず、図1に、本発明に係る太陽
電池用シリコンの凝固生成方法を実施する装置例を示
す。それは、黒鉛製の鋳型1と、底部に水冷ジャケット
2、側壁に断熱材3、上方に鋳造した溶融シリコン4の
上部を加熱する電熱ヒータ5とを配設して形成してあ
る。凝固界面6の移動を検出するセンサ7としては、複
数の超音波距離計あるいは温度計を用いている。また、
凝固速度を目標値と比較し、目標値に一致させるように
冷却ジャケット2の水量や電熱ヒータ5の熱量を調整す
る演算制御器8も備えてある。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS First, FIG. 1 shows an example of an apparatus for implementing a method for solidifying silicon for a solar cell according to the present invention. It is formed by disposing a graphite mold 1, a water cooling jacket 2 on the bottom, a heat insulating material 3 on the side wall, and an electric heater 5 for heating the upper part of the molten silicon 4 cast above. As the sensor 7 for detecting the movement of the solidification interface 6, a plurality of ultrasonic distance meters or thermometers are used. Also,
There is also provided an arithmetic and control unit 8 for comparing the solidification speed with a target value and adjusting the amount of water in the cooling jacket 2 and the amount of heat of the electric heater 5 so as to match the target value.

【0013】本発明は、上記鋳型1内に、前工程で脱
燐、脱ボロン、脱炭及び脱酸された溶融シリコン4を注
入し、底から上方に向けて凝固界面6が進行するように
凝固させるのである。その際、重要なことは、凝固界面
6で固液共存領域の場所による不純物濃度ができるだけ
均一になるような凝固速度で凝固することである。具体
的には、水冷ジャケット2の冷却水の量及び電熱ヒータ
5の熱量を、鋳造開始時に適切に設定することである。
なお、本発明は、前述したように、図4に示す工程の粗
凝固精製及び仕上凝固精製のいずれで行っても良い。ま
た、鋳型1は、図1に示したもの以外に、通常使用され
る精錬容器、例えば取鍋のようなものでも良い。
According to the present invention, the molten silicon 4 dephosphorized, deboroned, decarburized and deoxidized in the previous step is injected into the mold 1 so that the solidification interface 6 proceeds upward from the bottom. It solidifies. In this case, it is important that the solidification is performed at a solidification rate such that the impurity concentration at the solid-liquid coexistence region at the solidification interface 6 is as uniform as possible. Specifically, the amount of cooling water in the water cooling jacket 2 and the amount of heat of the electric heater 5 are appropriately set at the start of casting.
Note that, as described above, the present invention may be performed in any of the coarse solidification purification and the finish solidification purification in the step shown in FIG. The mold 1 may be a commonly used refining vessel other than that shown in FIG. 1, such as a ladle.

【0014】次に、発明者は、多くの実験を繰り返し、
溶融シリコン4中の金属不純物元素の初期濃度に応じて
適切な凝固速度を求め、図5〜7に示すような3つの安
定凝固領域を定めた。つまり、Al,Fe,Tiに関し
て、融液への濃化が円滑に行える凝固速度を求めたので
ある。ところで、実際の溶融シリコン4は、これら3種
の成分を全て含有しているので、これら3つの領域(前
記3つの式)を同時に満足する凝固速度で、凝固しなけ
ればならない。具体的には、例えば、図5において、A
l初期濃度が記号aの場合、凝固速度は記号bが好まし
い。同様に、Fe初期濃度が図6においてcの場合、凝
固速度は記号d、図7においてTi初期濃度がeの場
合、凝固速度はfが好ましい。従って、かかる場合に
は、これら凝固速度b,d,fのうち最小のfで凝固す
るのが好ましい。なお、溶融シリコン4中には、金属不
純物元素として上記のAl.Fe,Ti以外にも多種の
ものが存在しているが、この3つを抑えれば、実際の鋳
造では問題が起きないことも確認してある。
Next, the inventor repeated many experiments,
An appropriate solidification rate was determined according to the initial concentration of the metal impurity element in the molten silicon 4, and three stable solidification regions as shown in FIGS. That is, for Al, Fe, and Ti, the solidification rate at which the concentration in the melt can be performed smoothly was determined. By the way, since the actual molten silicon 4 contains all of these three components, it must be solidified at a solidification rate that simultaneously satisfies these three regions (the above three equations). Specifically, for example, in FIG.
When the initial concentration is a, the solidification rate is preferably b. Similarly, when the initial Fe concentration is c in FIG. 6, the solidification rate is preferably symbol d, and when the initial Ti concentration is e in FIG. 7, the solidification rate is preferably f. Therefore, in such a case, it is preferable to solidify at the minimum f among these solidification speeds b, d, and f. In addition, in the molten silicon 4, the above-described Al. There are various types other than Fe and Ti, but it has been confirmed that if these three are suppressed, no problem occurs in actual casting.

【0015】以前は、上述した凝固速度(例えば、f)
が操業期間中で一定になるように、
Previously, the solidification rate described above (eg, f)
Is constant throughout the operation,

【0016】凝固させていた。しかしながら、[0016] It was solidified. However,

【従来の技術】の項で述べたような問題があった。そこ
で、発明者は、凝固開始当初は、前記fより早い凝固速
度とし、その後時間の経過と共に漸次遅くすることを考
えた。そして、操業中の平均凝固速度(算術平均)を前
記適切な凝固速度fになるようにすると、操業時間(凝
固に要する全時間)は凝固速度を一定にした場合とほぼ
同じであるが、凝固金属(鋳塊)9のうち、純度の良い
部分(高さ)が増加することを知り、本発明としたので
ある。つまり、残液への不純物濃化の早い凝固初期での
凝固速度を早く、不純物濃化の遅い凝固後期で遅くし、
それらの凝固速度が最適な凝固速度値から大きく外れな
いようにして凝固させるのである。
2. Description of the Related Art There is a problem as described in the section of Related Art. Therefore, the inventor considered that the coagulation speed should be faster than the above-mentioned f at the beginning of the coagulation, and then gradually decreased as time elapses. When the average solidification rate (arithmetic mean) during operation is set to the appropriate solidification rate f, the operation time (total time required for solidification) is almost the same as when the solidification rate is kept constant. The present invention was found to increase the high-purity portion (height) of the metal (ingot) 9 and made the present invention. In other words, the solidification rate in the early solidification phase where the concentration of impurities into the residual liquid is fast is increased,
The coagulation is performed so that their coagulation speed does not greatly deviate from the optimum coagulation speed value.

【0017】なお、凝固速度の変更に関しては、上記の
ように漸次連続的に凝固速度を遅くする方法と、階段状
に遅くする方法とが考えられるが、発明者の実験によれ
ば、いずれの方法でも良好な結果が得られた。また、凝
固速度の変更を時間経過に応じて行う場合と、凝固金属
9の高さ(位置)に応じて行うことも試行し、その結果
は、両者とも有効であることを確認している。
With respect to the change of the solidification rate, there are a method of gradually decreasing the solidification rate as described above and a method of decreasing the solidification rate in a stepwise manner. Good results were also obtained with the method. It was also tried to change the solidification speed in accordance with the passage of time and in accordance with the height (position) of the solidified metal 9, and confirmed that both were effective.

【0018】[0018]

【実施例】溶融シリコン6を、図1に示したと同じ型式
の鋳型1を用いて、図4の仕上凝固精製工程で一方向凝
固精製を実施した。鋳型1の高さは40cm、断面積5
30cm2 である。その際、本発明を適用するものと
(実施例1〜2)、従来通りの一定凝固速度方法を適用
するもの(比較例1)の2種類の鋳造を行った。なお、
本発明を適用する場合の凝固速度の変更は、水冷ジャケ
ット2の冷却水量及び電熱ヒータ5の電力量を操作して
行った。一方、従来法の場合も、予め求めてある最適凝
固速度、つまり前記図5〜7で定めた値を一定に維持す
るように、同じく冷却水量及び電力量を操作した。それ
ぞれに使用した溶融シリコン4中の金属不純物元素の初
期濃度を表1に、平均凝固速度を2mm/minとし
て、それよりの変更状況を図8に示す。
EXAMPLE The molten silicon 6 was unidirectionally solidified and refined in a finish solidification purification step shown in FIG. 4 using a mold 1 of the same type as that shown in FIG. The height of the mold 1 is 40 cm and the cross-sectional area is 5
30 cm 2 . At that time, two types of casting were performed, one to which the present invention was applied (Examples 1 and 2) and one to which the conventional constant solidification rate method was applied (Comparative Example 1). In addition,
The solidification rate was changed when the present invention was applied by operating the amount of cooling water in the water cooling jacket 2 and the amount of electric power in the electric heater 5. On the other hand, also in the case of the conventional method, the amount of cooling water and the amount of electric power were similarly operated so as to keep the optimum solidification rate obtained in advance, that is, the values determined in FIGS. Table 1 shows the initial concentration of the metal impurity element in the molten silicon 4 used in each case, and FIG. 8 shows the change from the average solidification rate of 2 mm / min.

【0019】[0019]

【表1】 [Table 1]

【0020】凝固精製の結果を表2に一括して示す。本
発明を適用した2例とも、得られた鋳塊9のうち、不純
物が太陽電池の仕様にまで低減し、且結晶性に優れた部
分が鋳塊の底部から32cmの高さまであった。一方、
従来法を適用した場合には、上記高さは30cmであっ
た。つまり、本発明を採用すると、従来より2cm分の
精製効率の向上が達成されたのである。そこで、得られ
た鋳塊9を、250μmの厚さにスライスし、太陽電池
用シリコン基板とした。その基板で製作した太陽電池の
光電変換効率を測定したところ、その値は、本発明を適
用して得た基板及び従来法で得た基板共に、12〜14
%と良好な結果であった。
Table 2 summarizes the results of coagulation purification. In each of the two cases to which the present invention was applied, impurities were reduced to the specifications of the solar cell in the obtained ingot 9, and a portion excellent in crystallinity was located at a height of 32 cm from the bottom of the ingot. on the other hand,
When the conventional method was applied, the height was 30 cm. That is, when the present invention is employed, the purification efficiency is improved by 2 cm compared to the conventional art. Then, the obtained ingot 9 was sliced to a thickness of 250 μm to obtain a silicon substrate for solar cells. When the photoelectric conversion efficiency of a solar cell manufactured using the substrate was measured, the value was 12 to 14 for both the substrate obtained by applying the present invention and the substrate obtained by the conventional method.
%, Which is a good result.

【0021】[0021]

【表2】 [Table 2]

【0022】[0022]

【発明の効果】以上述べたように、本発明により、金属
シリコンからの金属不純物元素の除去を、従来より効率
良く行えるようになった。その結果、シリコン歩留の向
上、精製コストの低減が達成され、安価な太陽電池用シ
リコン基板が製造できるようになった。
As described above, according to the present invention, the removal of metal impurity elements from metal silicon can be performed more efficiently than in the prior art. As a result, improvement in silicon yield and reduction in purification cost have been achieved, and an inexpensive silicon substrate for solar cells can be manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る太陽電池用シリコンの凝固精製方
法を実施する装置例を示す縦断面図である。
FIG. 1 is a longitudinal sectional view showing an example of an apparatus for performing a method for coagulating and refining silicon for a solar cell according to the present invention.

【図2】一方向凝固法による金属の精製原理を説明する
図である。
FIG. 2 is a diagram illustrating the principle of metal purification by the directional solidification method.

【図3】従来の太陽電池用シリコン基板を工業生産する
プロセスを示す流れ図である。
FIG. 3 is a flowchart showing a process for industrially producing a conventional silicon substrate for a solar cell.

【図4】本出願人が提案した太陽電池用シリコン基板を
工業生産するプロセスを示す流れ図である。
FIG. 4 is a flowchart showing a process of industrially producing a silicon substrate for a solar cell proposed by the present applicant.

【図5】溶融シリコンの凝固速度と金属不純物元素Al
の初期濃度との関係を示す図である。
FIG. 5: Solidification rate of molten silicon and metallic impurity element Al
FIG. 6 is a diagram showing a relationship between the initial density and the initial density.

【図6】溶融シリコンの凝固速度と金属不純物元素Fe
の初期濃度との関係を示す図である。
FIG. 6: Solidification rate of molten silicon and metallic impurity element Fe
FIG. 6 is a diagram showing a relationship between the initial density and the initial density.

【図7】溶融シリコンの凝固速度と金属不純物元素Ti
の初期濃度との関係を示す図である。
FIG. 7: Solidification rate of molten silicon and metal impurity element Ti
FIG. 6 is a diagram showing a relationship between the initial density and the initial density.

【図8】本発明の実施中に凝固速度が変更する状況を示
す図である。
FIG. 8 is a diagram showing a situation where the solidification rate changes during the implementation of the present invention.

【符号の説明】[Explanation of symbols]

1 鋳型 2 水冷ジャケット 3 断熱材 4 溶融シリコン 5 電熱ヒータ 6 凝固界面 7 センサ 8 演算制御器 9 凝固金属(鋳塊) DESCRIPTION OF SYMBOLS 1 Mold 2 Water-cooling jacket 3 Insulation material 4 Molten silicon 5 Electric heater 6 Solidification interface 7 Sensor 8 Operation controller 9 Solidification metal (ingot)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 阿部 正道 千葉市中央区川崎町1番地 川崎製鉄株式 会社技術研究所内 (72)発明者 湯下 憲吉 千葉市中央区川崎町1番地 川崎製鉄株式 会社技術研究所内 (72)発明者 藤井 徹也 千葉市中央区川崎町1番地 川崎製鉄株式 会社技術研究所内 ──────────────────────────────────────────────────の Continued on the front page (72) Inventor Masamichi Abe 1 Kawasaki-cho, Chuo-ku, Chiba-shi Kawasaki Steel Engineering Co., Ltd. (72) Inventor Kenkichi Yushita 1 Kawasaki-cho, Chuo-ku, Chiba-shi Kawasaki Steel Co., Ltd. In the laboratory (72) Inventor Tetsuya Fujii 1 Kawasaki-cho, Chuo-ku, Chiba City Kawasaki Steel Corporation Technical Research Laboratory

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 金属シリコンから脱燐、脱ボロン、脱炭
及び脱酸して得た溶融シリコンを鋳造し、一方向凝固さ
せて、該シリコンが含有する金属不純物元素を除去する
に際し、 まず、前記溶融シリコンの含有する金属不純物元素の初
期濃度に応じた凝固速度Rを求め、凝固開始当初は凝固
速度をそのRより大きく、時間経過につれ漸次低下さ
せ、全操業中の平均凝固速度が前記Rになるように、前
記溶融シリコンを凝固させることを特徴とする太陽電池
用シリコンの凝固精製方法。
1. Casting molten silicon obtained by dephosphorization, deboronation, decarburization and deoxidation from metallic silicon and solidifying the molten silicon in one direction to remove metal impurity elements contained in the silicon, The solidification rate R according to the initial concentration of the metal impurity element contained in the molten silicon is determined. At the beginning of solidification, the solidification rate is greater than R, and gradually decreases over time. A method for solidifying and refining silicon for a solar cell, wherein the molten silicon is solidified.
【請求項2】 上記凝固速度Rを,下記3式のうちの最
小の値とすることを特徴とする請求項1記載の太陽電池
用シリコンの凝固精製方法。 金属不純物元素がAlの場合:R1 = 7.0×(Al
初期濃度)-0.21 金属不純物元素がFeの場合:R2 = 6.0×(Fe
初期濃度)-0.18 金属不純物元素がTiの場合:R3 = 6.6×(Ti
初期濃度)-0.18
2. The method for solidifying and refining silicon for solar cells according to claim 1, wherein said solidification rate R is a minimum value of the following three equations. When the metal impurity element is Al: R 1 = 7.0 × (Al
(Initial concentration) -0.21 When metal impurity element is Fe: R 2 = 6.0 × (Fe
(Initial concentration) -0.18 When metal impurity element is Ti: R 3 = 6.6 × (Ti
Initial concentration) -0.18
【請求項3】 前記時間の経過に代え、形成された鋳塊
の高さに応じて、凝固速度を階段的に低下させることを
特徴とする請求項1又は2記載の太陽電池用シリコンの
凝固精製方法。
3. The solidification of silicon for a solar cell according to claim 1, wherein the solidification speed is reduced stepwise according to the height of the formed ingot, instead of passing the time. Purification method.
JP9061129A 1997-03-14 1997-03-14 Method for solidifying and refining silicon for solar battery Withdrawn JPH10251009A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9061129A JPH10251009A (en) 1997-03-14 1997-03-14 Method for solidifying and refining silicon for solar battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9061129A JPH10251009A (en) 1997-03-14 1997-03-14 Method for solidifying and refining silicon for solar battery

Publications (1)

Publication Number Publication Date
JPH10251009A true JPH10251009A (en) 1998-09-22

Family

ID=13162171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9061129A Withdrawn JPH10251009A (en) 1997-03-14 1997-03-14 Method for solidifying and refining silicon for solar battery

Country Status (1)

Country Link
JP (1) JPH10251009A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008303113A (en) * 2007-06-08 2008-12-18 Shin Etsu Chem Co Ltd Unidirectional coagulation method for silicon
WO2009008555A1 (en) * 2007-07-12 2009-01-15 Sumitomo Chemical Company, Limited Method for production of purified silicon
JP2009102213A (en) * 2007-07-12 2009-05-14 Sumitomo Chemical Co Ltd Manufacturing method of purified silicon
JP2009114053A (en) * 2007-10-17 2009-05-28 Sumitomo Chemical Co Ltd Method for producing purified silicon
US7727502B2 (en) 2007-09-13 2010-06-01 Silicum Becancour Inc. Process for the production of medium and high purity silicon from metallurgical grade silicon
WO2012067100A1 (en) * 2010-11-17 2012-05-24 新日鉄マテリアルズ株式会社 Method and device for solidifying and purifying metallic silicon
CN103539126A (en) * 2013-10-30 2014-01-29 大连理工大学 Rapid freezing method of polycrystalline silicon

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008303113A (en) * 2007-06-08 2008-12-18 Shin Etsu Chem Co Ltd Unidirectional coagulation method for silicon
WO2009008555A1 (en) * 2007-07-12 2009-01-15 Sumitomo Chemical Company, Limited Method for production of purified silicon
JP2009102213A (en) * 2007-07-12 2009-05-14 Sumitomo Chemical Co Ltd Manufacturing method of purified silicon
US7727502B2 (en) 2007-09-13 2010-06-01 Silicum Becancour Inc. Process for the production of medium and high purity silicon from metallurgical grade silicon
JP2009114053A (en) * 2007-10-17 2009-05-28 Sumitomo Chemical Co Ltd Method for producing purified silicon
WO2012067100A1 (en) * 2010-11-17 2012-05-24 新日鉄マテリアルズ株式会社 Method and device for solidifying and purifying metallic silicon
CN103539126A (en) * 2013-10-30 2014-01-29 大连理工大学 Rapid freezing method of polycrystalline silicon
CN103539126B (en) * 2013-10-30 2016-04-13 大连理工大学 A kind of polysilicon quick setting method

Similar Documents

Publication Publication Date Title
JP3325900B2 (en) Method and apparatus for producing polycrystalline silicon, and method for producing silicon substrate for solar cell
JP4523274B2 (en) High purity metallic silicon and its smelting method
JP3852147B2 (en) Method for producing polycrystalline silicon ingot for solar cell
US7727502B2 (en) Process for the production of medium and high purity silicon from metallurgical grade silicon
EP1922437B1 (en) Method and apparatus for refining a molten material
WO2002095078A8 (en) Aluminum shapes, method and reactor for the production of aluminum and aluminum shapes by carbothermic reduction of alumina
WO1998016466A1 (en) Process and apparatus for preparing polycrystalline silicon and process for preparing silicon substrate for solar cell
JPH10273313A (en) Production of polycrystal silicon ingot
JPH10245216A (en) Production of silicon for solar cell
JPH10251009A (en) Method for solidifying and refining silicon for solar battery
CN101850975A (en) Method for purifying silicon by removing phosphorus and metal impurities
JPH10182137A (en) Solidifying purification of silicon for solar cell and apparatus therefor
JPWO2008149985A1 (en) Solidification method of metallic silicon
JPH07206420A (en) Production of high-purity silicon
JPH05254817A (en) Production of polycrystal silicon ingot
JPH10182135A (en) Solidification refining of silicon
JPH05262512A (en) Purification of silicon
CN107128928B (en) Utilize the method for electron beam furnace purifying polycrystalline silicon
JP3247842B2 (en) Method for casting silicon for solar cells
JPH10251008A (en) Method for solidifying and refining metal silicon
JPH10139415A (en) Solidification and purification of molten silicon
JPH1149510A (en) Method for refining metal silicon and apparatus therefor
JPH10203812A (en) Refining of metallic silicon
JPH10236815A (en) Production of silicon for solar battery
JPH08217436A (en) Solidification and purification of metal silicon, device therefor, and mold used for the device

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20040601