JP3247842B2 - Method for casting silicon for solar cells - Google Patents

Method for casting silicon for solar cells

Info

Publication number
JP3247842B2
JP3247842B2 JP27081496A JP27081496A JP3247842B2 JP 3247842 B2 JP3247842 B2 JP 3247842B2 JP 27081496 A JP27081496 A JP 27081496A JP 27081496 A JP27081496 A JP 27081496A JP 3247842 B2 JP3247842 B2 JP 3247842B2
Authority
JP
Japan
Prior art keywords
silicon
ingot
solidification
casting
impurity element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27081496A
Other languages
Japanese (ja)
Other versions
JPH10120493A (en
Inventor
泰彦 阪口
憲吉 湯下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP27081496A priority Critical patent/JP3247842B2/en
Publication of JPH10120493A publication Critical patent/JPH10120493A/en
Application granted granted Critical
Publication of JP3247842B2 publication Critical patent/JP3247842B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Photovoltaic Devices (AREA)
  • Silicon Compounds (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、太陽電池用シリコ
ンの鋳造方法に関し、詳しくは、金属シリコンから脱
燐、脱炭、脱ボロンして得た高純度の溶融金属シリコン
に、さらに、不純物となる金属元素の除去と鋳造とを同
時に施し、基板とする前のインゴットにする技術に係わ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for casting silicon for a solar cell, and more particularly to a method for casting high purity molten metal silicon obtained by dephosphorization, decarburization and deboronation from metal silicon. The present invention relates to a technique for simultaneously removing a metal element and casting to form an ingot before forming a substrate.

【0002】[0002]

【従来の技術】太陽電池に関する研究は、かなり古くか
ら行われており、最近では、地上の太陽光下での光電変
換効率が13〜15%程度に達するものが出現し、種々
の用途に実用化されつつある。しかし、一般家庭用電
力、あるいは自動車、船舶、工作機械等にエネルギー源
としての普及は、少なくとも我国では、まだ十分とは言
えない。その理由は、太陽電池の製作に必要なシリコン
基板を安価で量産できる技術が確立していないためであ
る。
2. Description of the Related Art Research on solar cells has been carried out for quite a long time, and recently, those having a photoelectric conversion efficiency of about 13 to 15% under terrestrial sunlight have appeared, and have been practically used for various purposes. Is being transformed. However, the spread of electricity for general household use or as an energy source for automobiles, ships, machine tools, etc., at least in Japan, is not yet sufficient. The reason is that there is no established technology for mass production of silicon substrates required for manufacturing solar cells at low cost.

【0003】現在、太陽電池用シリコン基板を工業生産
規模で製造するには、図9に示すように、出発原料の金
属シリコンを、まず、塩酸と反応させてトリクロロシラ
ンとしてガス化し、該ガスを精留して不純物元素を除い
た後、水素ガスと反応させ、所謂CVD法でガスから高
純度のシリコンを析出させる。そのため、得られた高純
度シリコンは、結晶性の制御をしていない、単なるシリ
コン粒子の集合体となる。また、その集合体を形成する
高純度シリコンの塊が有するボロンは、0.001pp
mのオーダまで低下し、P型半導体用基板としての比抵
抗0.5〜1.5オーム・cmの規格を満足するに必要
な0.1〜0.3ppmになっていない。この塊状の高
純度金属シリコンを太陽電池用シリコン基板にするに
は、比抵抗の調整と結晶性の制御が不可欠で、図9の右
側に示すように、該塊状物の再溶解、溶湯の成分調整
(ボロン添加)の他、単結晶にする場合は、引き上げ法
を、多結晶にする場合は、一方向凝固法を用いてインゴ
ットにする必要がある。
At present, in order to manufacture a silicon substrate for a solar cell on an industrial production scale, as shown in FIG. 9, metal silicon as a starting material is first reacted with hydrochloric acid to gasify it as trichlorosilane, and the gas is converted into trichlorosilane. After rectification to remove impurity elements, the gas is reacted with hydrogen gas to deposit high-purity silicon from the gas by a so-called CVD method. Therefore, the obtained high-purity silicon is simply an aggregate of silicon particles without controlling the crystallinity. In addition, boron contained in the high-purity silicon mass forming the aggregate is 0.001 pp.
m, which is not in the range of 0.1 to 0.3 ppm required to satisfy the specification of the specific resistance of the substrate for a P-type semiconductor of 0.5 to 1.5 ohm-cm. In order to make the massive high-purity metallic silicon into a silicon substrate for a solar cell, it is essential to adjust the specific resistance and control the crystallinity. As shown on the right side of FIG. In addition to the adjustment (addition of boron), it is necessary to use a pulling method in the case of a single crystal and an ingot using a unidirectional solidification method in the case of a polycrystal.

【0004】しかしながら、かかる従来の製造方法は、
せっかく半導体用にまで高純度にしたインゴットを、再
度、太陽電池用に適するように成分調整したり、精製し
なければならないので、手間がかかる上に、歩留が悪
く、再溶解の設備、エネルギーも別途必要で、製造費用
が嵩む。そのため、上記したように、現在入手可能な太
陽電池は高価なものとなり、一般的な普及の障害となっ
ている。また、化学プロセスでの金属シリコンの高純度
化には、シラン、塩化物等の公害物質の多量発生が避け
られず、量産の障害になるという問題もあった。
However, such a conventional manufacturing method is
Since the ingot, which has been highly purified for semiconductors, must be adjusted and refined again so as to be suitable for solar cells, it takes time and effort, and the yield is poor. Is also required separately, which increases the manufacturing cost. For this reason, as described above, currently available solar cells are expensive and hinder general use. In addition, in purifying metallic silicon in a chemical process, there is a problem that a large amount of pollutants such as silane and chloride is inevitably generated, which hinders mass production.

【0005】そこで、本出願人は、上記のような化学プ
ロセスによる金属シリコンの高純度化を改め、冶金プロ
セスのみで太陽電池に適した純度のシリコンを製造し、
それを鋳造して一機にシリコン基板までにする方法を研
究開発している。ところで、一方向凝固法を用いたイン
ゴットの製造に関し、例えば、特開昭61−36113
号公報は、図10に示すような鋳型1の供給部2、鋳造
部3、結晶化部4及び冷却部5からなる鋳造装置を提案
した。そして、鋳型を次々に供給部から鋳造部に運搬
し、溶融珪素を満たし、珪素の方向性凝固が生じた後に
冷却部に移し、最後に鋳型を装置外に取り出すことから
なる柱状構造の珪素成形体の製造方法において、供給部
から鋳造部に入る各鋳型を、溶融珪素を注入する前に2
0〜1550℃の温度にし、鋳型に珪素が充填された後
珪素が完全に凝固する前に鋳型を結晶化部に移し、ここ
で珪素は方向性エネルギーの放出により方向性凝固を生
じるが、この凝固の際に凝固工程が終了するまで、エネ
ルギー供給によって珪素の露出面を少なくとも一部溶融
状態に維持し、結晶化部で珪素が完全に凝固した後に鋳
型を冷却部までに運搬することを特徴とする技術を開示
した。また、その際の結晶化速度を0.1〜5mmとし
たり、凝固した珪素を、0.5℃〜30℃/分の冷却速
度で、900℃〜1300℃に焼戻し、次に700℃以
下の温度に急冷してから取り出すようにもしている。
Accordingly, the present applicant has improved the purification of metallic silicon by the above-described chemical process, and manufactured silicon having a purity suitable for solar cells only by a metallurgical process.
We are researching and developing a method to cast it into a silicon substrate. Incidentally, with respect to the production of ingots using the unidirectional solidification method, see, for example, Japanese Patent Application Laid-Open No. 61-36113.
Japanese Patent Application Laid-Open Publication No. H11-15083 proposed a casting apparatus including a supply unit 2, a casting unit 3, a crystallization unit 4, and a cooling unit 5 of a mold 1 as shown in FIG. Then, the mold is successively transported from the supply section to the casting section, filled with molten silicon, transferred to the cooling section after the directional solidification of silicon occurs, and finally the mold is taken out of the apparatus, and the column-shaped silicon molding is performed. In the method for manufacturing a body, each mold entering the casting section from the supply section is subjected to 2
After the mold is filled with silicon and before the silicon is completely solidified, the mold is moved to a crystallization section where the silicon is directionally solidified due to the release of directional energy. Until the solidification step is completed at the time of solidification, the exposed surface of silicon is maintained at least partially in a molten state by energy supply, and after the silicon is completely solidified in the crystallization part, the mold is transported to the cooling part. And disclosed technology. The crystallization rate at that time is set to 0.1 to 5 mm, or the solidified silicon is tempered to 900 to 1300 ° C. at a cooling rate of 0.5 to 30 ° C./min. They are also quenched to temperature and then taken out.

【0006】発明者は、前記した冶金プロセスを主体に
した研究を行うに際し、金属シリコンを脱燐、脱ボロ
ン、脱炭及び脱酸して得た純度5ナインの溶融シリコン
を、特開昭61−36113号公報記載の鋳造方法を用
いてインゴットに凝固させようと試みた。しかしなが
ら、凝固速度を3mm/min以上で凝固させると、柱
状結晶の成長が起きず、インゴットが形成できなかっ
た。つまり、鋳型から取り出すと崩れてしまう所謂シリ
コン結晶の単なる集合体であった。これでは、鋳造後直
ちにスライスして基板にすることができない。
In conducting the research mainly on the above-mentioned metallurgical process, the inventor disclosed a molten silicon having a purity of 5 nine obtained by dephosphorizing, deboronating, decarburizing and deoxidizing metallic silicon, as disclosed in An attempt was made to solidify an ingot using the casting method described in US Pat. However, when solidification was performed at a solidification speed of 3 mm / min or more, growth of columnar crystals did not occur, and an ingot could not be formed. That is, it was a mere aggregate of so-called silicon crystals that collapsed when removed from the mold. In this case, the substrate cannot be sliced immediately after casting.

【0007】一方、上記純度ファイブ・ナインの溶融シ
リコンには、まだAl,Fe,Ti等の金属元素がそれ
ぞれ10ppm程度含まれ、この状態では太陽電池用シ
リコン基板の組成としては純度が低く、これらの元素を
安価な方法でもっと除去したいという希望もあった。
On the other hand, the molten silicon having the purity of five nines still contains about 10 ppm of metal elements such as Al, Fe, and Ti. In this state, the composition of the silicon substrate for solar cells is low, and the purity is low. There was also a desire to remove more of these elements using inexpensive methods.

【0008】[0008]

【発明が解決しようとする課題】本発明は、かかる事情
を鑑み、比較的純度の低い溶融シリコンからの金属元素
の除去、及び基板用インゴットの製造を同時に行うこと
の可能な太陽電池シリコンの鋳造方法を提供することを
目的としている。
SUMMARY OF THE INVENTION In view of such circumstances, the present invention provides a method for casting solar cell silicon capable of simultaneously removing a metal element from molten silicon having relatively low purity and manufacturing an ingot for a substrate. It is intended to provide a way.

【0009】[0009]

【課題を解決するための手段】発明者は、上記目的を達
成するため、前記特開昭61−36113号公報記載の
鋳造方法を見直した。その結果、該鋳造方法は、CVD
法で所謂イレブン・ナインまで高純度化されたシリコン
を再溶解して鋳造し、インゴットにする場合には適合す
るが、純度の低いシリコンでは金属不純物元素が柱状結
晶の成長を阻害することがわかった。また、一方向凝固
で、Al,Fe,Ti等の金属不純物元素を固液分配係
数の小さいことを利用し、最後に凝固させて、その部分
を切り捨てることで、シリコンを精製することは公知で
あるが、凝固条件(初期濃度、凝固速度等)によっては
所望値まで精製できないことも知った。そこで、発明者
は、この純度のシリコンから金属不純物元素を太陽電池
用シリコン基板が許容できる程度まで除去させると共
に、基板用インゴットへの鋳造を同時に可能にする鋳造
条件の発見に鋭意努力し、その成果を本発明として具現
化した。また、Al,Fe,Ti等は、凝固時に結晶粒
界に析出し、インゴットの冷却期に内部応力を生じさ
せ、太陽電池の光電変換効率を低下させる。そこで、発
明者は、該内部応力を抑制するため、凝固完了後インゴ
ットの冷却速度も本発明で調整するようにした。
Means for Solving the Problems In order to achieve the above object, the inventor reviewed the casting method described in the above-mentioned JP-A-61-36113. As a result, the casting method uses CVD.
It is suitable for re-melting and casting ingots of highly purified silicon to the so-called eleven nine by the method and making it into an ingot, but it has been found that in low-purity silicon, metal impurity elements inhibit the growth of columnar crystals Was. It is also known that silicon is purified by unidirectional solidification, utilizing the small solid-liquid partition coefficient of metal impurity elements such as Al, Fe, and Ti, and finally solidifying and cutting off that portion. However, it was also found that it was not possible to purify to a desired value depending on the coagulation conditions (initial concentration, coagulation speed, etc.). Therefore, the inventor has worked diligently to find out casting conditions that allow metal impurities to be removed from silicon of this purity to an extent that the silicon substrate for solar cells can tolerate, and at the same time enable casting into an ingot for substrate. The result was embodied as the present invention. In addition, Al, Fe, Ti, and the like precipitate at the crystal grain boundaries during solidification, generate internal stress during the cooling period of the ingot, and reduce the photoelectric conversion efficiency of the solar cell. Then, the inventor adjusted the cooling rate of the ingot after solidification was completed in the present invention in order to suppress the internal stress.

【0010】すなわち、本発明は、金属シリコンから脱
燐、脱ボロン、脱炭及び脱酸して得た溶融シリコンを鋳
造し、一方向凝固させて太陽電池用インゴットを製造す
るに際し、予め下記3式で求めた溶融シリコンの凝固速
度のうちの最小値を目標に設定すると共に、該溶融シリ
コンの凝固速度を実測し、その測定値が前記最小値以下
になるように、溶融シリコンを冷却又は加熱しつつ凝固
することを特徴とする太陽電池用シリコンの鋳造方法で
ある。 金属不純物元素がAlの場合:R1 = 7.0×(Al初期濃度)-0.21 金属不純物元素がFeの場合:R2 = 6.0×(Fe初期濃度)-0.18 金属不純物元素がTiの場合:R3 = 6.6×(Ti初期濃度) -0.18
That is, according to the present invention, when manufacturing molten silicon obtained by casting molten silicon obtained by dephosphorization, deboronation, decarburization and deoxidation from metallic silicon and then unidirectionally solidifying the same, the following 3 is required. Solidification speed of molten silicon obtained by the formula
Set the minimum value of the
The solidification rate of the concrete was measured and the measured value was less than the minimum value.
A method for casting silicon for solar cells, characterized by solidifying molten silicon while cooling or heating it . When the metal impurity element is Al: R 1 = 7.0 × (Al initial concentration) -0.21 When the metal impurity element is Fe: R 2 = 6.0 × (Fe initial concentration) -0.18 When the metal impurity element is Ti Case: R 3 = 6.6 × (Ti initial concentration) -0.18

【0011】属シリコンを脱燐、脱ボロン、脱炭して
得た溶融シリコンを鋳造して一方向凝固で太陽電池用イ
ンゴットを製造するに際し、予め下記3式で求めた凝固
完了後のインゴットの冷却速度のうちの最小値を目標に
設定すると共に、該インゴットの冷却速度を実測し、そ
の測定値が前記最小値以下になるように、インゴットを
冷却することを特徴とする太陽電池用シリコンの鋳造方
法である。 金属不純物元素がAlの場合:C1 =42×(Al初期濃度)-0.57 金属不純物元素がFeの場合:C2 =41×(Fe初期濃度)-0.51 金属不純物元素がTiの場合:C3 =42×(Ti初期濃度)-0.43 本発明では、金属シリコンを脱燐、脱ボロン、脱炭及び
脱酸して得た溶融シリコンを鋳造して一方向凝固で太陽
電池用インゴットを製造するに際し、溶融シリコンの含
有する金属不純物元素の初期濃度に応じて凝固速度ある
いは冷却速度を変更、設定して凝固するようにしたの
で、凝固界面での固液共存領域での濃度勾配が場所によ
らず均一になり、インゴット上部への金属不純物元素の
濃化及び柱状結晶の成長が十分に行われるようになる。
その結果、従来別々に行っていた金属シリコンからの金
属不純物元素の除去と太陽電池用インゴットの製造と
を、1つの装置で行えるようになり、シリコン歩留の向
上、コストの低減が達成されるようになる。また、従来
に比べ半値以下の安価な太陽電池用シリコン基板が製造
できるようになる。
[0011] Metal silicon dephosphorization, upon de-boron, to produce an ingot for a solar cell by unidirectional solidification by casting the molten silicon obtained by decarburization, determined in advance following three equations coagulation
Target the minimum of the ingot cooling rate after completion
At the same time, the cooling rate of the ingot was measured and measured.
So that the measured value of the ingot is below the minimum value
A method for casting silicon for solar cells, characterized by cooling . When the metal impurity element is Al: C 1 = 42 × (Al initial concentration) -0.57 When the metal impurity element is Fe: C 2 = 41 × (Initial Fe concentration) -0.51 When the metal impurity element is Ti: C 3 = 42 × (Ti initial concentration) -0.43 In the present invention, the molten silicon obtained by dephosphorization, deboronation, decarburization and deoxidation of metallic silicon is cast to produce a solar cell ingot by unidirectional solidification. Since the solidification rate or cooling rate is changed and set according to the initial concentration of the metal impurity element contained in the molten silicon, solidification is performed, so the concentration gradient in the solid-liquid coexistence region at the solidification interface varies depending on the location.
Becomes Razz uniform, so the growth of the thickening and the columnar crystals of the metal impurity elements in the ingot top is sufficiently performed.
As a result, the removal of the metal impurity element from the metal silicon and the production of the solar cell ingot, which have been conventionally performed separately, can be performed by one apparatus, and the improvement of the silicon yield and the reduction of the cost can be achieved. Become like In addition, an inexpensive silicon substrate for a solar cell having a half value or less as compared with the related art can be manufactured.

【0012】[0012]

【発明の実施の形態】図1に、本発明に係る太陽電池用
シリコンの鋳造方法を実施する装置例を示す。それは、
銅製水冷式の鋳型1と、底部に水冷ジャケット8、側壁
に断熱材9、上方に鋳造した溶融シリコン6の上部を加
熱するヒータ10とを配設して形成してある。また、凝
固界面7の移動を検出するセンサ11として複数の超音
波距離計を用いている。さらに、場合によっては、図2
に示すように、凝固速度を目標設定値と比較し、目標値
に一致させるように冷却ジャケット8の水量やヒータ1
0の熱量を調整する演算制御器12も備えてある。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows an example of an apparatus for carrying out a method for casting silicon for solar cells according to the present invention. that is,
A water-cooled mold 1 made of copper, a water-cooling jacket 8 on the bottom, a heat insulating material 9 on the side walls, and a heater 10 for heating the upper part of the molten silicon 6 cast above are provided. Further, a plurality of ultrasonic rangefinders are used as the sensor 11 for detecting the movement of the solidification interface 7. Further, in some cases, FIG.
As shown in the figure, the solidification rate is compared with a target set value, and the water amount of the cooling jacket 8 and the heater 1 are adjusted so as to match the target value.
An arithmetic controller 12 for adjusting the heat quantity of zero is also provided.

【0013】本発明は、上記鋳型内に、前工程で脱燐、
脱ボロン、脱炭及び脱酸された溶融シリコンを注入し、
底から上方に向けて凝固界面が進行するように凝固させ
るのである。その際、重要なことは、凝固界面で固液共
存領域の場所による不純物濃度ができるだけ均一になる
ような凝固速度で凝固することである。具体的には、水
冷ジャケットの冷却水の量及びヒータの熱量を、鋳造開
始時に初期設定することで行われる。
[0013] The present invention provides the above-mentioned mold,
Inject molten silicon that has been deboroned, decarburized and deoxidized,
The solidification is performed so that the solidification interface proceeds upward from the bottom. In this case, it is important that the solidification is performed at a solidification rate such that the impurity concentration at the solid-liquid coexistence region at the solidification interface is as uniform as possible. Specifically, this is performed by initially setting the amount of cooling water in the water cooling jacket and the amount of heat of the heater at the start of casting.

【0014】そのため、発明者は、多くの実験を繰り返
し、平面の維持に必要な凝固速度を溶融シリコン中の金
属不純物元素の初期濃度に応じて求め、図3〜5に示す
ような安定凝固領域を定めたのである。つまり、Al,
Fe,Tiに関して、融液への濃化が円滑に行える凝固
速度の選択が可能となる。実際の溶融シリコン6は、こ
れら成分を全て含有しているので、これら3つの領域
(前記3つの式)を同時に満足する凝固速度で、且つ生
産性を配慮して、できるだけ値の大きいものが設定され
ることになる。具体的には、例えば、図3において、A
l初期濃度が記号aの場合、凝固速度は記号bが好まし
い。同様に、Fe初期濃度が図4においてcの場合、凝
固速度は記号d、図5においてTi初期濃度がeの場
合、凝固速度はfが好ましい。従って、これら凝固速度
b,d,fのうち最小のf以下で凝固を行うことにな
る。なお、溶融シリコン中には、金属不純物元素として
上記のAl.Fe,Ti以外にも多種のものが存在して
いるが、この3つを抑えれば、実際の鋳造では問題が起
きないことも確認してある。
For this reason, the inventor has repeated many experiments and found the solidification rate necessary for maintaining the plane according to the initial concentration of the metal impurity element in the molten silicon, and obtained a stable solidification region as shown in FIGS. It was decided. That is, Al,
With respect to Fe and Ti, it is possible to select a solidification rate at which the concentration in the melt can be performed smoothly. Since the actual molten silicon 6 contains all of these components, a solidification rate that satisfies these three regions (the above three equations) at the same time, and a value as large as possible is set in consideration of productivity. Will be done. Specifically, for example, in FIG.
When the initial concentration is a, the solidification rate is preferably b. Similarly, when the initial Fe concentration is c in FIG. 4, the solidification speed is preferably symbol d, and when the initial Ti concentration is e in FIG. 5, the solidification speed is preferably f. Therefore, the solidification is performed at a minimum f or less among the solidification speeds b, d, and f. In addition, in the molten silicon, Al. There are various types other than Fe and Ti, but it has been confirmed that if these three are suppressed, no problem occurs in actual casting.

【0015】さらに、発明者は、凝固完了後のインゴッ
ト13に残留応力が生じないような冷却速度を、上記同
様に溶融シリコン6の初期濃度に対して求めた。それ
を、図6〜8に示す。この場合も、前記凝固速度の場合
と同様に、3つの領域を同時に満足する冷却速度が選択
されることになる。なお、具体的な操作は、凝固完了を
鋳型内にあるインゴットの上部温度がシリコンの融点1
410℃に到達した時点で判断し、その後、選択した冷
却速度になるよう冷却水量及び熱量の初期設定を行うの
である。
Further, the inventor obtained a cooling rate such that no residual stress occurs in the ingot 13 after the solidification was completed, with respect to the initial concentration of the molten silicon 6 in the same manner as described above. It is shown in FIGS. Also in this case, as in the case of the solidification rate, a cooling rate that simultaneously satisfies the three regions is selected. In addition, the specific operation is that the solidification is completed by setting the upper temperature of the ingot in the mold to the melting point of silicon 1
The determination is made when the temperature reaches 410 ° C., and thereafter, the initial setting of the amount of cooling water and the amount of heat is performed so as to achieve the selected cooling rate.

【0016】上記の本発明では、所望の凝固速度や冷却
速度にするために、実際の操作は、冷却水量や熱量の初
期設定で行うようにした。しかし、本発明は、それに限
らず、凝固速度の経時的な変動をも調整し、より良き平
面を得るため、各部位に配置した超音波距離計や温度計
をセンサとして凝固速度の乱れを検知し、それを目標値
に修正するように、冷却水や熱量の調整を行うことも含
めた。
In the present invention, the actual operation is performed by initially setting the amount of cooling water and the amount of heat in order to obtain the desired solidification rate and cooling rate. However, the present invention is not limited to this, and also detects fluctuations in coagulation speed using ultrasonic rangefinders and thermometers arranged at each part as sensors to adjust the fluctuation over time of coagulation speed and obtain a better plane. In addition, adjustment of cooling water and heat quantity was included to correct the target value.

【0017】[0017]

【実施例】溶融シリコン6を、図1の高さ30cm、断
面積400cm2 の鋳型1に鋳造して一方向凝固した。
その際、本発明を適用するものと(実施例1〜3)、従
来通りの方法を適用するもの(比較例1〜3)の2種類
の鋳造に分け、表1に各溶融シリコン6の金属不純物の
濃度を示す。本発明を適用した場合、凝固速度は、前記
したように、3つの不純物濃度に応じてそれぞれ読み取
り、最も遅いものに決定した。そして、その凝固速度を
維持させるような水量および熱量を、水冷ジャケット8
及びヒータ10を操作して設定した。さらに、凝固完了
後には、冷却速度を、図6〜8から同様に定め、その速
度を維持するように水量および熱量を変更した。なお、
凝固時間は5時間、冷却時間は2時間であった。
EXAMPLE A molten silicon 6 was cast into a mold 1 having a height of 30 cm and a cross-sectional area of 400 cm 2 as shown in FIG.
At that time, the casting was divided into two types of casting, one to which the present invention was applied (Examples 1 to 3) and one to which the conventional method was applied (Comparative Examples 1 to 3). Shows the impurity concentration. When the present invention was applied, the solidification rate was read in accordance with the three impurity concentrations and determined to be the slowest as described above. Then, the amount of water and the amount of heat that maintain the solidification rate are determined by the water cooling jacket 8.
And the heater 10 were set. Further, after the solidification was completed, the cooling rate was similarly determined from FIGS. 6 to 8, and the amount of water and the amount of heat were changed so as to maintain the cooling rate. In addition,
The coagulation time was 5 hours and the cooling time was 2 hours.

【0018】鋳造の結果を表1に一括して示す。本発明
を適用した場合には、不純物が太陽電池の仕様にまで低
減し、且結晶性に優れたインゴット13が得られた。そ
こで、得られたインゴット13を、250μmの厚さに
スライスし、太陽電池用シリコン基板とした。その基板
で製作した太陽電池の光電変換効率を測定したところ、
本発明を適用した基板は、12〜14%であり、比較例
では基板が作成できないかあるいは8%程度の変換率し
か得られなかった。
Table 1 summarizes the casting results. When the present invention was applied, impurities were reduced to the specifications of the solar cell, and an ingot 13 having excellent crystallinity was obtained. Then, the obtained ingot 13 was sliced into a thickness of 250 μm to obtain a silicon substrate for solar cells. When the photoelectric conversion efficiency of the solar cell manufactured on the substrate was measured,
The substrate to which the present invention was applied was 12 to 14%. In the comparative example, the substrate could not be formed, or only a conversion rate of about 8% was obtained.

【0019】[0019]

【表1】 [Table 1]

【0020】[0020]

【発明の効果】以上述べたように、本発明により、従来
別々に行っていた金属シリコンからの金属不純物元素の
除去と太陽電池用インゴットの製造とを、1つの装置で
安定して行えるようになった。その結果、シリコン歩留
の向上、コストの低減が達成され、安価な太陽電池用シ
リコン基板が製造できるようになった。
As described above, according to the present invention, removal of metal impurity elements from metal silicon and manufacture of a solar cell ingot, which have been conventionally performed separately, can be stably performed by one apparatus. became. As a result, improvement in silicon yield and reduction in cost have been achieved, and an inexpensive silicon substrate for solar cells can be manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係る太陽電池用シリコンの鋳造方法を
実施する装置例を示す縦断面図である。
FIG. 1 is a longitudinal sectional view showing an example of an apparatus for implementing a method for casting silicon for solar cells according to the present invention.

【図2】図1の別形態を示す図である。FIG. 2 is a diagram showing another embodiment of FIG. 1;

【図3】溶融シリコンの凝固速度と金属不純物元素Al
の初期濃度との関係を示す図である。
FIG. 3 Solidification rate of molten silicon and metal impurity element Al
FIG. 6 is a diagram showing a relationship between the initial density and the initial density.

【図4】溶融シリコンの凝固速度と金属不純物元素Fe
の初期濃度との関係を示す図である。
FIG. 4 Solidification rate of molten silicon and metallic impurity element Fe
FIG. 6 is a diagram showing a relationship between the initial density and the initial density.

【図5】溶融シリコンの凝固速度と金属不純物元素Ti
の初期濃度との関係を示す図である。
FIG. 5: Solidification rate of molten silicon and metal impurity element Ti
FIG. 6 is a diagram showing a relationship between the initial density and the initial density.

【図6】シリコン・インゴットの冷却速度と金属不純物
元素Alの初期濃度との関係を示す図である。
FIG. 6 is a diagram showing a relationship between a cooling rate of a silicon ingot and an initial concentration of a metal impurity element Al.

【図7】シリコン・インゴットの冷却速度と金属不純物
元素Feの初期濃度との関係を示す図である。
FIG. 7 is a diagram showing a relationship between a cooling rate of a silicon ingot and an initial concentration of a metal impurity element Fe.

【図8】シリコン・インゴットの冷却速度と金属不純物
元素Tiの初期濃度との関係を示す図である。
FIG. 8 is a diagram showing a relationship between a cooling rate of a silicon ingot and an initial concentration of a metal impurity element Ti.

【図9】従来の太陽電池用シリコン基板を工業生産する
プロセスを示す流れ図である。
FIG. 9 is a flowchart showing a process for industrially producing a conventional silicon substrate for a solar cell.

【図10】従来の溶融シリコンの鋳造装置例を示す平面
図である。
FIG. 10 is a plan view showing an example of a conventional molten silicon casting apparatus.

【符号の説明】 1 鋳型 2 供給部 3 鋳造部 4 結晶化部 5 冷却部 6 溶融シリコン 7 凝固界面 8 水冷ジャケット 9 断熱材 10 ヒータ 11 センサ 12 演算制御器 13 インゴット(凝固体)[Description of Signs] 1 mold 2 supply unit 3 casting unit 4 crystallization unit 5 cooling unit 6 molten silicon 7 solidification interface 8 water cooling jacket 9 heat insulating material 10 heater 11 sensor 12 arithmetic controller 13 ingot (solidified body)

フロントページの続き (56)参考文献 特開 平4−342496(JP,A) 特開 昭61−36113(JP,A) 特開 平5−270814(JP,A) 特開 平8−73297(JP,A) 特開 平4−240192(JP,A) 国際公開93/12272(WO,A1) (58)調査した分野(Int.Cl.7,DB名) C30B 1/00 - 35/00 C01B 33/00 H01L 31/04 Continuation of the front page (56) References JP-A-4-342496 (JP, A) JP-A-61-36113 (JP, A) JP-A-5-270814 (JP, A) JP-A 8-73297 (JP) , A) JP-A-4-240192 (JP, A) WO 93/12272 (WO, A1) (58) Fields investigated (Int. Cl. 7 , DB name) C30B 1/00-35/00 C01B 33 / 00 H01L 31/04

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 金属シリコンから脱燐、脱ボロン、脱炭
及び脱酸して得た溶融シリコンを鋳造し、一方向凝固さ
せて太陽電池用インゴットを製造するに際し、予め下記3式で求めた溶融シリコンの凝固速度のうちの
最小値を目標に設定すると共に、該溶融シリコンの凝固
速度を実測し、その測定値が前記最小値以下になるよう
に、溶融シリコンを冷却又は加熱しつつ 凝固することを
特徴とする太陽電池用シリコンの鋳造方法。金属不純物元素がAlの場合:R 1 = 7.0×(Al初期濃度) -0.21 金属不純物元素がFeの場合:R 2 = 6.0×(Fe初期濃度) -0.18 金属不純物元素がTiの場合:R 3 = 6.6×(Ti初期濃度) -0.18
1. A molten silicon obtained by dephosphorization, deboronation, decarburization and deoxidation from metallic silicon is cast and unidirectionally solidified to produce an ingot for a solar cell . Of the solidification rate of molten silicon
Set the minimum value as the target and solidify the molten silicon
Measure the speed so that the measured value is less than the minimum value
And a method for casting silicon for solar cells, characterized by solidifying molten silicon while cooling or heating . When the metal impurity element is Al: R 1 = 7.0 × (Al initial concentration) -0.21 When the metal impurity element is Fe: R 2 = 6.0 × (Fe initial concentration) -0.18 When the metal impurity element is Ti: R 3 = 6.6 × (Ti initial concentration) −0.18
【請求項2】 金属シリコンを脱燐、脱ボロン、脱炭し
て得た溶融シリコンを鋳造して一方向凝固で太陽電池用
インゴットを製造するに際し、予め下記3式で求めた凝
固完了後のインゴットの冷却速度のうちの最小値を目標
に設定すると共に、該インゴットの冷却速度を実測し、
その測定値が前記最小値以下になるように、インゴット
を冷却することを特徴とする太陽電池用シリコンの鋳造
方法。 金属不純物元素がAlの場合:C 1 =42×(Al初期濃度) -0.57 金属不純物元素がFeの場合:C 2 =41×(Fe初期濃度) -0.51 金属不純物元素がTiの場合:C 3 =42×(Ti初期濃度) -0.43
2. Dephosphorization, deboronation, and decarburization of metal silicon.
Casting of molten silicon obtained by using directional solidification for solar cells
When manufacturing an ingot, the ingot was determined in advance using the following three equations.
Target the minimum ingot cooling rate after solidification is completed
While setting the cooling rate of the ingot,
The ingot is measured so that the measured value is less than the minimum value.
Of silicon for solar cell, characterized by cooling
Method. When the metal impurity element is Al: C 1 = 42 × (Al initial concentration) -0.57 When the metal impurity element is Fe: C 2 = 41 × (Initial Fe concentration) -0.51 When the metal impurity element is Ti: C 3 = 42 × (Ti initial concentration) -0.43
JP27081496A 1996-10-14 1996-10-14 Method for casting silicon for solar cells Expired - Fee Related JP3247842B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27081496A JP3247842B2 (en) 1996-10-14 1996-10-14 Method for casting silicon for solar cells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27081496A JP3247842B2 (en) 1996-10-14 1996-10-14 Method for casting silicon for solar cells

Publications (2)

Publication Number Publication Date
JPH10120493A JPH10120493A (en) 1998-05-12
JP3247842B2 true JP3247842B2 (en) 2002-01-21

Family

ID=17491398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27081496A Expired - Fee Related JP3247842B2 (en) 1996-10-14 1996-10-14 Method for casting silicon for solar cells

Country Status (1)

Country Link
JP (1) JP3247842B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101074304B1 (en) 2006-08-31 2011-10-17 미쓰비시마테리알덴시카세이가부시키가이샤 Metallic silicon and process for producing the same
CA2689603A1 (en) 2007-06-08 2008-12-11 Shin-Etsu Chemical Co., Ltd. Method of solidifying metallic silicon
CN102227374B (en) * 2008-12-01 2013-08-21 住友化学株式会社 Silicon for n-type solar cell and process for producing phosphorus-doped silicon
JP2012106886A (en) * 2010-11-17 2012-06-07 Nippon Steel Materials Co Ltd Method and apparatus for solidification refining metallic silicon

Also Published As

Publication number Publication date
JPH10120493A (en) 1998-05-12

Similar Documents

Publication Publication Date Title
US5961944A (en) Process and apparatus for manufacturing polycrystalline silicon, and process for manufacturing silicon wafer for solar cell
CN101585536B (en) Device and method for purifying solar energy level polysilicon
EP0869102B1 (en) Process and apparatus for preparing polycrystalline silicon and process for preparing silicon substrate for solar cell
US7682585B2 (en) Silicon refining process
JP3000109B2 (en) Manufacturing method of high purity silicon ingot
JP3852147B2 (en) Method for producing polycrystalline silicon ingot for solar cell
EP1048758B1 (en) Method for producing crystalline silicon
JP5511945B2 (en) Process management for UMG-SI material purification
AU2008299523A1 (en) Process for the production of medium and high purity silicon from metallurgical grade silicon
US20160348271A1 (en) Integrated System of Silicon Casting and Float Zone Crystallization
JPH10273313A (en) Production of polycrystal silicon ingot
JPH07206420A (en) Production of high-purity silicon
JP3247842B2 (en) Method for casting silicon for solar cells
KR101074304B1 (en) Metallic silicon and process for producing the same
JPH10182137A (en) Solidifying purification of silicon for solar cell and apparatus therefor
JPS63166711A (en) Production of polycrystalline silicon ingot
JPH05254817A (en) Production of polycrystal silicon ingot
CN107557854A (en) A kind of method that high-purity bulk crystals silicon is grown using the controllable metaplasia of silicon alloy
Huang et al. Feasibility of directional solidification of silicon ingot by electromagnetic casting
JP2006036628A (en) Method for producing polycrystalline silicon and polycrystalline silicon for photovoltaic power generation produced by the method
US4561930A (en) Process for the production of coarsely crystalline silicon
JPH10251009A (en) Method for solidifying and refining silicon for solar battery
JPH10182135A (en) Solidification refining of silicon
JP2008081394A (en) Metallic silicon and process for producing the same
US20110120365A1 (en) Process for removal of contaminants from a melt of non-ferrous metals and apparatus for growing high purity silicon crystals

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20011023

LAPS Cancellation because of no payment of annual fees