WO2014010825A1 - Silicon refining apparatus - Google Patents

Silicon refining apparatus Download PDF

Info

Publication number
WO2014010825A1
WO2014010825A1 PCT/KR2013/004545 KR2013004545W WO2014010825A1 WO 2014010825 A1 WO2014010825 A1 WO 2014010825A1 KR 2013004545 W KR2013004545 W KR 2013004545W WO 2014010825 A1 WO2014010825 A1 WO 2014010825A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon
channel
raw material
flow path
silicon melt
Prior art date
Application number
PCT/KR2013/004545
Other languages
French (fr)
Korean (ko)
Inventor
이진석
안영수
장보윤
김준수
Original Assignee
한국에너지기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국에너지기술연구원 filed Critical 한국에너지기술연구원
Publication of WO2014010825A1 publication Critical patent/WO2014010825A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/04Hydrides of silicon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/037Purification
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/021Preparation
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/04Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method adding crystallising materials or reactants forming it in situ to the melt
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon

Definitions

  • the present application relates to a silicon refining apparatus, and more specifically, in performing silicon casting based on an electron-beam melting method, polysilicon which can improve the silicon refining effect by using a one-way solidification technique.
  • a refining apparatus for silicon for ingot production is a silicon refining apparatus, and more specifically, in performing silicon casting based on an electron-beam melting method, polysilicon which can improve the silicon refining effect by using a one-way solidification technique.
  • solar power generation is widely used as an environmentally friendly power generation method worldwide.
  • photovoltaic power generation takes place in a solar cell that serves to convert light energy into electrical energy.
  • solar cells consist of small silicon crystals.
  • the purity of silicon constituting the solar cell is usually expressed as 5N, 6N, 9N.
  • N means the number of 9 in the weight unit, and 5N means 99.999% purity.
  • the purity reaches 11N.
  • the silicon constituting the solar cell is known to be able to obtain a light conversion efficiency similar to the case of having a purity of 11N only by adding a simple gettering process even in the case of a purity of 5 ⁇ 7N does not require ultra high purity.
  • silicon for producing a semiconductor is manufactured through a chemical vapor deposition (CVD) process.
  • CVD chemical vapor deposition
  • the metallurgical refining process which can mass produce high purity silicon at low manufacturing cost, is being actively developed for silicon constituting the solar cell.
  • the manufacture of polycrystalline silicon ingots for solar cells is basically characterized by directional solidification.
  • the solidification heat of the silicon is removed in a predetermined direction of the lower side of the crucible, the solidification is spread from the lower part of the crucible to the upper direction.
  • the separation of the solid-liquid interface is formed to induce impurities toward the liquid phase, and impurities may be collected in the upper direction of the ingot.
  • Metallurgical refining of high-purity silicon for photovoltaic power generation has been developed such as vacuum refining, oxidation, and unidirectional solidification refining.
  • silicon manufacturing technology by metal melting method such as vacuum refining method and unidirectional solidification refining method is easy to control characteristics, and there is little contamination by impurities during operation, and active research is being conducted.
  • the vacuum refining method generally refers to a refining process of removing impurities having a higher vapor pressure than the silicon from the molten metal after melting the metal raw material, and may remove Al, Ca, Mn, and P, which are representative nonmetal impurities. .
  • the unidirectional solidification refining method refers to a refining process in which silicon is segregated with impurities along a solid-liquid interface during phase transition from liquid to solid.
  • Fe which is a representative metal impurity having a good segregation coefficient, is easily segregated. Ti, Cr, Cu, Ni, etc. can be removed.
  • the present application is to solve the problems of the prior art as described above, it is possible to continuously mass-produce the polysilicon ingot for solar cells, to remove volatile impurities that cost less in the refining process to produce silicon having a purity for solar cells To provide a refining device of silicon for.
  • a device for refining silicon for removing volatile impurities that improves silicon refining efficiency by securing a time and space for vacuum purification of volatile impurities in the molten silicon. I would like to.
  • a vacuum chamber for maintaining a vacuum atmosphere, at least one electron gun (gun-gun) for irradiating an electron beam provided in the vacuum chamber, a silicon raw material in the vacuum chamber
  • a raw material supply unit for supplying a material, disposed in a region to which the electron beam is irradiated, the silicon raw material is charged and the silicon raw material is melted by the electron beam to form a silicon melt, supplied from the silicon melt portion
  • the one-way solidification part for solidifying the molten silicon melt and the silicon melt part comprises a connection hot water portion formed by contacting the first channel portion of the silicon melt portion and the second channel portion of the one-way solidification portion, the central axis of the connection molten metal portion is the raw material Of silicon in a position different from the central axis of the inlet of the supply And to provide a device.
  • first virtual line in which the central axis of the connection water passage is extended may be parallel to the second virtual line in which the central axis of the inlet of the raw material supply unit is extended.
  • first virtual line and the second virtual line may be spaced apart maximum in the first silicon melted portion.
  • the silicon melting portion may have a rectangular parallelepiped shape, and the first virtual line in which the central axis of the connection water flow passage extends may be perpendicular to the second virtual line in which the central axis of the raw material supply portion extends.
  • a vertical point of the first virtual line and the second virtual line may be adjacent to a corner portion of the silicon melt portion to the maximum.
  • connection flow passage portion includes a lower surface portion and a pair of side portions extending substantially in the vertical direction at both ends of the lower surface portion, the cross-sectional area of the lower surface portion may be reduced according to the direction in which the molten silicon is transferred.
  • the silicon raw material having a first channel portion at one end, the one-way solidification portion having a second channel portion in contact with the first channel portion to form a connection flow path portion and the silicon raw material in the silicon melt portion
  • a raw material supply unit for supplying, and the inlet of the raw material supply unit may be disposed above the silicon melting unit such that the path of melting the silicon raw material to the silicon melting unit is supplied to the connection path to the connection channel.
  • the silicon melt portion may have a rectangular parallelepiped shape, and the first channel portion may be positioned at an edge portion of the silicon melt portion.
  • the inlet of the raw material supply unit may be disposed above the silicon melter such that the straight line connecting the first channel unit and the inlet of the raw material supply unit is the maximum.
  • the width of the channel consisting of the first channel portion and the second channel portion may be narrowed in accordance with the direction in which the molten silicon is transferred.
  • the silicon melting portion or the one-way solidification portion may have a copper material.
  • the silicon melt portion is disposed on the outside, and includes a flow path flows through the fluid, the flow path portion is extended to the first flow path portion and the first flow path portion including a plurality of flow paths formed by a plurality of slits,
  • the flow paths may include a second flow path part connected to each other to form one flow path.
  • the one-way solidification part may include a first cooling channel part and a second cooling channel part through which a fluid provided at an outside flows, and the flow rate of the fluid flowing in the first cooling channel part is greater than the flow rate of the fluid flowing in the second cooling channel part.
  • a first silicon melted portion in which silicon melt is stored the first silicon melted portion has a first channel portion, and a second channel portion in contact with the first channel portion to form a first connection flow passage portion.
  • the second silicon melted portion and the second silicon melted portion has a third channel portion, and includes a one-way solidification portion having a fourth channel portion in contact with the third channel portion to form a second connection hot water passage,
  • the furnace unit may be provided with a silicon refining apparatus disposed so that the path of the silicon molten metal to the second connection molten metal is the maximum.
  • the second silicon melt portion may have a rectangular parallelepiped shape, and the third channel portion may be positioned at an edge portion of the second silicon melt portion.
  • the second channel portion may be disposed above the second silicon melted portion such that a straight line connecting the second channel portion and the third channel portion is the maximum.
  • the inlet of the raw material supply unit may be disposed so as to maximize the path that is melted at the position where the silicon raw material is supplied to the first silicon melting unit to move to the first connection water heater.
  • the first silicon melt portion may have a rectangular parallelepiped shape, and the first channel portion may be positioned at an edge portion of the first silicon melt portion.
  • the inlet of the raw material supply unit may be disposed above the silicon melter such that the straight line connecting the first channel unit and the inlet of the raw material supply unit is the maximum.
  • the first connection channel may include a channel consisting of the first channel part and the second channel part, or the second connection channel part may include a width of a channel including the third channel part and the fourth channel part of the one-way solidification part. It can be narrowed down according to the direction in which the molten silicon is transferred.
  • the silicon melt part may include respective flow path parts disposed at each outer side, and the flow path parts disposed at the adjacent outer sides may be spatially connected to each other through the inside of the silicon melt part.
  • the silicon melting part may have a plurality of flow path parts disposed outside, and a flow path width of at least one flow path part of the plurality of flow path parts may be greater than a flow path width of the remaining flow path parts.
  • the one-way solidification part may have a plurality of cooling flow path parts disposed outside, and a flow path width of at least one cooling flow path part of the plurality of cooling flow path parts may be larger than the remaining flow path width.
  • volatile impurities in the molten silicon can be removed by supplying the silicon raw material to the silicon melt and irradiating an electron beam to melt the silicon first and lengthen the moving path of the molten silicon before the molten silicon is supplied to the one-way solidification part. This can increase the time and space available to improve the vacuum refining effect.
  • FIG. 1 is a view schematically showing a refining apparatus of silicon according to an embodiment of the present invention.
  • FIG. 2 is a view schematically showing a refining apparatus of silicon according to another embodiment of the present invention.
  • Figure 3 is a perspective view schematically showing a silicon melt in accordance with an embodiment of the present invention.
  • FIG. 4 is a view illustrating the outside of FIG. 3.
  • FIG. 5 is a perspective view illustrating a state in which a fluid supply unit is disposed in a silicon melting unit according to an exemplary embodiment of the present invention.
  • FIG. 6 is a view illustrating a state seen from above and one side of FIG. 5.
  • FIG. 7 is a perspective view schematically showing a second silicon melt according to another embodiment of the present invention.
  • FIG. 8 is a view illustrating the outside of FIG. 7.
  • FIG. 9 is a diagram illustrating a cut plane taken along a line A-A of FIG. 7.
  • FIG. 10 is a perspective view illustrating a state in which a fluid supply unit is disposed in a silicon melting unit according to another exemplary embodiment of the present invention.
  • FIG. 11 is a view showing a view of FIG. 9 and a view from the outside.
  • FIG. 12 is a perspective view schematically showing the outer side of the one-side solidification unit according to an embodiment of the present invention.
  • FIG. 13 is a cross-sectional view of FIG. 12.
  • FIG. 14 is a cross-sectional view schematically showing a one-way solidification unit according to an embodiment of the present invention.
  • FIG. 15 is a view illustrating a state in which a fluid supply unit is disposed in a one-way solidification unit.
  • FIG. 16 is a view showing two types of connection baths each having a different shape.
  • FIG. 17 is a sectional view of the silicon molten metal held in the two kinds of connection furnaces shown in FIG.
  • FIG. 18 is a table showing experimental results qualitatively showing the thicknesses of the molten silicon held in the two kinds of connection furnaces shown in FIG. 16.
  • connection hot water unit 19 is a view showing a connection hot water unit according to another embodiment of the present invention.
  • connection hot water unit 20 is a cross-sectional view showing a connection hot water unit according to another embodiment of the present invention.
  • FIG. 21 is a diagram illustrating an arrangement of a raw material supply part and a connection hot water supply part of FIG. 1.
  • Fig. 22 is a view showing the arrangement of a raw material supply part and a connection hot water supply part applied to a refining apparatus of silicon according to another aspect of the present invention.
  • FIG. 23 is a view showing the arrangement of a raw material supply part and a connection hot water supply part applied to a refining apparatus of silicon according to another aspect of the present invention.
  • FIG. 24 is a view schematically illustrating a disposition of a raw material supply unit, a first connection furnace and a second connection furnace, and a movement path of the silicon molten metal applied to a refining apparatus of silicon according to another embodiment of the present invention.
  • FIG. 1 is a view schematically showing a refining apparatus of silicon according to an embodiment of the present invention.
  • the silicon refining apparatus includes a vacuum chamber 100, an electron gun 200, a silicon melting part 300, and a one-way solidification part 400.
  • the vacuum chamber 100 maintains a vacuum atmosphere therein to allow impurities to evaporate in the molten silicon, which will be described later.
  • the pressure inside the vacuum chamber 100 may be approximately 10-5 torr.
  • a raw material input part 120 through which a silicon raw material in the form of particles may be supplied is installed.
  • the inside of the raw material input part 120 may be provided with a cooling water passage to prevent damage by heat by the electron beam to be described later.
  • the raw material input unit 120 may include a raw material supply line 122 and the raw material supply unit inlet 124, the raw material supply unit inlet 124 is a silicon raw material in the silicon melting unit 300 to be described later The position and angle at which the material is supplied can be adjusted.
  • Electron-gun 200 is installed in the vacuum chamber 100, it may be a plurality.
  • the electron gun 200 includes a first electron gun 210 and a second electron gun 220.
  • the first electron gun 210 is installed on the upper end of the vacuum chamber 100 so that the electron beam is irradiated into the vacuum chamber 100.
  • the silicon melter 300 is disposed in a region where the electron beam is irradiated by the first electron gun 210.
  • the silicon raw material in the form of particles is charged from the raw material input part 120, and the loaded silicon raw material is melted by the electron beam accelerated and integrated by the first electron gun 210. It is formed of the molten silicon (P2).
  • the first electron gun 210 may accelerate and integrate the first electron beam to have an output energy of 30 to 35 kWh / cm 2.
  • the present invention is not limited thereto, and the first electron gun 210 may have an output energy for preventing the silicon melt from being unstable, such as the silicon melt splashing to the outside by an electron beam.
  • the silicon melter 300 preferably has a copper material in order to block inflow of impurities that may occur due to the material of the silicon melter itself.
  • the silicon melt part 300 having a copper material may include a flow path part which can easily control the cooling efficiency in order to prevent damage by the electron beam. A detailed description of the silicon melt part including the flow path part will be described later.
  • the one-way coagulation part 400 is disposed in an area where the second electron beam is irradiated by the second electron gun 220, and is adjacent to the silicon melting part 300.
  • the one-way solidification unit 400 may have a copper material similarly to the silicon melting part 300.
  • the one-way solidification unit 400 may continuously cast the molten silicon P2 and at the same time induce segregation of metal impurities to improve silicon refining and high-purity polysilicon production efficiency.
  • the second electron gun 220 may accelerate and integrate the second electron beam to have an output energy of 8 to 14 kWh / cm 2.
  • the present invention is not limited thereto, and the second electron gun 210 maintains a molten state in the second electron beam and prevents the silicon melt from being unstable, such as splashing out of the silicon melt by an electron beam. Can have energy.
  • connection bath 500 may be formed by contacting the first channel part 301 of the silicon melting part 300 and the second channel part 401 of the one-way solidification part 400 to each other.
  • the unit 500 provides a channel through which the molten silicon may be supplied from the silicon melter 300 to the one-way solidifier 400.
  • connection flow passage part 500 includes a lower surface portion 501 and a pair of side portions 502 extending in a substantially vertical direction at both ends of the lower surface portion 501.
  • the silicon molten metal stored in the silicon melting part 300 is supplied to the one-way solidification part 400 through the connection hot water supply part 500 as much as the silicon raw material is supplied through the raw material supply part 122.
  • connection hot water passage 500 may be widened. Accordingly, the electron beam may be irradiated onto the molten silicon flowing along the connection bath 500, thereby improving the silicon refining effect and reducing the area where the electron beam is irradiated to the peripheral portion of the connection bath 500. Durability of the connection passage 500 may be improved.
  • connection water heater 500 A detailed description of the connection water heater 500 will be described later with reference to the accompanying drawings.
  • FIG. 2 is a view schematically showing a refining apparatus of silicon according to another embodiment of the present invention.
  • the silicon melt part includes a first silicon melt part 310 and a second silicon melt part 320.
  • the first silicon melter 310 is disposed in a region where the electron beam is irradiated, and the silicon raw material is charged to melt the silicon raw material by the electron beam to form a silicon melt.
  • the first silicon melt part 310 has a first channel part 311 and has a rectangular parallelepiped shape.
  • the second silicon melter 320 has a second channel portion 321 in contact with the first channel portion 311, and has a rectangular parallelepiped shape.
  • the first connection channel part 510 is formed by contacting the first channel part 311 and the second channel part 321, and the molten silicon is melted by the first silicon melt part 310 in the second silicon melt part 310. It provides a passageway to the portion 320.
  • the one-way solidification unit 400 may solidify the silicon melt supplied from the second silicon melter 320 and provide a space in which the polysilicon ingot is formed.
  • the second silicon melter 320 has a third channel portion 322, and the one-way solidification portion 400 has a fourth channel portion 402.
  • the second connection furnace 520 is formed by the third channel portion 322 and the fourth channel portion 402 contact with each other, the silicon melt is the one-way solidification portion in the second silicon melt portion 320 Provide a passageway to 400.
  • FIG. 3 is a perspective view schematically illustrating a silicon melt part according to an embodiment of the present invention
  • FIG. 4 is a view illustrating the outside of FIG. 3.
  • the silicon melt part 300 is disposed outside the silicon melt part 300 and includes a flow path part 340 through which a fluid flows.
  • the flow path part 340 includes a first flow path part 341 and a second flow path part 342.
  • the first flow path part 341 may have a plurality of flow paths formed by a plurality of slits.
  • the first flow path part 341 having the plurality of slits serves to increase the surface area of the outside of the silicon melt part 300.
  • the cooling fluid flows through the first flow path part 341, the area in contact with the outside of the silicon melting part 300 increases in the cooling fluid, thereby improving cooling efficiency.
  • the silicon melt part 300 when exposed by an electron beam for a long time, it may prevent breakage due to heat.
  • the second flow path part 342 extends to the first flow path part 341, and the plurality of flow paths are connected to each other to form one flow path.
  • Cutting may be performed to have the first flow path part 341 and the second flow path part 342 outside the silicon melt part 300.
  • the second flow path part 342 has a structure extending from the first flow path part 341 and connected to each other, so that the outside of the silicon melt part 300 extends only to the first flow path part 341. There is no need to form the cutting process can be easy.
  • the silicon melt part 300 has a channel part 360 that provides a channel through which the silicon melt can move.
  • the second flow path part 342 may be disposed closer to the channel part 360 than the first flow path part 341.
  • the second flow path part 342 is connected to the first flow path part 341 to form one flow path, so that the width of the flow path of the second flow path part 342 is increased.
  • the silicon melting part according to another aspect of the present invention includes a first flow path portion 341 and the second flow path portion 342, the flow rate flowing through the second flow path portion 342 is the first flow path portion 341 May be greater than the flow rate.
  • the second flow path part 342 may effectively remove heat around the channel part 360 by increasing the cooling rate of the cooling fluid.
  • the silicon melt part 300 applied to the silicon refining apparatus may have a plurality of flow path parts 340 disposed outside.
  • the flow path width of at least one flow path part 342 of the plurality of flow path parts 340 may be larger than the flow path width of the remaining flow path parts 341.
  • the at least one flow path part 343 may be disposed around the channel part 360 of the silicon melt part 300. Therefore, by having a structure in which the flow path width of the at least one flow path portion 343 is large, the cooling speed of the cooling fluid may be increased to effectively remove heat around the channel portion 360.
  • the channel width of the at least one flow path portion 343 is disposed around the channel portion 360, so that the channel portion 360 of the silicon melt portion 300, to which the electron beam can be directly irradiated, is heated. Can be prevented from being damaged.
  • FIG. 5 is a perspective view illustrating a state in which a fluid supply unit is disposed in a silicon melting unit according to an embodiment of the present invention
  • FIG. 6 is a view illustrating a state seen from above and one side of FIG.
  • the apparatus may further include a fluid supply part 370 supplying a fluid to the flow path part.
  • the fluid supply part 370 may be installed outside the silicon melt part 300 and supply fluid to the second flow path part 342.
  • the silicon melt part 300 applied to the refining apparatus of silicon according to another aspect of the present invention includes respective flow path parts 340 disposed on each outer side, and the flow path parts disposed on the adjacent outer sides are melted on the silicon. It may penetrate the interior of the unit 300 and be spatially connected to each other.
  • a region penetrating between the flow path parts 340 may be an edge part of the silicon melt part 300.
  • the fluid supply unit 370 for supplying the cooling fluid may be installed on each outside of the silicon melt portion 300, respectively, disposed on each outside of the silicon melt portion 300 according to another aspect of the present invention
  • the flow path part 340 may be spatially connected to have a structure capable of cooling the silicon melt part 300 through one fluid supply part 370.
  • FIG. 7 is a perspective view schematically illustrating a second silicon melter according to another exemplary embodiment of the present invention
  • FIG. 8 is a view illustrating the outside of FIG. 7.
  • the silicon melter 300 includes the first silicon melter 310 and the second silicon melter 320.
  • the second silicon melter 320 shown in FIG. 7 includes a first connection funnel 510 and a second connection funnel 520, the second silicon melter 320 may be disposed outside the second silicon melter 320.
  • the outer structure including the first connection water heater 510 is different from the silicon melt part 300, but the first flow path part 341 and the first flow path part 341 forming a plurality of flow paths. ) Is connected to the second flow path portion 342 is similar in structure.
  • FIG. 9 is a diagram illustrating a cut plane taken along a line A-A of FIG. 7.
  • a second flow path part larger than a flow path width of the first flow path part 341 around the second channel part 321 or the third channel part 322 of the second silicon melt part 320. 344 may be disposed.
  • the periphery of the second channel part 321 or the third channel part 322 may be rapidly cooled.
  • FIG. 10 is a perspective view illustrating a state in which a fluid supply unit is disposed in a silicon melting unit according to another exemplary embodiment of the present invention
  • FIG. 11 is a view illustrating a state of FIG.
  • the fluid supply unit 351 may be disposed on an upper edge portion where the first connection channel part 510 and the second connection channel part 520 are not disposed.
  • the cooling fluid supplied to the fluid supply part 370 may flow along the flow path part 340 at the outside of the second silicon melt part 320 to increase the cooling efficiency for a long time.
  • an edge portion of the second silicon melt part 320 passes through an area penetrating between the flow path parts to an adjacent outer flow path part. Will move.
  • the cooling fluid passes through all of the flow path portion 340 of the peripheral portion 360 of the silicon melt portion, and then passes through the flow path portion provided on the lower surface portion of the silicon melt portion, and then the cooling fluid passes through the fluid discharge portion 380 to the outside. May be discharged.
  • the silicon melter 300 includes a central portion 361 forming a storage space of the molten silicon, a peripheral portion 362 partitioning the central portion 361, and a channel portion 360 formed on the peripheral portion 362. do.
  • the first flow path part 341 may be disposed to correspond to the central portion 361 of the silicon melt part 300.
  • the second flow path part 342 may be disposed to correspond to the peripheral part 362 of the silicon melt part 300.
  • the second flow path part 343 may be disposed adjacent to the channel part 360.
  • FIG. 12 is a perspective view schematically showing the outer side of the one-way solidification unit according to an embodiment of the present invention
  • FIG. 13 is a cross-sectional view of FIG. 12
  • FIG. 14 is a cross-sectional view schematically showing the one-way solidification unit according to an embodiment of the present invention. .
  • One-way solidification unit 400 may have a plurality of cooling passage 440 disposed on the outside.
  • the one-way solidification part 400 has a plurality of cooling flow path parts 440 to increase the surface area of the outer side of the one-way solidification part 400 to improve long-term cooling efficiency in the continuous refining process of silicon. You can.
  • the plurality of cooling channel parts 440 are formed by a plurality of slits on the outside of the one-way solidification part 400, and the flow path of at least one cooling channel part 450 of the plurality of cooling channel parts 440.
  • the width may be greater than the remaining flow path width.
  • the at least one cooling channel portion 450 may be disposed on the outer upper portion of the one-way solidification portion.
  • the one-way solidification unit 400 includes a first cooling channel portion 450 and a second cooling channel portion 440 through which a fluid installed on the outside flows, and the first cooling channel portion ( The flow rate of the fluid flowing through the 450 may be greater than the flow rate of the fluid flowing in the second cooling channel 440.
  • first cooling channel part 450 may be disposed on an outer upper portion of the one-way solidification part 400.
  • the first cooling channel portion 450 is disposed above the one-side solidification portion 400 where the electron beam may be directly exposed, thereby cooling more fluid than the second cooling channel portion 440. It can flow to the flow path portion 450 can improve the cooling rate of the outer upper portion of the one-way solidification portion 400.
  • FIG. 15 is a view illustrating a state in which a fluid supply unit is disposed in a one-way solidification unit.
  • the one-way solidification unit 400 has a center of the first cooling fluid supply unit 471 and the one-way solidification unit 400 connected to the upper cooling flow path 440 based on the center of the one-way solidification unit 400. It may further include a second cooling fluid supply unit 472 connected to the cooling channel 440 of the lower side as a reference.
  • first cooling fluid supply unit 471 and the second cooling fluid supply unit 472 may be controlled by one cooler.
  • the fluid supplied to the first cooling fluid supply unit 471 and the second cooling fluid supply unit 472 may control the flow rate of the fluid by a plurality of coolers.
  • the upper cooling channel portion 440 and the lower cooling channel portion The temperature of the fluid of 440 is individually controlled to increase the cooling efficiency.
  • the one-way solidification part 400 is supplied with fluid through each of the first cooling fluid supply part 471 and the second cooling fluid supply part 472, thereby reducing the time and the path through which the fluid is supplied and discharged. Cooling efficiency can be improved.
  • the one-way solidification unit 400 may include a third cooling fluid supply unit capable of cooling the graphite dummy bar installed in the one-way solidification unit 400.
  • FIG. 16 is a view showing two types of connection baths each having a different shape.
  • connection water flow passage 500a shown in FIG. 16A is flat, and the side portions facing each other are parallel.
  • connection hot water flow part 500a is constant along the direction in which the molten silicon is transferred from the silicon melt part 300 to the one-way solidification part 400.
  • Connection (b) 500b according to an aspect of the present invention shown in Figure 16 (b) is the direction in which the molten silicon (P2) is transferred from the silicon melt portion 300 to the one-way solidification portion 400 As a result, the cross-sectional area of the lower surface portion is reduced.
  • the width of the channel of the connection hot water pipe portion 500b according to another aspect of the present invention may be narrowed according to the direction in which the molten silicon is transferred.
  • connection hot water flow part 500b is not limited to a shape in which the cross-sectional area of the bottom surface is reduced, and the width of the channel of the connection hot water flow part 500b is a direction in which the silicon melt is transferred. By being narrowed according to, it is possible to secure the time that the silicon melt can be present in the connection bath (500b).
  • connection passage 500b is flat.
  • FIG. 17 is a sectional view of the silicon molten metal held in the two kinds of connection furnaces shown in FIG.
  • FIG. 17 is a view showing an experimental result for comparing the thicknesses of the molten silicon held in the two types of connection furnaces shown in FIG. 16 using the silicon refiner according to an aspect of the present invention.
  • FIG. 17A is a view showing a cross section of the connection water flow passage part shown in FIG. 16A. As shown in (a) of FIG. 17, it can be seen that the amount of the molten silicon decreases according to the conveying direction.
  • FIG. 17B is a view showing a cross section of the connection water passage according to FIG. 16B. As shown in (b) of FIG. 17, it can be seen that the amount of the molten silicon is relatively uniform according to the conveying direction.
  • FIG. 18 is an experimental result table quantitatively showing the thicknesses of the molten silicon held in the two kinds of connection furnaces shown in FIG. 16.
  • the average value of the thickness of the molten silicon held in the connection hot water flow passage 500b according to an aspect of the present invention is the largest, It can be seen that the thickness of the molten metal of silicon covering the lower surface portion of the connection hot water flow part 500b along the direction supplied from the silicon melt part 300 to the one-way solidification part 400 is the most uniform.
  • connection hot water supply part 500b illustrated in FIG. 15B may maintain a predetermined amount of silicon molten metal on the connection hot water supply part 500b so that an electron beam is connected to the connection hot water supply part 500b. It is possible to prevent the direct injection into the 500b to prevent the upper end portions of the silicon melt portion and the one-way solidification portion from being damaged.
  • connection bath 500b shown in FIG. 16 (b) may continuously refine silicon by improving durability of the refining apparatus in order to manufacture ingots of polysilicon.
  • connection hot water unit 19 is a view showing a connection hot water unit according to another embodiment of the present invention.
  • the inclination of one surface of the lower surface part is based on a horizontal direction according to a direction in which the molten silicon is transferred from the silicon melting part 300 to the one-way solidification part 400. It may have an increasing shape.
  • the silicon melt when the silicon melt is transferred from the silicon melt part 300 to the one-way solidification part 400, the silicon melt may be maintained in the connection bath 500c shown in FIG. 19.
  • connection hot water dropping part 500c maintains a predetermined amount of the molten silicon on the connection hot water dropping part 500c, so that the electron beam is directly injected into the connection hot water dropping part 500c. It is possible to prevent the upper end portions of the silicon melt portion and the one-way solidification portion from being damaged.
  • connection flow passage portion may have a shape in which the lower surface portion of the connection flow passage portion is small in cross section in the direction in which the molten silicon is transferred, and at the same time the slope of one surface of the lower surface portion increases.
  • the molten silicon may be maintained in the connection hot water supply part, thereby preventing the connection hot water part from being damaged by the electron beam.
  • connection hot water unit 20 is a cross-sectional view showing a connection hot water unit according to another embodiment of the present invention.
  • the lower surface portion of the connection tap 530 applied to the refining apparatus of silicon may have a curved portion 560 having a constant curvature.
  • the silicon melt may be prevented from being smoothly supplied from the silicon melter 300 to the one-way solidification part 400 due to the surface tension of the silicon melt.
  • FIG. 21 is a diagram illustrating an arrangement of a raw material supply part and a connection hot water supply part of FIG. 1.
  • the silicon raw material is supplied to the silicon melter 300 from the raw material supply part 120.
  • the silicon raw material supplied to the silicon melter 300 is melted by the first electron gun 210 shown in FIG. 1 to form silicon melt.
  • Non-metallic impurities present in the silicon melt also melt to reach a volatile state.
  • Volatile impurities have a higher vapor pressure than silicon and can be removed by vacuum refining.
  • the central axis of the connection hot water supply unit 500 may be at a position different from the central axis of the inlet 124 of the raw material supply unit.
  • the silicon melt may move through various movement paths in the silicon melt part 300.
  • the molten silicon may move in a straight path when the central axis of the connection furnace 500 is the same as the central axis of the inlet 124 of the raw material supply part, the arrangement of the molten silicon may not sufficiently secure the refining time. You may not be able to.
  • the first virtual line L1 extending from the center axis of the connection water heater 500 may be substantially parallel to the second virtual line L2 from which the center axis of the inlet 124 of the raw material supply part extends. .
  • first virtual line L1 and the second virtual line L2 may be spaced apart from each other in the first silicon melting part 300 to the maximum.
  • first virtual line L1 extending from the central axis of the connection water flow passage 500 is substantially parallel to the second virtual line L2 from which the central axis of the inlet 124 of the raw material supply part extends.
  • the first imaginary line L1 and the second imaginary line L2 are inserted into the connection hot water supply unit 500 and the raw material supply unit 124 so as to be spaced apart in the first silicon melting unit 300 to the maximum. ) May be arranged.
  • connection furnace 500 and the inlet 124 of the raw material supply unit may be a long path for the silicon molten metal to move in the silicon melt 300, the volatile impurities present in the silicon melt It is possible to secure the time and space for vacuum refining, thereby improving the refining efficiency of silicon.
  • Fig. 22 is a view showing the arrangement of a raw material supply part and a connection hot water supply part applied to a refining apparatus of silicon according to another aspect of the present invention.
  • the silicon melt part 300 may have a rectangular parallelepiped shape. However, the shape that can store the molten silicon can be applied without being limited to the rectangular parallelepiped shape.
  • the first virtual line L1 extending from the central axis of the connection water heater may be substantially perpendicular to the second virtual line L2 from which the central axis of the inlet 124 of the raw material supply part extends.
  • the first imaginary line L1 extending from the center axis of the connection water supply unit is substantially perpendicular to the second imaginary line L2 from which the center axis of the inlet 124 of the raw material supply unit extends.
  • the unit 501 and the inlet 124 of the raw material supply unit may be disposed.
  • connection hot water 501 and the inlet 124 of the raw material supply unit may be a long path for the silicon melt to move in the silicon melt 300, the volatile impurities present in the silicon melt It is possible to secure the time and space for vacuum refining, thereby improving the refining efficiency of silicon.
  • FIG. 23 is a view showing the arrangement of a raw material supply part and a connection hot water supply part applied to a refining apparatus of silicon according to another aspect of the present invention.
  • the first channel part 301 may be located at an edge portion of the silicon melting part 300.
  • the inlet 124 of the raw material supply part is melted at the position where the silicon raw material is supplied to the silicon melt part 300, and the silicon melt part 300 is maximized so that the path of the raw material supply part is moved to the connection hot water supply part 501. ) May be disposed above.
  • the inlet 124 of the raw material supply part is disposed above the silicon melting part 300 such that the straight line L3 connecting the first channel part 301 and the inlet 124 of the raw material supply part is the maximum. Can be.
  • the inlet 124 of the raw material supply part and the first channel part 301 may have a configuration spaced most maximally in the silicon melting part 300.
  • the inlet 124 of the raw material supply part is disposed above the silicon melting part 300 so that the straight line L3 has a maximum length, so that the silicon melt may exist in the silicon melting part 300. And space can be secured to improve the refining efficiency of silicon.
  • the polysilicon ingot can be continuously manufactured using the silicon refining apparatus according to the present embodiment, and manufacturing cost can be reduced.
  • FIG. 24 is a view schematically illustrating a disposition of a raw material supply unit, a first connection furnace and a second connection furnace, and a movement path of the silicon molten metal applied to a refining apparatus of silicon according to another embodiment of the present invention.
  • the third channel part 322 may be located at an edge portion of the second silicon melting part 320.
  • the first connection hot water supply unit 510 may be disposed such that a path through which the silicon molten metal moves to the second connection hot water supply unit 520 is maximized.
  • the second channel part 321 is disposed on the upper portion of the second silicon melting part 320 such that a straight line L3 connecting the second channel part 321 and the third channel part 322 is maximized. Can be arranged.
  • a path through which the silicon melt moves in the second silicon melter 200 may be long, and the silicon melt It is possible to secure the time and space for the volatile impurities present in the vacuum refining can improve the refining efficiency of silicon.
  • the first channel part 311 may be located at an edge portion of the first silicon melt part 300.
  • the inlet 124 of the raw material supply unit may be disposed to maximize the path of melting at the position where the silicon raw material is supplied to the first silicon melting unit 310 and moving to the first connection hot water unit 510. have.
  • the inlet 124 of the raw material supply part is disposed above the first silicon melting part 310 such that a straight line L4 connecting the first channel part 311 and the inlet 124 of the raw material supply part is the maximum. Can be.
  • the silicon refining apparatus for manufacturing a polysilicon ingot has a plurality of silicon melt parts and a silicon melt when the silicon melt moves through a first connection furnace 510 connecting the plurality of silicon melt parts. It can be seen that the moving path of the maximum in the first silicon melt portion 310 and the second silicon melt portion 320 as shown by the arrow shown.
  • the first connection furnace 510 and the second connection furnace 520 it is possible to ensure a sufficient time and space to remove the volatile impurities in the molten silicon The silicon refining effect can be improved.
  • the polysilicon ingot can be continuously manufactured using the silicon refining apparatus according to the present embodiment, and the manufacturing cost can be reduced. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Toxicology (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Silicon Compounds (AREA)

Abstract

Disclosed is a silicon refining apparatus. The present invention provides a silicon refining apparatus for removing volatile impurities, the apparatus comprising: a vacuum chamber which maintains a vacuum atmosphere; one or more electron-guns which are formed in the vacuum chamber and which irradiate an electron beam; a raw material supply section which supplies silicon raw materials to the inside of the vacuum chamber; a silicon melting section which is disposed within the range of the irradiation of the electron beam and in which the silicon raw materials are charged and then melted with the electron beam, thereby forming a silicon melt; a unidirectional solidification section which solidifies the silicon melt supplied from the silicon melting section; a connected pathway section which is formed with a first channel section of the silicon melting section communicated with a second channel section of the unidirectional solidification section, wherein the central axis of the connected pathway section is in a different location from the central axis of an insert hole of the raw material supply section. Consequently, the efficiency of vacuum refining can be improved by extending the travel path of the silicon melt and thereby securing enough time and space for removing volatile impurities which exist therein.

Description

실리콘의 정련 장치Silicon refining device
본 출원은 실리콘의 정련 장치에 관한 것으로, 더욱 자세하게는 전자빔 용융(Electron-beam melting)법을 기반으로 하여 실리콘 주조를 행함에 있어, 일방향 응고 기술을 이용함으로써 실리콘 정련 효과를 향상시킬 수 있는 폴리실리콘 잉곳 제조를 위한 실리콘의 정련 장치에 관한 것이다.The present application relates to a silicon refining apparatus, and more specifically, in performing silicon casting based on an electron-beam melting method, polysilicon which can improve the silicon refining effect by using a one-way solidification technique. A refining apparatus for silicon for ingot production.
최근 국제 추세에 따라, 친환경적인 발전 방법으로서 태양광 발전이 세계적으로 널리 사용되고 있다. 이와 같은 태양광 발전은 빛에너지를 전기에너지로 전환시키는 역할을 수행하는 태양 전지에서 이루어진다. 이러한 태양전지는 작은 실리콘 결정체들로 이루어진다.According to the recent international trend, solar power generation is widely used as an environmentally friendly power generation method worldwide. Such photovoltaic power generation takes place in a solar cell that serves to convert light energy into electrical energy. Such solar cells consist of small silicon crystals.
태양 전지를 구성하는 실리콘의 순도는 통상 5N, 6N, 9N과 같이 표시한다. 여기서 N는 중량% 단위에서 9의 개수를 의미하며, 5N의 경우 99.999% 순도를 의미한다.The purity of silicon constituting the solar cell is usually expressed as 5N, 6N, 9N. Here, N means the number of 9 in the weight unit, and 5N means 99.999% purity.
초고순도를 요구하는 반도체를 생산하는 실리콘의 경우 순도가 11N에 이른다. 그러나, 태양 전지를 구성하는 실리콘은 5~7N의 순도를 가지는 경우에도 간단한 게터링 공정 추가만으로 11N의 순도를 가지는 경우와 비슷한 광전환 효율을 얻을 수 있는 것으로 알려져 있어 초고순도를 요하지 아니한다.For silicon producing ultra high purity semiconductors, the purity reaches 11N. However, the silicon constituting the solar cell is known to be able to obtain a light conversion efficiency similar to the case of having a purity of 11N only by adding a simple gettering process even in the case of a purity of 5 ~ 7N does not require ultra high purity.
또한, 반도체를 생산하는 실리콘은 화학적 가스화 공정(CVD; Chemical Vapor Deposition)을 통해 제조되고 있다. 그러나, 이러한 실리콘 제조 공정은 오염물질을 대량으로 발생시키고, 생산효율이 떨어지며, 또한 생산 단가가 높은 것으로 알려져 있다.In addition, silicon for producing a semiconductor is manufactured through a chemical vapor deposition (CVD) process. However, this silicon manufacturing process is known to generate a large amount of contaminants, low production efficiency, and high production cost.
이에 따라, 태양 전지를 구성하는 실리콘은 낮은 제조 비용으로 고순도의 실리콘을 대량 생산할 수 있는 야금학적 정련공정(Metallurgical Refining Process)이 활발히 개발되고 있다.Accordingly, the metallurgical refining process, which can mass produce high purity silicon at low manufacturing cost, is being actively developed for silicon constituting the solar cell.
태양전지용 다결정 실리콘 잉곳의 제조는 기본적으로 방향성 응고를 특징으로 하고 있다.The manufacture of polycrystalline silicon ingots for solar cells is basically characterized by directional solidification.
도가니 속에 실리콘 입자를 충진하고 이를 1420 ℃ 이상에서 용융시킨 후 실리콘의 응고열을 도가니 하부 쪽의 일정방향으로 제거하면 고화가 도가니 하부로부터 상부 쪽으로 퍼져나가는 방식이 방향성 응고 공정이다.When the silicon particles are charged in the crucible and melted at 1420 ° C. or higher, and the solidification heat of the silicon is removed in a predetermined direction of the lower side of the crucible, the solidification is spread from the lower part of the crucible to the upper direction.
방향성 응고공정을 통하여 고액계면의 층분리를 형성하여 불순물을 액상쪽으로 유도하여 불순물이 잉곳의 상부방향으로 포집될 수 있다. Through the directional solidification process, the separation of the solid-liquid interface is formed to induce impurities toward the liquid phase, and impurities may be collected in the upper direction of the ingot.
고순도의 태양광 발전용 실리콘의 야금학적 정련법은 진공 정련법, 산화 처리법, 일방향 응고 정련법 등의 대표적인 공정이 개발되어 있다.Metallurgical refining of high-purity silicon for photovoltaic power generation has been developed such as vacuum refining, oxidation, and unidirectional solidification refining.
이들 야금학적 정련법들 중에서 진공 정련법과 일방향 응고 정련법 등과 같은 금속 용융법에 의한 실리콘 제조 기술이 특성 제어가 용이하고, 조업중 불순물에 의한 오염이 적어 활발한 연구가 진행되고 있다.Among these metallurgical refining methods, silicon manufacturing technology by metal melting method such as vacuum refining method and unidirectional solidification refining method is easy to control characteristics, and there is little contamination by impurities during operation, and active research is being conducted.
여기서, 진공 정련법이란 통상적으로 금속원료를 용융시킨 후 용융된 금속으로부터 실리콘에 비해 증기압이 높은 불순물을 제거하는 정련공정을 말하며, 대표적인 비금속 불순물인 Al, Ca, Mn, P 등을 제거할 수 있다.Here, the vacuum refining method generally refers to a refining process of removing impurities having a higher vapor pressure than the silicon from the molten metal after melting the metal raw material, and may remove Al, Ca, Mn, and P, which are representative nonmetal impurities. .
또한, 일방향 응고 정련법은 실리콘이 액체에서 고체로 상변이 중에 고체-액체 계면을 따라 불순물을 액체로 편석(Segregation)시키는 정련공정을 말하며, 편석계수가 작아 편석이 잘 되는 대표적인 금속 불순물인 Fe, Ti, Cr, Cu, Ni등을 제거할 수 있다.In addition, the unidirectional solidification refining method refers to a refining process in which silicon is segregated with impurities along a solid-liquid interface during phase transition from liquid to solid. Fe, which is a representative metal impurity having a good segregation coefficient, is easily segregated. Ti, Cr, Cu, Ni, etc. can be removed.
한편, 종래에는 태양전지용 잉곳을 회분 방식으로 1회씩 생산하여 왔으며, 이러한 회분 방식에 의한 잉곳의 크기를 확대하는 방향으로 연구가 추진되기도 하였으나, 잉곳의 크기를 무한정 확대하는 것은 곤란하여 태양전지용 잉곳의 대량생산에 문제점이 있었다.On the other hand, in the past, solar cell ingots have been produced once by a batch method, and research has been pursued in the direction of increasing the size of the ingot by such a batch method, but it is difficult to infinitely enlarge the size of the ingots of the solar cell ingot. There was a problem with mass production.
본 출원은 상기한 바와 같은 종래 기술의 문제점을 해결하기 위한 것으로, 태양전지용 폴리실리콘 잉곳을 연속적으로 대량생산할 수 있고, 태양전지용 순도를 가지는 실리콘을 제조하기 위하여 정련 과정에 비용이 적게 들어가는 휘발성 불순물 제거를 위한 실리콘의 정련 장치를 제공하고자 한다.The present application is to solve the problems of the prior art as described above, it is possible to continuously mass-produce the polysilicon ingot for solar cells, to remove volatile impurities that cost less in the refining process to produce silicon having a purity for solar cells To provide a refining device of silicon for.
또한, 전자빔 용융법에 기초하여 실리콘을 용융함에 있어서, 용융된 실리콘 내의 휘발성 불순물이 진공 정련이 될 수 있는 시간과 공간을 확보하여 실리콘 정련 효율을 향상시키는 휘발성 불순물 제거를 위한 실리콘의 정련 장치를 제공하고자 한다.Further, in melting silicon based on the electron beam melting method, a device for refining silicon for removing volatile impurities that improves silicon refining efficiency by securing a time and space for vacuum purification of volatile impurities in the molten silicon. I would like to.
상기한 과제를 해결하기 위하여 본 발명의 일 실시예에 따르면, 진공 분위기를 유지하는 진공 챔버, 상기 진공 챔버에 구비되어 전자빔을 조사하는 적어도 하나 이상의 전자총(Electron-gun), 상기 진공챔버 내에 실리콘 원료물질을 공급하는 원료 공급부, 상기 전자빔이 조사되는 영역 내에 배치되며, 상기 실리콘 원료물질이 장입되어 상기 전자빔에 의해 상기 실리콘 원료물질이 용융되어 실리콘 용탕이 형성되는 실리콘 용융부, 상기 실리콘 용융부로부터 공급되는 실리콘 용탕을 응고시키는 일방향 응고부 및 상기 실리콘 용융부는 상기 실리콘 용융부의 제 1 채널부와 상기 일방향 응고부의 제 2 채널부가 서로 접하여 이루어진 연결탕로부를 포함하고, 상기 연결탕로부의 중심축은 상기 원료 공급부의 투입구의 중심축과 다른 위치에 있는 실리콘의 정련 장치를 제공하고자 한다. According to an embodiment of the present invention to solve the above problems, a vacuum chamber for maintaining a vacuum atmosphere, at least one electron gun (gun-gun) for irradiating an electron beam provided in the vacuum chamber, a silicon raw material in the vacuum chamber A raw material supply unit for supplying a material, disposed in a region to which the electron beam is irradiated, the silicon raw material is charged and the silicon raw material is melted by the electron beam to form a silicon melt, supplied from the silicon melt portion The one-way solidification part for solidifying the molten silicon melt and the silicon melt part comprises a connection hot water portion formed by contacting the first channel portion of the silicon melt portion and the second channel portion of the one-way solidification portion, the central axis of the connection molten metal portion is the raw material Of silicon in a position different from the central axis of the inlet of the supply And to provide a device.
또한, 상기 연결탕로부의 중심축이 연장된 제 1 가상선은 상기 원료 공급부의 투입구의 중심축이 연장된 제 2 가상선과 평행할 수 있다.In addition, the first virtual line in which the central axis of the connection water passage is extended may be parallel to the second virtual line in which the central axis of the inlet of the raw material supply unit is extended.
또한, 상기 제 1 가상선과 상기 제 2 가상선은 상기 제 1 실리콘 용융부 내에서 최대로 이격될 수 있다.In addition, the first virtual line and the second virtual line may be spaced apart maximum in the first silicon melted portion.
또한, 상기 실리콘 용융부는 직육면체 형상을 갖고, 상기 연결탕로부의 중심축이 연장된 제 1 가상선은 상기 원료공급부의 중심축이 연장된 제 2 가상선과 수직할 수 있다. The silicon melting portion may have a rectangular parallelepiped shape, and the first virtual line in which the central axis of the connection water flow passage extends may be perpendicular to the second virtual line in which the central axis of the raw material supply portion extends.
또한, 상기 제 1 가상선과 상기 제 2 가상선의 수직점이 상기 실리콘 용융부의 모서리부에 최대로 인접될 수 있다.In addition, a vertical point of the first virtual line and the second virtual line may be adjacent to a corner portion of the silicon melt portion to the maximum.
또한, 상기 연결탕로부는 하면부와 상기 하면부의 양 끝단에서 실질적으로 수직방향으로 연장된 한쌍의 측면부를 포함하고, 상기 실리콘 용탕이 이송되는 방향에 따라 상기 하면부의 단면적이 작아질 수 있다.In addition, the connection flow passage portion includes a lower surface portion and a pair of side portions extending substantially in the vertical direction at both ends of the lower surface portion, the cross-sectional area of the lower surface portion may be reduced according to the direction in which the molten silicon is transferred.
본 발명의 다른 측면에 따르면, 일단에 제 1 채널부를 갖는 실리콘 용융부, 상기 제 1 채널부와 접하여 연결탕로부를 형성하는 제 2 채널부를 갖는 일방향 응고부 및 상기 실리콘 용융부에 실리콘 원료물질을 공급하는 원료 공급부를 포함하고, 상기 원료 공급부의 투입구는 상기 실리콘 용융부에 실리콘 원료물질이 공급되는 위치에서 용융되어 상기 연결탕로부로 이동하는 경로가 가장 최대가 되도록 상기 실리콘 용융부 상부에 배치될 수 있다.According to another aspect of the invention, the silicon raw material having a first channel portion at one end, the one-way solidification portion having a second channel portion in contact with the first channel portion to form a connection flow path portion and the silicon raw material in the silicon melt portion And a raw material supply unit for supplying, and the inlet of the raw material supply unit may be disposed above the silicon melting unit such that the path of melting the silicon raw material to the silicon melting unit is supplied to the connection path to the connection channel. Can be.
또한, 상기 실리콘 용융부는 직육면체 형상을 갖고, 상기 제 1 채널부는 상기 실리콘 용융부의 모서리부에 위치할 수 있다. The silicon melt portion may have a rectangular parallelepiped shape, and the first channel portion may be positioned at an edge portion of the silicon melt portion.
또한, 상기 원료 공급부의 투입구는 상기 제 1 채널부와 상기 원료 공급부의 투입구를 연결하는 직선이 가장 최대가 되도록 상기 실리콘 용융부 상부에 배치될 수 있다. In addition, the inlet of the raw material supply unit may be disposed above the silicon melter such that the straight line connecting the first channel unit and the inlet of the raw material supply unit is the maximum.
또한, 상기 연결탕로부는 상기 제 1 채널부와 상기 제 2 채널부로 이루어진 채널의 폭이 상기 실리콘 용탕이 이송되는 방향에 따라 좁아질 수 있다. In addition, the width of the channel consisting of the first channel portion and the second channel portion may be narrowed in accordance with the direction in which the molten silicon is transferred.
또한, 상기 실리콘 용융부 또는 상기 일방향 응고부는 구리 재질을 가질 수 있다. In addition, the silicon melting portion or the one-way solidification portion may have a copper material.
또한, 상기 실리콘 용융부는 외측에 배치되며, 유체가 흐르는 유로부를 포함하고, 상기 유로부는 복수 개의 슬릿에 의해 형성된 복수의 유로를 포함하는 제 1 유로부와 상기 제 1 유로부에 연장되고, 상기 복수의 유로가 서로 연결되어 하나의 유로를 형성하는 제 2 유로부를 포함할 수 있다.In addition, the silicon melt portion is disposed on the outside, and includes a flow path flows through the fluid, the flow path portion is extended to the first flow path portion and the first flow path portion including a plurality of flow paths formed by a plurality of slits, The flow paths may include a second flow path part connected to each other to form one flow path.
또한, 상기 일방향 응고부는 외측에 설치된 유체가 흐르는 제 1 냉각유로부와 제 2 냉각유로부를 포함하고, 상기 제 1 냉각유로부에 흐르는 유체의 유량은 상기 제 2 냉각유로부에 흐르는 유체의 유량보다 많을 수 있다.The one-way solidification part may include a first cooling channel part and a second cooling channel part through which a fluid provided at an outside flows, and the flow rate of the fluid flowing in the first cooling channel part is greater than the flow rate of the fluid flowing in the second cooling channel part. There can be many.
본 발명의 다른 측면에 따르면, 실리콘 용탕이 저장되는 제 1 실리콘 용융부, 상기 제 1 실리콘 용융부는 제 1 채널부를 갖고, 상기 제 1 채널부와 접하여 제 1 연결탕로부를 형성하는 제 2 채널부를 갖는 제 2 실리콘 용융부 및 상기 제 2 실리콘 용융부는 제 3 채널부를 갖고, 상기 제 3 채널부와 접하여 제 2 연결탕로부를 형성하는 제 4 채널부를 갖는 일방향 응고부를 포함하고, 상기 제 1 연결탕로부는 상기 실리콘용탕이 상기 제 2 연결탕로부로 이동하는 경로가 가장 최대가 되도록 배치되는 실리콘의 정련 장치가 제공될 수 있다.According to another aspect of the present invention, a first silicon melted portion in which silicon melt is stored, the first silicon melted portion has a first channel portion, and a second channel portion in contact with the first channel portion to form a first connection flow passage portion. The second silicon melted portion and the second silicon melted portion has a third channel portion, and includes a one-way solidification portion having a fourth channel portion in contact with the third channel portion to form a second connection hot water passage, The furnace unit may be provided with a silicon refining apparatus disposed so that the path of the silicon molten metal to the second connection molten metal is the maximum.
또한, 상기 제 2 실리콘 용융부는 직육면체 형상을 갖고, 상기 제 3 채널부는 상기 제 2 실리콘 용융부의 모서리부에 위치할 수 있다.The second silicon melt portion may have a rectangular parallelepiped shape, and the third channel portion may be positioned at an edge portion of the second silicon melt portion.
또한, 상기 제 2 채널부는 상기 제 2 채널부와 상기 제 3 채널부를 연결하는 직선이 가장 최대가 되도록 상기 제 2 실리콘 용융부 상부에 배치될 수 있다.In addition, the second channel portion may be disposed above the second silicon melted portion such that a straight line connecting the second channel portion and the third channel portion is the maximum.
또한, 상기 원료 공급부의 투입구는 상기 제 1 실리콘 용융부에 실리콘 원료물질이 공급되는 위치에서 용융되어 상기 제 1 연결탕로부로 이동하는 경로가 최대로 되도록 배치될 수 있다. In addition, the inlet of the raw material supply unit may be disposed so as to maximize the path that is melted at the position where the silicon raw material is supplied to the first silicon melting unit to move to the first connection water heater.
또한, 상기 제 1 실리콘 용융부는 직육면체 형상을 갖고, 상기 제 1 채널부는 상기 제 1 실리콘 용융부의 모서리부에 위치할 수 있다.The first silicon melt portion may have a rectangular parallelepiped shape, and the first channel portion may be positioned at an edge portion of the first silicon melt portion.
또한, 상기 원료 공급부의 투입구는 상기 제 1 채널부와 상기 원료 공급부의 투입구를 연결하는 직선이 가장 최대가 되도록 상기 실리콘 용융부 상부에 배치될 수 있다. In addition, the inlet of the raw material supply unit may be disposed above the silicon melter such that the straight line connecting the first channel unit and the inlet of the raw material supply unit is the maximum.
또한, 상기 제 1 연결탕로부는 상기 제 1 채널부와 상기 제 2 채널부로 이루어진 채널 또는 상기 제 2 연결탕로부는 상기 제 3 채널부와 상기 일방향 응고부의 제 4채널부로 이루어진 채널의 폭이 상기 실리콘 용탕이 이송되는 방향에 따라 좁아질 수 있다.The first connection channel may include a channel consisting of the first channel part and the second channel part, or the second connection channel part may include a width of a channel including the third channel part and the fourth channel part of the one-way solidification part. It can be narrowed down according to the direction in which the molten silicon is transferred.
또한, 상기 실리콘 용융부는 각 외측에 배치된 각각의 유로부를 포함하고, 상기 인접한 외측에 배치된 유로부들은 상기 실리콘 용융부의 내부를 관통하여 서로 공간적으로 연결될 수 있다. In addition, the silicon melt part may include respective flow path parts disposed at each outer side, and the flow path parts disposed at the adjacent outer sides may be spatially connected to each other through the inside of the silicon melt part.
또한, 상기 실리콘 용융부는 외측에 배치된 복수의 유로부를 갖고, 상기 복수의 유로부 중 적어도 어느 하나의 유로부의 유로 폭은 나머지 유로부의 유로 폭보다 클 수 있다. The silicon melting part may have a plurality of flow path parts disposed outside, and a flow path width of at least one flow path part of the plurality of flow path parts may be greater than a flow path width of the remaining flow path parts.
또한, 상기 일방향 응고부는 외측에 배치된 복수의 냉각유로부를 갖고, 상기 복수의 냉각유로부 중 적어도 어느 하나의 냉각유로부의 유로 폭은 나머지 유로 폭보다 클 수 있다.The one-way solidification part may have a plurality of cooling flow path parts disposed outside, and a flow path width of at least one cooling flow path part of the plurality of cooling flow path parts may be larger than the remaining flow path width.
상기 문제점을 해결하기 위해 본 발명에 따르면 다음과 같은 효과가 있다.According to the present invention to solve the above problems has the following effects.
첫째, 실리콘 원료물질을 실리콘 용융부에 공급하고 전자빔을 조사하여 먼저 실리콘을 용융시키고 용융된 실리콘이 일방향 응고부로 공급하기 전에 용융된 실리콘의 이동경로를 길게 함으로써, 용융된 실리콘 내에 휘발성 불순물이 제거될 수 있는 시간과 공간이 증가하게 되어 진공 정련 효과를 향상시킬 수 있다.First, volatile impurities in the molten silicon can be removed by supplying the silicon raw material to the silicon melt and irradiating an electron beam to melt the silicon first and lengthen the moving path of the molten silicon before the molten silicon is supplied to the one-way solidification part. This can increase the time and space available to improve the vacuum refining effect.
둘째, 용융된 실리콘이 실리콘 용융부 내에서 실리콘 정련 효과가 증가됨으로써, 별도의 장치 또는 화학적인 방법을 통하여 실리콘 내에 휘발성 불순물을 제거할 필요가 없어 폴리실리콘 잉곳을 연속적으로 대량으로 제조할 수 있고, 제조 비용을 줄일 수 있다.Second, since the silicon refining effect of the molten silicon is increased in the silicon melt, it is not necessary to remove volatile impurities in the silicon through a separate device or a chemical method, and thus polysilicon ingots can be continuously produced in large quantities. The manufacturing cost can be reduced.
셋째, 실리콘 용융부가 복수 개이고 용융된 실리콘이 복수 개의 실리콘 용융부를 이동하는 경로를 길게 함으로써, 실리콘 용탕에서 휘발성 불순물이 제거될 수 있는 시간과 공간이 증가하게 되어 정련 효과를 더욱 향상시킬 수 있다.Third, by lengthening the path for plural silicon melt parts and the molten silicon to move the plurality of silicon melt parts, time and space for removing volatile impurities from the silicon melt are increased, thereby further improving the refining effect.
도 1은 본 발명의 일 실시예에 따른 실리콘의 정련 장치를 개략적으로 나타내는 도면이다.1 is a view schematically showing a refining apparatus of silicon according to an embodiment of the present invention.
도 2는 본 발명의 다른 실시예에 따른 실리콘의 정련 장치를 개략적으로 나타내는 도면이다.2 is a view schematically showing a refining apparatus of silicon according to another embodiment of the present invention.
도 3은 본 발명의 일 실시예에 따른 실리콘 용융부를 개략적으로 나타내는 사시도이다.Figure 3 is a perspective view schematically showing a silicon melt in accordance with an embodiment of the present invention.
도 4는 도 3의 외측을 나타내는 도면이다.4 is a view illustrating the outside of FIG. 3.
도 5은 본 발명의 일 실시예에 따른 실리콘 용융부에 유체공급부가 배치된 모습을 나타내는 사시도이다.5 is a perspective view illustrating a state in which a fluid supply unit is disposed in a silicon melting unit according to an exemplary embodiment of the present invention.
도 6은 도 5를 위에서 본 모습과 일측에서 본 모습을 나타내는 도면이다.FIG. 6 is a view illustrating a state seen from above and one side of FIG. 5.
도 7은 본 발명의 다른 실시예에 따른 제 2 실리콘 용융부를 개략적으로 나타내는 사시도이다.7 is a perspective view schematically showing a second silicon melt according to another embodiment of the present invention.
도 8은 도 7의 외측을 나타내는 도면이다.FIG. 8 is a view illustrating the outside of FIG. 7.
도 9는 도 7의 A-A선을 따라 절취한 절단면을 나타내는 도면이다.FIG. 9 is a diagram illustrating a cut plane taken along a line A-A of FIG. 7.
도 10는 본 발명의 다른 실시예에 따른 실리콘 용융부에 유체공급부가 배치된 모습을 나타내는 사시도이다.10 is a perspective view illustrating a state in which a fluid supply unit is disposed in a silicon melting unit according to another exemplary embodiment of the present invention.
도 11은 도 9를 위에서 본 모습과 외측에서 본 모습을 나타내는 도면이다.FIG. 11 is a view showing a view of FIG. 9 and a view from the outside.
도 12은 본 발명의 일 실시예에 따른 일방향 응고부의 외측을 개략적으로 나타내는 사시도이다.12 is a perspective view schematically showing the outer side of the one-side solidification unit according to an embodiment of the present invention.
도 13는 도 12의 단면도이다.FIG. 13 is a cross-sectional view of FIG. 12.
도 14은 본 발명의 일 실시예에 따른 일방향 응고부를 개략적으로 나타내는 단면도이다.14 is a cross-sectional view schematically showing a one-way solidification unit according to an embodiment of the present invention.
도 15는 일방향 응고부에 유체 공급부가 배치된 모습을 나타내는 도면이다.FIG. 15 is a view illustrating a state in which a fluid supply unit is disposed in a one-way solidification unit. FIG.
도 16는 각각 다른 형상을 가지는 2종류의 연결탕로부를 나타내는 도면이다.FIG. 16 is a view showing two types of connection baths each having a different shape.
도 17은 도 16에서 나타나는 2종류의 연결탕로부에 유지되는 실리콘 용탕의 두께를 측면에서 본 단면도이다.FIG. 17 is a sectional view of the silicon molten metal held in the two kinds of connection furnaces shown in FIG.
도 18은 도 16에서 나타나는 2종류의 연결탕로부에 유지되는 실리콘 용탕의 두께를 정성적으로 나타내는 실험결과표이다.FIG. 18 is a table showing experimental results qualitatively showing the thicknesses of the molten silicon held in the two kinds of connection furnaces shown in FIG. 16.
도 19는 본 발명의 다른 실시예에 따른 연결탕로부를 나타내는 도면이다.19 is a view showing a connection hot water unit according to another embodiment of the present invention.
도 20은 본 발명의 또 다른 실시예에 따른 연결탕로부를 나타내는 단면도이다.20 is a cross-sectional view showing a connection hot water unit according to another embodiment of the present invention.
도 21은 도 1의 원료 공급부 및 연결탕로부의 배치를 나타내는 도면이다. FIG. 21 is a diagram illustrating an arrangement of a raw material supply part and a connection hot water supply part of FIG. 1.
도 22은 본 발명의 다른 측면에 따른 실리콘의 정련 장치에 적용되는 원료 공급부 및 연결탕로부의 배치를 나타내는 도면이다.Fig. 22 is a view showing the arrangement of a raw material supply part and a connection hot water supply part applied to a refining apparatus of silicon according to another aspect of the present invention.
도 23은 본 발명의 또 다른 측면에 따른 실리콘의 정련 장치에 적용되는 원료 공급부 및 연결탕로부의 배치를 나타내는 도면이다.FIG. 23 is a view showing the arrangement of a raw material supply part and a connection hot water supply part applied to a refining apparatus of silicon according to another aspect of the present invention. FIG.
도 24는 본 발명의 다른 실시예에 따른 실리콘의 정련 장치에 적용되는 원료 공급부, 제 1 연결탕로부 및 제 2 연결탕로부의 배치와 실리콘 용탕의 이동경로를 개략적으로 나타내는 도면이다.FIG. 24 is a view schematically illustrating a disposition of a raw material supply unit, a first connection furnace and a second connection furnace, and a movement path of the silicon molten metal applied to a refining apparatus of silicon according to another embodiment of the present invention.
이하 본 발명의 실시예에 대하여 첨부한 도면을 참조하여 상세하게 설명하기로 한다. 다만, 첨부된 도면은 본 발명의 내용을 보다 쉽게 개시하기 위하여 설명되는 것일 뿐, 본 발명의 범위가 첨부된 도면의 범위로 한정되는 것이 아님은 이 기술분야의 통상의 지식을 가진 자라면 용이하게 알 수 있을 것이다. Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, the accompanying drawings are only described in order to more easily disclose the contents of the present invention, but the scope of the present invention is not limited to the scope of the accompanying drawings that will be readily available to those of ordinary skill in the art. You will know.
또한, 본 발명의 실시예를 설명함에 있어서, 동일 기능을 갖는 구성요소에 대해서는 동일 명칭 및 동일부호를 사용할 뿐 실질적으론 종래 폴리실리콘 제조장치와 완전히 동일하지 않음을 미리 밝힌다.In addition, in describing the embodiments of the present invention, the same name and the same reference numerals are used for components having the same function, and it is revealed that they are not substantially the same as the conventional polysilicon manufacturing apparatus.
또한, 본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.Also, the terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. Singular expressions include plural expressions unless the context clearly indicates otherwise. In this application, the terms "comprise" or "have" are intended to indicate that there is a feature, number, step, operation, component, part, or combination thereof described in the specification, and one or more other features. It is to be understood that the present invention does not exclude the possibility of the presence or the addition of numbers, steps, operations, components, components, or a combination thereof.
도 1은 본 발명의 일 실시예에 따른 실리콘의 정련 장치를 개략적으로 나타내는 도면이다.1 is a view schematically showing a refining apparatus of silicon according to an embodiment of the present invention.
도 1을 참조하면, 실리콘의 정련 장치는 진공챔버(100), 전자총(200), 실리콘 용융부(300) 및 일방향 응고부(400)를 포함한다.Referring to FIG. 1, the silicon refining apparatus includes a vacuum chamber 100, an electron gun 200, a silicon melting part 300, and a one-way solidification part 400.
진공챔버(100)는 후술할 실리콘 용탕 내에 불순물이 증발될 수 있도록 내부에 진공 분위기를 유지한다. 상기 진공챔버(100) 내부의 압력은 대략 10-5 torr 일 수 있다.The vacuum chamber 100 maintains a vacuum atmosphere therein to allow impurities to evaporate in the molten silicon, which will be described later. The pressure inside the vacuum chamber 100 may be approximately 10-5 torr.
상기 진공챔버(100)의 상단에는 입자 형태의 실리콘 원료물질이 공급될 수 있는 원료투입부(120)가 설치된다.On the upper end of the vacuum chamber 100, a raw material input part 120 through which a silicon raw material in the form of particles may be supplied is installed.
상기 원료투입부(120) 내부는 후술할 전자빔에 의한 열에 의해 파손되는 것을 방지하기 위하여 냉각수로가 설치될 수 있다.The inside of the raw material input part 120 may be provided with a cooling water passage to prevent damage by heat by the electron beam to be described later.
또한, 상기 원료투입부(120)는 원료 공급라인(122)과 원료 공급부의 투입구(124)를 포함할 수 있고, 상기 원료 공급부의 투입구(124)는 후술할 실리콘용융부(300)에 실리콘 원료물질이 공급되는 위치와 각도를 조절할 수 있다.In addition, the raw material input unit 120 may include a raw material supply line 122 and the raw material supply unit inlet 124, the raw material supply unit inlet 124 is a silicon raw material in the silicon melting unit 300 to be described later The position and angle at which the material is supplied can be adjusted.
전자총(Electron-gun)(200)은 상기 진공챔버(100) 내에 설치되며, 복수 개일 수 있다.Electron-gun 200 is installed in the vacuum chamber 100, it may be a plurality.
본 실시예에 따른 상기 전자총(200)은 제 1 전자총(210) 및 제 2 전자총(220)을 포함한다.The electron gun 200 according to the present embodiment includes a first electron gun 210 and a second electron gun 220.
상기 제 1 전자총(210)은 전자빔이 상기 진공챔버(100) 내부로 조사되도록 상기 진공챔버(100)의 상단에 설치된다.The first electron gun 210 is installed on the upper end of the vacuum chamber 100 so that the electron beam is irradiated into the vacuum chamber 100.
실리콘 용융부(300)는 상기 제 1전자총(210)에 의한 전자빔이 조사되는 영역에 배치된다. 상기 실리콘 용융부(300)에서는 상기 원료투입부(120)로부터 입자 형태의 실리콘원료가 장입되고, 장입된 상기 실리콘 원료물질은 상기 제 1전자총(210)에 의하여 가속, 집적된 전자빔에 의해 용융되어 실리콘 용탕(P2)로 형성된다.The silicon melter 300 is disposed in a region where the electron beam is irradiated by the first electron gun 210. In the silicon melting part 300, the silicon raw material in the form of particles is charged from the raw material input part 120, and the loaded silicon raw material is melted by the electron beam accelerated and integrated by the first electron gun 210. It is formed of the molten silicon (P2).
한편, 상기 제 1 전자총(210)은 30~35 kWh/cm2의 출력 에너지를 갖도록 제 1 전자빔을 가속 및 집적할 수 있다.Meanwhile, the first electron gun 210 may accelerate and integrate the first electron beam to have an output energy of 30 to 35 kWh / cm 2.
다만, 이에 한정되지 않고, 상기 제 1 전자총(210)는 전자빔에 의해 상기 실리콘 용탕이 외부로 튀는 등 상기 실리콘 용탕의 거동이 불안정해지는 점을 방지하기 위한 출력 에너지를 가질 수 있다.However, the present invention is not limited thereto, and the first electron gun 210 may have an output energy for preventing the silicon melt from being unstable, such as the silicon melt splashing to the outside by an electron beam.
또한, 상기 실리콘 용융부(300)는 상기 실리콘 용융부 자체 재질에 의하여 발생할 수 있는 불순물의 유입을 차단하기 위하여 구리 재질을 가지는 것이 바람직하다. 또한, 구리 재질을 가지는 실리콘용융부(300)는 전자빔에 의하여 파손되는 것을 방지하기 위하여 냉각 효율을 용이하게 제어할 수 있는 유로부를 포함할 수 있다. 상기 유로부를 포함하는 상기 실리콘 용융부에 대한 자세한 설명은 후술하기로 한다.In addition, the silicon melter 300 preferably has a copper material in order to block inflow of impurities that may occur due to the material of the silicon melter itself. In addition, the silicon melt part 300 having a copper material may include a flow path part which can easily control the cooling efficiency in order to prevent damage by the electron beam. A detailed description of the silicon melt part including the flow path part will be described later.
일방향 응고부(400)는 상기 제 2전자총(220)에 의한 제 2전자빔이 조사되는 영역에 배치되며, 상기 실리콘 용융부(300)와 인접하게 된다.The one-way coagulation part 400 is disposed in an area where the second electron beam is irradiated by the second electron gun 220, and is adjacent to the silicon melting part 300.
또한, 상기 일방향 응고부(400)는 실리콘 용융부(300)와 마찬가지로 구리 재질을 가질 수 있다. In addition, the one-way solidification unit 400 may have a copper material similarly to the silicon melting part 300.
상기 일방향 응고부(400)는 상기 실리콘 용탕(P2)을 연속적으로 주조함과 동시에 금속 불순물의 편석을 유도하여 실리콘 정련 및 고순도 폴리실리콘 생산 효율을 향상시킬 수 있다.The one-way solidification unit 400 may continuously cast the molten silicon P2 and at the same time induce segregation of metal impurities to improve silicon refining and high-purity polysilicon production efficiency.
한편, 상기 제 2 전자총(220)은 8~14 kWh/cm2의 출력 에너지를 갖도록 제 2 전자빔을 가속 및 집적할 수 있다.The second electron gun 220 may accelerate and integrate the second electron beam to have an output energy of 8 to 14 kWh / cm 2.
다만, 이에 한정되지 않고, 상기 제 2 전자총(210)는 상기 제 2 전자빔에 용융 상태를 유지하고 전자빔에 의해 상기 실리콘 용탕이 외부로 튀는 등 상기 실리콘 용탕의 거동이 불안정해지는 점을 방지하기 위한 출력 에너지를 가질 수 있다.However, the present invention is not limited thereto, and the second electron gun 210 maintains a molten state in the second electron beam and prevents the silicon melt from being unstable, such as splashing out of the silicon melt by an electron beam. Can have energy.
연결탕로부(500)는 상기 실리콘 용융부(300)의 제 1 채널부(301)과 상기 일방향 응고부(400)의 제 2 채널부(401)가 서로 접하여 이루어질 수 있고, 상기 연결탕로부(500)는 상기 실리콘 용탕이 상기 실리콘 용융부(300)에서 상기 일방향 응고부(400)로 공급될 수 있는 채널을 제공한다.The connection bath 500 may be formed by contacting the first channel part 301 of the silicon melting part 300 and the second channel part 401 of the one-way solidification part 400 to each other. The unit 500 provides a channel through which the molten silicon may be supplied from the silicon melter 300 to the one-way solidifier 400.
상기 연결탕로부(500)는 하면부(501)와 상기 하면부(501)의 양 끝단에서 실질적으로 수직방향으로 연장된 한쌍의 측면부(502)를 포함한다.The connection flow passage part 500 includes a lower surface portion 501 and a pair of side portions 502 extending in a substantially vertical direction at both ends of the lower surface portion 501.
이에 따라, 상기 원료 공급부(122)를 통하여 실리콘 원료물질이 공급되는 량만큼 상기 실리콘 용융부(300)에 저장된 실리콘 용탕이 상기 연결탕로부(500)를 통하여 상기 일방향 응고부(400)로 공급될 수 있다.Accordingly, the silicon molten metal stored in the silicon melting part 300 is supplied to the one-way solidification part 400 through the connection hot water supply part 500 as much as the silicon raw material is supplied through the raw material supply part 122. Can be.
또한, 상기 연결탕로부(500)는 상기 하면부(501)에서부터 상부 방향으로 각각 마주보는 상기 측면부(502)의 거리가 넓어질 수 있다. 이에 따라, 상기 연결탕로부(500)을 따라 흐르는 실리콘 용탕에 전자빔이 조사될 수 있어 실리콘 정련 효과를 향상시키고, 상기 연결탕로부(500)의 주변 부분에 전자빔이 조사되는 영역이 줄어들게 되어 상기 연결탕로부(500)의 내구성이 향상될 수 있다.In addition, the distance of the side surface portion 502 facing each other in the upper direction from the lower surface portion 501, the connection hot water passage 500 may be widened. Accordingly, the electron beam may be irradiated onto the molten silicon flowing along the connection bath 500, thereby improving the silicon refining effect and reducing the area where the electron beam is irradiated to the peripheral portion of the connection bath 500. Durability of the connection passage 500 may be improved.
상기 연결탕로부(500)에 대한 자세한 설명은 이후 도면을 참조하여 후술하기로 한다.A detailed description of the connection water heater 500 will be described later with reference to the accompanying drawings.
도 2는 본 발명의 다른 실시예에 따른 실리콘의 정련 장치를 개략적으로 나타내는 도면이다.2 is a view schematically showing a refining apparatus of silicon according to another embodiment of the present invention.
도시된 바와 같이, 본 발명의 또 다른 실시예에 따른 실리콘의 정련 장치는 이미 설명한 본 발명의 일 실시예와 유사함으로, 이에 따른 동일한 기능을 갖는 구성에 대한 설명은 생략하기로 한다.As shown, since the refining apparatus of silicon according to another embodiment of the present invention is similar to the embodiment of the present invention described above, a description of the configuration having the same function according to it will be omitted.
본 발명의 일 실시예와 달리, 실리콘 용융부는 제 1 실리콘 용융부(310) 및 제 2 실리콘 용융부(320)를 포함한다.Unlike the exemplary embodiment of the present invention, the silicon melt part includes a first silicon melt part 310 and a second silicon melt part 320.
제 1 실리콘 용융부(310)는 상기 전자빔이 조사되는 영역 내에 배치되며, 상기 실리콘 원료물질이 장입되어 상기 전자빔에 의해 상기 실리콘 원료물질이 용융되어 실리콘 용탕이 형성된다.The first silicon melter 310 is disposed in a region where the electron beam is irradiated, and the silicon raw material is charged to melt the silicon raw material by the electron beam to form a silicon melt.
또한, 상기 제 1 실리콘 용융부(310)는 제 1 채널부(311)를 갖고, 직육면체 형상을 갖는다.In addition, the first silicon melt part 310 has a first channel part 311 and has a rectangular parallelepiped shape.
제 2 실리콘 용융부(320)는 상기 제 1 채널부(311)와 접하는 제 2 채널부(321)를 갖고, 직육면체 형상을 갖는다.The second silicon melter 320 has a second channel portion 321 in contact with the first channel portion 311, and has a rectangular parallelepiped shape.
제 1 연결탕로부(510)는 상기 제 1 채널부(311)와 상기 제 2 채널부(321)가 접하여 형성되며, 실리콘 용탕이 상기 제 1 실리콘 용융부(310)에서 상기 제 2 실리콘 용융부(320)로 이동할 수 있는 통로를 제공한다.The first connection channel part 510 is formed by contacting the first channel part 311 and the second channel part 321, and the molten silicon is melted by the first silicon melt part 310 in the second silicon melt part 310. It provides a passageway to the portion 320.
일방향 응고부(400)는 상기 제 2 실리콘 용융부(320)로부터 공급되는 실리콘 용탕이 응고될 수 있고, 폴리실리콘 잉곳이 형성되는 공간을 제공한다.The one-way solidification unit 400 may solidify the silicon melt supplied from the second silicon melter 320 and provide a space in which the polysilicon ingot is formed.
또한, 상기 제 2 실리콘 용융부(320)는 제 3 채널부(322)를 갖고, 상기 일방향 응고부(400)는 제 4 채널부(402)를 갖는다.In addition, the second silicon melter 320 has a third channel portion 322, and the one-way solidification portion 400 has a fourth channel portion 402.
제 2 연결탕로부(520)는 상기 제 3 채널부(322)와 상기 제 4 채널부(402)가 서로 접하여 이루어지며, 실리콘 용탕이 상기 제 2 실리콘 용융부(320)에서 상기 일방향 응고부(400)로 이동할 수 있는 통로를 제공한다.The second connection furnace 520 is formed by the third channel portion 322 and the fourth channel portion 402 contact with each other, the silicon melt is the one-way solidification portion in the second silicon melt portion 320 Provide a passageway to 400.
도 3은 본 발명의 일 실시예에 따른 실리콘 용융부를 개략적으로 나타내는 사시도이고, 도 4는 도 3의 외측을 나타내는 도면이다.FIG. 3 is a perspective view schematically illustrating a silicon melt part according to an embodiment of the present invention, and FIG. 4 is a view illustrating the outside of FIG. 3.
도 3 및 도 4를 참조하여 본 발명의 일 실시예 따른 실리콘의 정련 장치에 적용되는 실리콘 용융부를 설명하기로 한다.3 and 4, a silicon melter applied to a refining apparatus of silicon according to an embodiment of the present invention will be described.
실리콘 용융부(300)는 상기 실리콘 용융부(300)의 외측에 배치되며, 유체가 흐르는 유로부(340)를 포함한다.The silicon melt part 300 is disposed outside the silicon melt part 300 and includes a flow path part 340 through which a fluid flows.
상기 유로부(340)는 제 1 유로부(341)와 제 2 유로부(342)를 포함한다.The flow path part 340 includes a first flow path part 341 and a second flow path part 342.
상기 제 1 유로부(341)는 복수 개의 슬릿에 의해 형성된 복수의 유로를 가질 수 있다.The first flow path part 341 may have a plurality of flow paths formed by a plurality of slits.
즉, 복수 개의 슬릿이 형성된 제 1 유로부(341)는 상기 실리콘 용융부(300) 외측의 표면적을 증가시키는 역할을 수행한다.That is, the first flow path part 341 having the plurality of slits serves to increase the surface area of the outside of the silicon melt part 300.
따라서, 상기 제 1 유로부(341)에 냉각 유체를 흐르게 할 경우 상기 냉각 유체는 상기 실리콘 용융부(300) 외측과 접촉할 수 있는 면적이 증가하게 되어 냉각 효율을 향상시킬 수 있다. Accordingly, when the cooling fluid flows through the first flow path part 341, the area in contact with the outside of the silicon melting part 300 increases in the cooling fluid, thereby improving cooling efficiency.
또한, 상기 실리콘 용융부(300)가 장시간 동안 전자빔에 의해 노출된 경우 열에 의한 파손을 방지할 수 있다.In addition, when the silicon melt part 300 is exposed by an electron beam for a long time, it may prevent breakage due to heat.
상기 제 2 유로부(342)는 상기 제 1 유로부(341)에 연장되고, 상기 복수의 유로가 서로 연결되어 하나의 유로를 형성한다.The second flow path part 342 extends to the first flow path part 341, and the plurality of flow paths are connected to each other to form one flow path.
상기 실리콘 용융부(300) 외측에 상기 제 1 유로부(341)와 상기 제 2 유로부(342)를 가지도록 하기 위하여 절삭 가공 등을 할 수 있다.Cutting may be performed to have the first flow path part 341 and the second flow path part 342 outside the silicon melt part 300.
상기 제 2 유로부(342)는 상기 제 1 유로부(341)에 연장되어 서로 연결되는 구조를 가짐으로써, 상기 실리콘 용융부(300)의 외측을 상기 제 1 유로부(341)만으로 연장되도록 슬릿을 형성할 필요가 없어 상기 절삭 가공이 손쉬울 수 있다.The second flow path part 342 has a structure extending from the first flow path part 341 and connected to each other, so that the outside of the silicon melt part 300 extends only to the first flow path part 341. There is no need to form the cutting process can be easy.
한편, 상기 실리콘 용융부(300)는 상기 실리콘 용탕이 이동할 수 있는 채널을 제공하는 채널부(360)를 가진다.Meanwhile, the silicon melt part 300 has a channel part 360 that provides a channel through which the silicon melt can move.
상기 제 2 유로부(342)는 상기 제 1 유로부(341)보다 상기 채널부(360)에 가까이 배치될 수 있다.The second flow path part 342 may be disposed closer to the channel part 360 than the first flow path part 341.
또한, 상기 제 2 유로부(342)는 상기 제 1 유로부(341)가 연결되어 하나의 유로를 형성함으로써, 상기 제 2 유로부(342)는 유로의 폭이 커지게 된다.In addition, the second flow path part 342 is connected to the first flow path part 341 to form one flow path, so that the width of the flow path of the second flow path part 342 is increased.
또한, 본 발명의 다른 측면에 따른 실리콘 용융부는 제 1 유로부(341)와 제 2 유로부(342)를 포함하고, 상기 제 2 유로부(342)에 흐르는 유량은 상기 제 1 유로부(341)에 흐르는 유량보다 많을 수 있다.In addition, the silicon melting part according to another aspect of the present invention includes a first flow path portion 341 and the second flow path portion 342, the flow rate flowing through the second flow path portion 342 is the first flow path portion 341 May be greater than the flow rate.
이에 따라, 제 2 유로부(342)는 냉각 유체의 냉각 속도를 빠르게 하여 상기 채널부(360) 주변의 열을 효과적으로 제거할 수 있다.Accordingly, the second flow path part 342 may effectively remove heat around the channel part 360 by increasing the cooling rate of the cooling fluid.
한편, 본 발명의 또 다른 측면에 따른 실리콘의 정련 장치에 적용되는 실리콘 용융부(300)는 외측에 배치된 복수의 유로부(340)를 가질 수 있다.Meanwhile, the silicon melt part 300 applied to the silicon refining apparatus according to another aspect of the present invention may have a plurality of flow path parts 340 disposed outside.
상기 복수의 유로부(340) 중 적어도 어느 하나의 유로부(342)의 유로 폭은 나머지 유로부(341)의 유로 폭보다 클 수 있다.The flow path width of at least one flow path part 342 of the plurality of flow path parts 340 may be larger than the flow path width of the remaining flow path parts 341.
또한, 상기 적어도 어느 하나의 유로부(343)는 상기 실리콘 용융부(300)의 채널부(360)의 주변에 배치될 수 있다. 따라서, 상기 적어도 어느 하나의 유로부(343)의 유로 폭이 큰 구조를 가짐으로써, 냉각 유체의 냉각 속도를 빠르게 하여 상기 채널부(360) 주변의 열을 효과적으로 제거할 수 있다.In addition, the at least one flow path part 343 may be disposed around the channel part 360 of the silicon melt part 300. Therefore, by having a structure in which the flow path width of the at least one flow path portion 343 is large, the cooling speed of the cooling fluid may be increased to effectively remove heat around the channel portion 360.
이에 따라, 상기 적어도 어느 하나의 유로부(343)의 유로 폭이 상기 채널부(360) 주변에 배치됨으로써, 전자빔이 직접 조사될 수 있는 상기 실리콘 용융부(300)의 채널부(360)가 열의 의해 파손되는 것을 방지할 수 있다.Accordingly, the channel width of the at least one flow path portion 343 is disposed around the channel portion 360, so that the channel portion 360 of the silicon melt portion 300, to which the electron beam can be directly irradiated, is heated. Can be prevented from being damaged.
도 5은 본 발명의 일 실시예에 따른 실리콘 용융부에 유체공급부가 배치된 모습을 나타내는 사시도이고, 도 6은 도 5를 위에서 본 모습과 일측에서 본 모습을 나타내는 도면이다.FIG. 5 is a perspective view illustrating a state in which a fluid supply unit is disposed in a silicon melting unit according to an embodiment of the present invention, and FIG. 6 is a view illustrating a state seen from above and one side of FIG.
도 5 및 도 6을 참조하여 유로부에 유체가 공급되는 위치를 설명하기로 한다.5 and 6 will be described where the fluid is supplied to the flow path unit.
상기 유로부에 유체를 공급하는 유체 공급부(370)를 더 포함할 수 있다.The apparatus may further include a fluid supply part 370 supplying a fluid to the flow path part.
상기 유체 공급부(370)는 상기 실리콘 용융부(300)의 외측 에 설치되며, 상기 제 2 유로부(342)에 유체를 공급할 수 있다.The fluid supply part 370 may be installed outside the silicon melt part 300 and supply fluid to the second flow path part 342.
본 발명의 또 다른 측면에 따른 실리콘의 정련 장치에 적용되는 실리콘 용융부(300)는 각 외측에 배치된 각각의 유로부(340)를 포함하고, 상기 인접한 외측에 배치된 유로부들은 상기 실리콘 용융부(300)의 내부를 관통하여 서로 공간적으로 연결될 수 있다.The silicon melt part 300 applied to the refining apparatus of silicon according to another aspect of the present invention includes respective flow path parts 340 disposed on each outer side, and the flow path parts disposed on the adjacent outer sides are melted on the silicon. It may penetrate the interior of the unit 300 and be spatially connected to each other.
또한, 상기 유로부(340)들 간에 관통되는 영역은 상기 실리콘 용융부(300)의 모서리부일 수 있다.In addition, a region penetrating between the flow path parts 340 may be an edge part of the silicon melt part 300.
한편, 냉각 유체를 공급하는 유체 공급부(370)는 상기 실리콘 용융부(300)의 각 외측에서 각각 설치될 수도 있으나, 본 발명의 또 다른 측면에 따른 실리콘 용융부(300)의 각각 외측에 배치된 유로부(340)는 공간적으로 연결되어 하나의 유체 공급부(370)를 통하여 실리콘 용융부(300)를 냉각시킬 수 있는 구조를 가질 수 있다.On the other hand, the fluid supply unit 370 for supplying the cooling fluid may be installed on each outside of the silicon melt portion 300, respectively, disposed on each outside of the silicon melt portion 300 according to another aspect of the present invention The flow path part 340 may be spatially connected to have a structure capable of cooling the silicon melt part 300 through one fluid supply part 370.
이에 따라, 상기 유체 공급부(370)를 통하여 냉각 유체의 공급량을 제어하기 손쉽고, 실리콘 용융부(300)를 냉각하는 구조가 단순하게 하여 유지, 관리가 용이할 수 있다.Accordingly, it is easy to control the supply amount of the cooling fluid through the fluid supply unit 370, and the structure for cooling the silicon melter 300 can be simplified and easy to maintain and manage.
도 7은 본 발명의 다른 실시예에 따른 제 2 실리콘 용융부를 개략적으로 나타내는 사시도이고, 도 8은 도 7의 외측을 나타내는 도면이다.FIG. 7 is a perspective view schematically illustrating a second silicon melter according to another exemplary embodiment of the present invention, and FIG. 8 is a view illustrating the outside of FIG. 7.
도 7 및 도 8을 참조하여, 본 발명의 또 다른 측면에 따른 실리콘의 정련 장치에 적용되는 실리콘 용융부에 배치된 유로부를 설명하기로 한다.7 and 8, a flow path part disposed in a silicon melting part applied to a refining apparatus of silicon according to another aspect of the present invention will be described.
전술한 바와 같이, 상기 실리콘 용융부(300)는 상기 제 1 실리콘 용융부(310)와 상기 제 2 실리콘 용융부(320)를 포함한다.As described above, the silicon melter 300 includes the first silicon melter 310 and the second silicon melter 320.
도 7에 도시된 제 2 실리콘 용융부(320)는 제 1 연결탕로부(510)와 제 2 연결탕로부(520)를 포함하기 때문에 전술한 상기 제 2 실리콘 용융부(320)의 외측 중 제 1 연결탕로부(510)가 포함되는 외측의 구조가 상기 실리콘 용융부(300)와 차이가 있으나, 복수 개의 유로를 형성하는 제 1 유로부(341)와 상기 제 1 유로부(341)에 연장되어 상기 제 2 유로부(342)가 연결되는 구조는 유사하다.Since the second silicon melter 320 shown in FIG. 7 includes a first connection funnel 510 and a second connection funnel 520, the second silicon melter 320 may be disposed outside the second silicon melter 320. The outer structure including the first connection water heater 510 is different from the silicon melt part 300, but the first flow path part 341 and the first flow path part 341 forming a plurality of flow paths. ) Is connected to the second flow path portion 342 is similar in structure.
도 9는 도 7의 A-A선을 따라 절취한 절단면을 나타내는 도면이다.FIG. 9 is a diagram illustrating a cut plane taken along a line A-A of FIG. 7.
도 9를 참조하면, 제 2 실리콘 용융부(320)의 제 2 채널부(321) 또는 제 3 채널부(322)의 주변에 상기 제 1 유로부(341)의 유로 폭보다 큰 제 2 유로부(344)가 배치될 수 있다.Referring to FIG. 9, a second flow path part larger than a flow path width of the first flow path part 341 around the second channel part 321 or the third channel part 322 of the second silicon melt part 320. 344 may be disposed.
이에 따라, 상기 제 2 유로부(344)에 냉각 유체를 공급할 경우 상기 제 2 채널부(321) 또는 상기 제 3 채널부(322)의 주변을 빠르게 냉각시킬 수 있다. Accordingly, when the cooling fluid is supplied to the second flow path part 344, the periphery of the second channel part 321 or the third channel part 322 may be rapidly cooled.
도 10은 본 발명의 다른 실시예에 따른 실리콘 용융부에 유체공급부가 배치된 모습을 나타내는 사시도이고, 도 11은 도 10을 위에서 본 모습과 외측에서 본 모습을 나타내는 도면이다.FIG. 10 is a perspective view illustrating a state in which a fluid supply unit is disposed in a silicon melting unit according to another exemplary embodiment of the present invention, and FIG. 11 is a view illustrating a state of FIG.
도 11에 도시된 바와 같이, 유체 공급부(351)는 상기 제 1 연결탕로부(510)와 상기 제 2 연결탕로부(520)가 배치되지 않은 모서리부의 상부에 배치될 수 있다.As shown in FIG. 11, the fluid supply unit 351 may be disposed on an upper edge portion where the first connection channel part 510 and the second connection channel part 520 are not disposed.
상기 유체 공급부(370)에 공급된 냉각 유체는 상기 제 2 실리콘 용융부(320)의 외측에서 유로부(340)를 따라 흐르게 되어 장시간의 냉각효율을 증가시킬 수 있다. The cooling fluid supplied to the fluid supply part 370 may flow along the flow path part 340 at the outside of the second silicon melt part 320 to increase the cooling efficiency for a long time.
또한, 상기 냉각 유체는 상기 제 2 실리콘 용융부(320)의 공급된 외측을 모두 흐른 경우 상기 제 2 실리콘 용융부(320)의 모서리부에 상기 유로부들 간에 관통되는 영역을 통하여 인접한 외측의 유로부로 이동하게 된다.In addition, when all of the supplied outside of the second silicon melt part 320 flows through the cooling fluid, an edge portion of the second silicon melt part 320 passes through an area penetrating between the flow path parts to an adjacent outer flow path part. Will move.
상기 냉각 유체는 상기 실리콘 용융부의 주변부(360)의 유로부(340)를 모두 통과한 후 상기 실리콘 용융부의 하면부에 설치된 유로부를 통과한 후 유체배출부(380)를 통하여 상기 냉각 유체는 외부로 배출될 수 있다. The cooling fluid passes through all of the flow path portion 340 of the peripheral portion 360 of the silicon melt portion, and then passes through the flow path portion provided on the lower surface portion of the silicon melt portion, and then the cooling fluid passes through the fluid discharge portion 380 to the outside. May be discharged.
다시 도 6을 참조하여 본 발명의 또 다른 측면에 따른 제 1 유로부와 제 2 유로부의 위치를 보다 자세히 설명하도록 한다.Referring to FIG. 6 again, the positions of the first flow path part and the second flow path part according to another aspect of the present invention will be described in more detail.
상기 실리콘 용융부(300)는 상기 실리콘 용탕의 저장공간을 형성하는 중심부(361)와 상기 중심부(361)를 구획하는 주변부(362) 및 상기 주변부(362) 상부에 형성된 채널부(360)를 포함한다.The silicon melter 300 includes a central portion 361 forming a storage space of the molten silicon, a peripheral portion 362 partitioning the central portion 361, and a channel portion 360 formed on the peripheral portion 362. do.
상기 제 1 유로부(341)는 상기 실리콘 용융부(300)의 중심부(361)와 대응되어 배치될 수 있다.The first flow path part 341 may be disposed to correspond to the central portion 361 of the silicon melt part 300.
상기 제 2 유로부(342)는 상기 실리콘 용융부(300)의 주변부(362)와 대응되어 배치될 수 있다.The second flow path part 342 may be disposed to correspond to the peripheral part 362 of the silicon melt part 300.
또한, 상기 제 2 유로부(343)는 상기 채널부(360)와 인접하여 배치될 수 있다.In addition, the second flow path part 343 may be disposed adjacent to the channel part 360.
도 12은 본 발명의 일 실시예에 따른 일방향 응고부의 외측을 개략적으로 나타내는 사시도이고, 도 13는 도 12의 단면도이고, 도 14은 본 발명의 일 실시예에 따른 일방향 응고부를 개략적으로 나타내는 단면도이다.12 is a perspective view schematically showing the outer side of the one-way solidification unit according to an embodiment of the present invention, FIG. 13 is a cross-sectional view of FIG. 12, and FIG. 14 is a cross-sectional view schematically showing the one-way solidification unit according to an embodiment of the present invention. .
본 발명의 일 실시예에 따른 일방향 응고부(400)는 외측에 배치된 복수의 냉각유로부(440)를 가질 수 있다. One-way solidification unit 400 according to an embodiment of the present invention may have a plurality of cooling passage 440 disposed on the outside.
상기 일방향 응고부(400)는 복수의 냉각유로부(440)를 가짐으로써, 상기 일방향 응고부(400)의 외측의 표면적을 증가시키게 되어 연속적으로 진행되는 실리콘의 정련 과정에서 장시간의 냉각 효율을 향상시킬 수 있다.The one-way solidification part 400 has a plurality of cooling flow path parts 440 to increase the surface area of the outer side of the one-way solidification part 400 to improve long-term cooling efficiency in the continuous refining process of silicon. You can.
상기 복수의 냉각유로부(440)는 상기 일방향 응고부(400)의 외측에 복수의 슬릿에 의해 형성되며, 상기 복수의 냉각유로부(440) 중 적어도 어느 하나의 냉각유로부(450)의 유로 폭은 나머지 유로 폭보다 클 수 있다.The plurality of cooling channel parts 440 are formed by a plurality of slits on the outside of the one-way solidification part 400, and the flow path of at least one cooling channel part 450 of the plurality of cooling channel parts 440. The width may be greater than the remaining flow path width.
또한 상기 적어도 어느 하나의 냉각유로부(450)는 상기 일방향 응고부의 외측 상부에 배치될 수 있다.In addition, the at least one cooling channel portion 450 may be disposed on the outer upper portion of the one-way solidification portion.
본 발명의 다른 측면에 따르면, 상기 일방향 응고부(400)는 외측에 설치된 유체가 흐르는 제 1 냉각유로부(450)와 제 2 냉각유로부(440)를 포함하고, 상기 제 1 냉각유로부(450)에 흐르는 유체의 유량은 상기 제 2 냉각유로부(440)에 흐르는 유체의 유량보다 많을 수 있다.According to another aspect of the present invention, the one-way solidification unit 400 includes a first cooling channel portion 450 and a second cooling channel portion 440 through which a fluid installed on the outside flows, and the first cooling channel portion ( The flow rate of the fluid flowing through the 450 may be greater than the flow rate of the fluid flowing in the second cooling channel 440.
또한, 상기 제 1 냉각유로부(450)는 상기 일방향 응고부(400)의 외측 상부에 배치될 수 있다. In addition, the first cooling channel part 450 may be disposed on an outer upper portion of the one-way solidification part 400.
따라서, 상기 제 1 냉각유로부(450)는 전자빔이 직접적으로 노출될 수 있는 상기 일방향 응고부(400)의 외측 상부에 배치됨으로써, 상기 제 2 냉각유로부(440)보다 많은 유체를 제 1 냉각유로부(450)에 흐를 수 있게 되어 상기 일방향 응고부(400)의 외측 상부의 냉각 속도를 향상시킬 수 있다.Accordingly, the first cooling channel portion 450 is disposed above the one-side solidification portion 400 where the electron beam may be directly exposed, thereby cooling more fluid than the second cooling channel portion 440. It can flow to the flow path portion 450 can improve the cooling rate of the outer upper portion of the one-way solidification portion 400.
도 15는 일방향 응고부에 유체 공급부가 배치된 모습을 나타내는 도면이다.FIG. 15 is a view illustrating a state in which a fluid supply unit is disposed in a one-way solidification unit. FIG.
상기 일방향 응고부(400)는 상기 일방향 응고부(400)의 중심을 기준으로 상측의 냉각유로부(440)에 연결되는 제 1 냉각유체공급부(471)와 상기 일방향 응고부(400)의 중심을 기준으로 하측의 냉각유로부(440)에 연결되는 제 2 냉각유체공급부(472)를 더 포함할 수 있다.The one-way solidification unit 400 has a center of the first cooling fluid supply unit 471 and the one-way solidification unit 400 connected to the upper cooling flow path 440 based on the center of the one-way solidification unit 400. It may further include a second cooling fluid supply unit 472 connected to the cooling channel 440 of the lower side as a reference.
상기 제 1 냉각유체공급부(471)와 상기 제 2 냉각유체공급부(472)는 도면에 도시되지 않았지만, 하나의 냉각기(Chiller)에 의해 제어될 수 있다.Although not shown in the drawing, the first cooling fluid supply unit 471 and the second cooling fluid supply unit 472 may be controlled by one cooler.
이에 따라, 상기 하나의 냉각기를 통하여 상기 제 1 냉각유체공급부(471)와 상기 제 2 냉각유체공급부(472)에 공급되는 유체를 제어함으로써, 설치 및 유지비용을 절감할 수 있다.Accordingly, by controlling the fluid supplied to the first cooling fluid supply unit 471 and the second cooling fluid supply unit 472 through the one cooler, it is possible to reduce the installation and maintenance costs.
한편, 상기 제 1 냉각유체공급부(471)와 상기 제 2 냉각유체공급부(472)에 공급되는 유체는 복수 개의 냉각기에 의해 유체의 유량을 제어될 수 있다.Meanwhile, the fluid supplied to the first cooling fluid supply unit 471 and the second cooling fluid supply unit 472 may control the flow rate of the fluid by a plurality of coolers.
이에 따라, 상기 제 1 냉각유체공급부(471)와 상기 제 2 냉각유체공급부(472)에 공급되는 유체의 유량을 개별적으로 제어함으로써, 상기 상측의 냉각유로부(440) 및 상기 하측의 냉각유로부(440)의 유체의 온도가 개별적으로 제어되어 냉각효율을 높일 수 있다.Accordingly, by separately controlling the flow rates of the fluid supplied to the first cooling fluid supply unit 471 and the second cooling fluid supply unit 472, the upper cooling channel portion 440 and the lower cooling channel portion The temperature of the fluid of 440 is individually controlled to increase the cooling efficiency.
이와 같이, 상기 일방향 응고부(400)는 상기 제 1 냉각유체공급부(471)와 상기 제 2 냉각유체공급부(472) 각각을 통하여 유체가 공급됨으로써, 유체가 공급되어 배출되는 시간과 경로를 줄이게 되어 냉각효율을 높일 수 있다.As such, the one-way solidification part 400 is supplied with fluid through each of the first cooling fluid supply part 471 and the second cooling fluid supply part 472, thereby reducing the time and the path through which the fluid is supplied and discharged. Cooling efficiency can be improved.
한편, 도면에 도시되지 않았지만, 상기 일방향 응고부(400)는 상기 일방향 응고부(400)에 설치된 흑연 더미바를 냉각시킬 수 있는 제 3 냉각유체공급부를 포함할 수 있다.Although not shown in the drawing, the one-way solidification unit 400 may include a third cooling fluid supply unit capable of cooling the graphite dummy bar installed in the one-way solidification unit 400.
도 16 내지 도 18을 참조하여 연결탕로부를 보다 자세히 설명하기로 한다.With reference to Figures 16 to 18 will be described in more detail the hot water supply.
도 16는 각각 다른 형상을 가지는 2종류의 연결탕로부를 나타내는 도면이다.FIG. 16 is a view showing two types of connection baths each having a different shape.
도 16의 (a)에 도시된 연결탕로부(500a)의 하면부가 평탄하고, 서로 마주보는 측면부는 평행하다.The lower surface portion of the connection water flow passage 500a shown in FIG. 16A is flat, and the side portions facing each other are parallel.
즉, 상기 연결탕로부(500a)는 상기 실리콘 용탕이 상기 실리콘용융부(300)에서 상기 일방향 응고부(400)로 이송되는 방향에 따라 하면부의 단면적이 일정하다.That is, the cross section of the lower surface portion of the connection hot water flow part 500a is constant along the direction in which the molten silicon is transferred from the silicon melt part 300 to the one-way solidification part 400.
도 16의 (b)에 도시된 본 발명의 일 측면에 따른 연결탕로부(500b)는 상기 실리콘 용탕(P2)이 상기 실리콘용융부(300)에서 상기 일방향 응고부(400)로 이송되는 방향에 따라 하면부의 단면적이 작아지는 형상을 가진다.Connection (b) 500b according to an aspect of the present invention shown in Figure 16 (b) is the direction in which the molten silicon (P2) is transferred from the silicon melt portion 300 to the one-way solidification portion 400 As a result, the cross-sectional area of the lower surface portion is reduced.
또한, 본 발명의 다른 측면에 따른 연결탕로부(500b)의 채널의 폭은 상기 실리콘 용탕이 이송되는 방향에 따라 좁아질 수 있다.In addition, the width of the channel of the connection hot water pipe portion 500b according to another aspect of the present invention may be narrowed according to the direction in which the molten silicon is transferred.
이와 같이, 본 발명의 일 측면에 따른 연결탕로부(500b)는 하면부의 단면적이 작아지는 형상만으로 한정되지 않고, 상기 연결탕로부(500b)의 채널의 폭이 상기 실리콘 용탕이 이송되는 방향에 따라 좁아질 수 있게 됨으로써, 상기 실리콘 용탕이 상기 연결탕로부(500b)에 존재할 수 있는 시간을 확보할 수 있다.As described above, the connection hot water flow part 500b according to an aspect of the present invention is not limited to a shape in which the cross-sectional area of the bottom surface is reduced, and the width of the channel of the connection hot water flow part 500b is a direction in which the silicon melt is transferred. By being narrowed according to, it is possible to secure the time that the silicon melt can be present in the connection bath (500b).
또한, 상기 연결탕로부(500b)의 하면부는 평탄하다.In addition, the lower surface portion of the connection passage 500b is flat.
도 17은 도 16에서 나타나는 2종류의 연결탕로부에 유지되는 실리콘 용탕의 두께를 측면에서 본 단면도이다.FIG. 17 is a sectional view of the silicon molten metal held in the two kinds of connection furnaces shown in FIG.
즉, 도 17은 본 발명의 일 측면에 따른 실리콘의 정련장치를 이용하여 도 16에 도시된 2종류의 연결탕로부에 유지되는 실리콘 용탕의 두께를 비교하기 위한 실험 결과를 나타내는 도면이다.That is, FIG. 17 is a view showing an experimental result for comparing the thicknesses of the molten silicon held in the two types of connection furnaces shown in FIG. 16 using the silicon refiner according to an aspect of the present invention.
도 17의 (a)는 도 16의 (a)에 따른 연결탕로부의 단면을 나타내는 도면이다. 도 17의 (a)에 도시된 바와 같이, 이송되는 방향에 따라 실리콘 용탕의 양이 줄어드는 것을 알 수 있다.FIG. 17A is a view showing a cross section of the connection water flow passage part shown in FIG. 16A. As shown in (a) of FIG. 17, it can be seen that the amount of the molten silicon decreases according to the conveying direction.
도 17의 (b)는 도 16의 (b)에 따른 연결탕로부의 단면을 나타내는 도면이다. 도 17의 (b)에 도시된 바와 같이, 이송되는 방향에 따라 실리콘 용탕의 양이 비교적 균일한 것을 알 수 있다.FIG. 17B is a view showing a cross section of the connection water passage according to FIG. 16B. As shown in (b) of FIG. 17, it can be seen that the amount of the molten silicon is relatively uniform according to the conveying direction.
도 18은 도 16에서 나타나는 2종류의 연결탕로부에 유지되는 실리콘 용탕의 두께를 정량적으로 나타내는 실험결과표이다.FIG. 18 is an experimental result table quantitatively showing the thicknesses of the molten silicon held in the two kinds of connection furnaces shown in FIG. 16.
도 18에 도시된 2종류의 연결탕로부에 대한 실험결과를 비교하면, 본 발명의 일 측면에 따른 연결탕로부(500b)에 유지되는 실리콘 용탕의 두께의 평균적인 값이 가장 크고, 상기 실리콘 용융부(300)에서 상기 일방향 응고부(400)로 공급되는 방향을 따라 상기 연결탕로부(500b)의 하면부를 덮고 있는 실리콘의 용탕의 두께가 가장 균일한 것을 알 수 있다.Comparing the experimental results for the two types of connection hot water flow shown in Figure 18, the average value of the thickness of the molten silicon held in the connection hot water flow passage 500b according to an aspect of the present invention is the largest, It can be seen that the thickness of the molten metal of silicon covering the lower surface portion of the connection hot water flow part 500b along the direction supplied from the silicon melt part 300 to the one-way solidification part 400 is the most uniform.
본 발명의 일 측면에 따른 도 15의 (b)에 도시된 연결탕로부(500b)는 일정량의 실리콘 용탕이 상기 연결탕로부(500b) 상에 유지되게 함으로써, 전자빔이 상기 연결탕로부(500b)에 직접 주사되는 것을 막을 수 있게 되어 실리콘 용융부 및 일방향 응고부의 상단부가 파손되는 것을 방지할 수 있다.According to an aspect of the present invention, the connection hot water supply part 500b illustrated in FIG. 15B may maintain a predetermined amount of silicon molten metal on the connection hot water supply part 500b so that an electron beam is connected to the connection hot water supply part 500b. It is possible to prevent the direct injection into the 500b to prevent the upper end portions of the silicon melt portion and the one-way solidification portion from being damaged.
즉, 도 16의 (b)에 도시된 연결탕로부(500b)의 구조는 폴리실리콘의 잉곳을 제조하기 위하여 정련 장치의 내구성을 향상시켜 연속적으로 실리콘을 정련할 수 있다.That is, the structure of the connection bath 500b shown in FIG. 16 (b) may continuously refine silicon by improving durability of the refining apparatus in order to manufacture ingots of polysilicon.
도 19는 본 발명의 다른 실시예에 따른 연결탕로부를 나타내는 도면이다.19 is a view showing a connection hot water unit according to another embodiment of the present invention.
도 19에 도시된 연결탕로부(500c)는 상기 실리콘 용탕이 상기 실리콘 용융부(300)에서 상기 일방향 응고부(400)로 이송되는 방향에 따라 상기 하면부 일면의 기울기가 수평방향을 기준으로 증가하는 형상을 가질 수 있다.19, the inclination of one surface of the lower surface part is based on a horizontal direction according to a direction in which the molten silicon is transferred from the silicon melting part 300 to the one-way solidification part 400. It may have an increasing shape.
이에 따라, 상기 실리콘 용탕은 상기 실리콘 용융부(300)에서 상기 일방향 응고부(400)로 이송되는 경우 도 19에 도시된 연결탕로부(500c)에 상기 실리콘 용탕이 유지될 수 있다.Accordingly, when the silicon melt is transferred from the silicon melt part 300 to the one-way solidification part 400, the silicon melt may be maintained in the connection bath 500c shown in FIG. 19.
본 발명의 다른 실시예에 따른 연결탕로부(500c)는 일정량의 실리콘 용탕이 상기 연결탕로부(500c) 상에 유지되게 함으로써, 전자빔이 상기 연결탕로부(500c)에 직접 주사되는 것을 막을 수 있게 되어 실리콘 용융부 및 일방향 응고부의 상단부가 파손되는 것을 방지할 수 있다.According to another exemplary embodiment of the present invention, the connection hot water dropping part 500c maintains a predetermined amount of the molten silicon on the connection hot water dropping part 500c, so that the electron beam is directly injected into the connection hot water dropping part 500c. It is possible to prevent the upper end portions of the silicon melt portion and the one-way solidification portion from being damaged.
한편, 본 발명의 다른 실시예에 따른 연결탕로부의 하면부는 실리콘 용탕이 이송되는 방향으로 단면적이 작아지며 동시에 하면부 일면의 기울기가 증가하는 형상을 가질 수 있다.On the other hand, according to another embodiment of the present invention may have a shape in which the lower surface portion of the connection flow passage portion is small in cross section in the direction in which the molten silicon is transferred, and at the same time the slope of one surface of the lower surface portion increases.
이에 따라, 상기 실리콘 용탕의 이송량이 적은 경우에도 연결탕로부에 실리콘 용탕이 유지될 수 있게 되어 연결탕로부가 전자빔에 의해 파손되는 것을 방지할 수 있다.Accordingly, even when the transfer amount of the molten silicon is small, the molten silicon may be maintained in the connection hot water supply part, thereby preventing the connection hot water part from being damaged by the electron beam.
도 20은 본 발명의 또 다른 실시예에 따른 연결탕로부를 나타내는 단면도이다.20 is a cross-sectional view showing a connection hot water unit according to another embodiment of the present invention.
도 20을 참조하면, 본 발명의 일 실시예와 달리, 실리콘의 정련 장치에 적용되는 연결탕로부(530)의 하면부는 일정한 곡률을 가지는 곡면부(560)를 가질 수 있다.Referring to FIG. 20, unlike the exemplary embodiment of the present disclosure, the lower surface portion of the connection tap 530 applied to the refining apparatus of silicon may have a curved portion 560 having a constant curvature.
이에 따라, 실리콘 용탕은 실리콘 용탕의 표면장력으로 인하여 상기 실리콘 용융부(300)에서 상기 일방향 응고부(400)로 원활히 공급되지 않는 것을 방지할 수 있다. Accordingly, the silicon melt may be prevented from being smoothly supplied from the silicon melter 300 to the one-way solidification part 400 due to the surface tension of the silicon melt.
도 21은 도 1의 원료 공급부 및 연결탕로부의 배치를 나타내는 도면이다. FIG. 21 is a diagram illustrating an arrangement of a raw material supply part and a connection hot water supply part of FIG. 1.
도 21를 참조하여 본 발명의 일 실시예에 따른 정련장치에 적용되는 원료 공급부 및 연결탕로부의 배치를 살펴보기로 한다.With reference to Figure 21 will be described the arrangement of the raw material supply unit and the connection hot water applied to the refining apparatus according to an embodiment of the present invention.
상기 원료 공급부(120)에서 실리콘 원료물질이 상기 실리콘 용융부(300)에 공급된다. 상기 실리콘 용융부(300)에 공급된 실리콘 원료물질은 도 1에 도시된 제 1 전자총(210)에 의해 용융되어 실리콘 용탕이 형성된다.The silicon raw material is supplied to the silicon melter 300 from the raw material supply part 120. The silicon raw material supplied to the silicon melter 300 is melted by the first electron gun 210 shown in FIG. 1 to form silicon melt.
실리콘 용탕 내에 존재하는 비금속 불순물도 용융되어 휘발성 상태에 이른다. 휘발성 불순물은 실리콘에 비해 증기압이 높아 진공 정련을 통하여 제거될 수 있다.Non-metallic impurities present in the silicon melt also melt to reach a volatile state. Volatile impurities have a higher vapor pressure than silicon and can be removed by vacuum refining.
상기 연결탕로부(500)의 중심축은 상기 원료 공급부의 투입구(124)의 중심축과 다른 위치에 있을 수 있다.The central axis of the connection hot water supply unit 500 may be at a position different from the central axis of the inlet 124 of the raw material supply unit.
상기 실리콘 용탕은 상기 실리콘 용융부(300) 내에서 다양한 이동경로를 통하여 움직일 수 있다. 다만, 상기 연결탕로부(500)의 중심축이 상기 원료 공급부의 투입구(124)의 중심축과 동일한 경우 실리콘 용탕이 직선 경로를 이동할 수 있으므로, 이러한 실리콘 용탕의 배치는 정련 시간을 충분히 확보하지 못할 수 있다.The silicon melt may move through various movement paths in the silicon melt part 300. However, since the molten silicon may move in a straight path when the central axis of the connection furnace 500 is the same as the central axis of the inlet 124 of the raw material supply part, the arrangement of the molten silicon may not sufficiently secure the refining time. You may not be able to.
상기 연결탕로부(500)의 중심축이 연장된 제 1 가상선(L1)은 상기 원료 공급부의 투입구(124)의 중심축이 연장된 제 2 가상선(L2)와 실질적으로 평행할 수 있다.The first virtual line L1 extending from the center axis of the connection water heater 500 may be substantially parallel to the second virtual line L2 from which the center axis of the inlet 124 of the raw material supply part extends. .
또한, 상기 제 1 가상선(L1)과 상기 제 2 가상선(L2)은 상기 제 1 실리콘 용융부(300) 내에서 최대로 이격될 수 있다.In addition, the first virtual line L1 and the second virtual line L2 may be spaced apart from each other in the first silicon melting part 300 to the maximum.
즉, 상기 연결탕로부(500)의 중심축이 연장된 제 1 가상선(L1)은 상기 원료 공급부의 투입구(124)의 중심축이 연장된 제 2 가상선(L2)와 실질적으로 평행하며, 상기 제 1 가상선(L1)과 상기 제 2 가상선(L2)은 상기 제 1 실리콘 용융부(300) 내에서 최대로 이격되도록 상기 연결탕로부(500)와 상기 원료 공급부의 투입구(124)가 배치될 수 있다.That is, the first virtual line L1 extending from the central axis of the connection water flow passage 500 is substantially parallel to the second virtual line L2 from which the central axis of the inlet 124 of the raw material supply part extends. The first imaginary line L1 and the second imaginary line L2 are inserted into the connection hot water supply unit 500 and the raw material supply unit 124 so as to be spaced apart in the first silicon melting unit 300 to the maximum. ) May be arranged.
이러한 상기 연결탕로부(500)와 상기 원료 공급부의 투입구(124)의 배치는 상기 실리콘 용융부(300) 내에서 실리콘 용탕이 이동하는 경로가 길어질 수 있고, 상기 실리콘 용탕에 존재하는 휘발성 불순물이 진공 정련될 수 있는 시간과 공간을 확보할 수 있게 되어 실리콘의 정련 효율을 향상시킬 수 있다.The arrangement of the connection furnace 500 and the inlet 124 of the raw material supply unit may be a long path for the silicon molten metal to move in the silicon melt 300, the volatile impurities present in the silicon melt It is possible to secure the time and space for vacuum refining, thereby improving the refining efficiency of silicon.
도 22은 본 발명의 다른 측면에 따른 실리콘의 정련 장치에 적용되는 원료 공급부 및 연결탕로부의 배치를 나타내는 도면이다.Fig. 22 is a view showing the arrangement of a raw material supply part and a connection hot water supply part applied to a refining apparatus of silicon according to another aspect of the present invention.
상기 실리콘 용융부(300)는 직육면체 형상을 가질 수 있다. 다만, 직육면체 형상에 제한되지 않고, 실리콘 용탕을 저장할 수 있는 형상은 적용할 수 있다.The silicon melt part 300 may have a rectangular parallelepiped shape. However, the shape that can store the molten silicon can be applied without being limited to the rectangular parallelepiped shape.
상기 연결탕로부의 중심축이 연장된 제 1 가상선(L1)은 상기 원료 공급부의 투입구(124)의 중심축이 연장된 제 2 가상선(L2)과 실질적으로 수직할 수 있다.The first virtual line L1 extending from the central axis of the connection water heater may be substantially perpendicular to the second virtual line L2 from which the central axis of the inlet 124 of the raw material supply part extends.
즉, 상기 연결탕로부의 중심축이 연장된 제 1 가상선(L1)은 상기 원료 공급부의 투입구(124)의 중심축이 연장된 제 2 가상선(L2)과 실질적으로 수직하도록 상기 연결탕로부(501)와 상기 원료 공급부의 투입구(124)가 배치될 수 있다.That is, the first imaginary line L1 extending from the center axis of the connection water supply unit is substantially perpendicular to the second imaginary line L2 from which the center axis of the inlet 124 of the raw material supply unit extends. The unit 501 and the inlet 124 of the raw material supply unit may be disposed.
이러한 상기 연결탕로부(501)와 상기 원료 공급부의 투입구(124)의 배치는 상기 실리콘 용융부(300) 내에서 실리콘 용탕이 이동하는 경로가 길어질 수 있고, 상기 실리콘 용탕에 존재하는 휘발성 불순물이 진공 정련될 수 있는 시간과 공간을 확보할 수 있게 되어 실리콘의 정련 효율을 향상시킬 수 있다.The arrangement of the connection hot water 501 and the inlet 124 of the raw material supply unit may be a long path for the silicon melt to move in the silicon melt 300, the volatile impurities present in the silicon melt It is possible to secure the time and space for vacuum refining, thereby improving the refining efficiency of silicon.
도 23은 본 발명의 또 다른 측면에 따른 실리콘의 정련 장치에 적용되는 원료 공급부 및 연결탕로부의 배치를 나타내는 도면이다.FIG. 23 is a view showing the arrangement of a raw material supply part and a connection hot water supply part applied to a refining apparatus of silicon according to another aspect of the present invention. FIG.
상기 제 1 채널부(301)는 상기 실리콘 용융부(300)의 모서리부에 위치할 수 있다. The first channel part 301 may be located at an edge portion of the silicon melting part 300.
상기 원료 공급부의 투입구(124)는 상기 실리콘 용융부(300)에 실리콘 원료물질이 공급되는 위치에서 용융되어 상기 연결탕로부(501)로 이동하는 경로가 가장 최대가 되도록 상기 실리콘 용융부(300) 상부에 배치될 수 있다.The inlet 124 of the raw material supply part is melted at the position where the silicon raw material is supplied to the silicon melt part 300, and the silicon melt part 300 is maximized so that the path of the raw material supply part is moved to the connection hot water supply part 501. ) May be disposed above.
또한, 상기 원료 공급부의 투입구(124)는 상기 제 1 채널부(301)와 상기 원료 공급부의 투입구(124)를 연결하는 직선(L3)이 가장 최대가 되도록 상기 실리콘 용융부(300) 상부에 배치될 수 있다.In addition, the inlet 124 of the raw material supply part is disposed above the silicon melting part 300 such that the straight line L3 connecting the first channel part 301 and the inlet 124 of the raw material supply part is the maximum. Can be.
따라서, 상기 원료 공급부의 투입구(124)와 상기 제 1 채널부(301)는 상기 실리콘 용융부(300) 내에서 가장 최대로 이격되는 배치를 가질 수 있다.Therefore, the inlet 124 of the raw material supply part and the first channel part 301 may have a configuration spaced most maximally in the silicon melting part 300.
상기 직선(L3)이 최대의 길이를 가지도록 상기 원료 공급부의 투입구(124)가 상기 실리콘 용융부(300) 상부에 배치됨으로써, 상기 실리콘 용탕이 상기 실리콘 용융부(300) 내에서 존재할 수 있는 시간과 공간을 확보하게 되어 실리콘의 정련 효율을 향상시킬 수 있다.The inlet 124 of the raw material supply part is disposed above the silicon melting part 300 so that the straight line L3 has a maximum length, so that the silicon melt may exist in the silicon melting part 300. And space can be secured to improve the refining efficiency of silicon.
또한, 본 실시예에 따른 실리콘의 정련 장치를 이용하여 폴리실리콘 잉곳을 연속적으로 제조할 수 있고, 제조 비용을 절감할 수 있다.In addition, the polysilicon ingot can be continuously manufactured using the silicon refining apparatus according to the present embodiment, and manufacturing cost can be reduced.
도 24는 본 발명의 다른 실시예에 따른 실리콘의 정련 장치에 적용되는 원료 공급부, 제 1 연결탕로부 및 제 2 연결탕로부의 배치와 실리콘 용탕의 이동경로를 개략적으로 나타내는 도면이다.FIG. 24 is a view schematically illustrating a disposition of a raw material supply unit, a first connection furnace and a second connection furnace, and a movement path of the silicon molten metal applied to a refining apparatus of silicon according to another embodiment of the present invention.
도 24를 참조하여 도 2에 도시된 본 발명의 또 다른 실시예에 따른 원료 공급부, 제 1 연결탕로부 및 제 2 연결탕로부의 배치를 보다 자세하게 설명하기로 한다.With reference to FIG. 24, the arrangement of the raw material supply unit, the first connection water heater and the second connection water heater according to another embodiment of the present invention shown in FIG. 2 will be described in more detail.
상기 제 3 채널부(322)는 상기 제 2 실리콘 용융부(320)의 모서리부에 위치할 수 있다.The third channel part 322 may be located at an edge portion of the second silicon melting part 320.
상기 제 1 연결탕로부(510)는 상기 실리콘 용탕이 상기 제 2 연결탕로부(520)로 이동하는 경로가 가장 최대가 되도록 배치될 수 있다.The first connection hot water supply unit 510 may be disposed such that a path through which the silicon molten metal moves to the second connection hot water supply unit 520 is maximized.
또한, 상기 제 2 채널부(321)는 상기 제 2 채널부(321)와 상기 제 3 채널부(322)를 연결하는 직선(L3)이 최대가 되도록 상기 제 2 실리콘 용융부(320) 상부에 배치될 수 있다.In addition, the second channel part 321 is disposed on the upper portion of the second silicon melting part 320 such that a straight line L3 connecting the second channel part 321 and the third channel part 322 is maximized. Can be arranged.
이러한 상기 제 1 연결탕로부(510)와 상기 제 2 연결탕로부(520)의 배치는 상기 제 2 실리콘 용융부(200) 내에서 실리콘 용탕이 이동하는 경로가 길어질 수 있고, 상기 실리콘 용탕에 존재하는 휘발성 불순물이 진공 정련될 수 있는 시간과 공간을 확보할 수 있게 되어 실리콘의 정련 효율을 향상시킬 수 있다.In the arrangement of the first connection furnace 510 and the second connection furnace 520, a path through which the silicon melt moves in the second silicon melter 200 may be long, and the silicon melt It is possible to secure the time and space for the volatile impurities present in the vacuum refining can improve the refining efficiency of silicon.
한편, 상기 제 1 채널부(311)는 상기 제 1 실리콘 용융부(300)의 모서리부에 위치할 수 있다.Meanwhile, the first channel part 311 may be located at an edge portion of the first silicon melt part 300.
상기 원료 공급부의 투입구(124)는 상기 제 1 실리콘 용융부(310)에 실리콘 원료물질이 공급되는 위치에서 용융되어 상기 제 1 연결탕로부(510)로 이동하는 경로가 최대가 되도록 배치될 수 있다.The inlet 124 of the raw material supply unit may be disposed to maximize the path of melting at the position where the silicon raw material is supplied to the first silicon melting unit 310 and moving to the first connection hot water unit 510. have.
상기 원료 공급부의 투입구(124)는 상기 제 1 채널부(311)와 상기 원료 공급부의 투입구(124)를 연결하는 직선(L4)이 가장 최대가 되도록 상기 제 1 실리콘 용융부(310) 상부에 배치될 수 있다.The inlet 124 of the raw material supply part is disposed above the first silicon melting part 310 such that a straight line L4 connecting the first channel part 311 and the inlet 124 of the raw material supply part is the maximum. Can be.
이와 같이 본 발명의 또 다른 실시예에 따른 폴리실리콘 잉곳 제조를 위한 실리콘 정련 장치는 실리콘 용융부가 복수 개이고 복수 개의 실리콘 용융부를 연결하는 제 1 연결탕로부(510)를 통하여 실리콘 용탕이 이동시 실리콘 용탕의 이동하는 경로가 도시된 화살표에서 나타나는 것처럼 제 1 실리콘 용융부(310)와 제 2 실리콘 용융부(320) 내에서 최대가 됨을 알 수 있다.As described above, the silicon refining apparatus for manufacturing a polysilicon ingot according to another embodiment of the present invention has a plurality of silicon melt parts and a silicon melt when the silicon melt moves through a first connection furnace 510 connecting the plurality of silicon melt parts. It can be seen that the moving path of the maximum in the first silicon melt portion 310 and the second silicon melt portion 320 as shown by the arrow shown.
이러한 원료 공급부(120), 제 1 연결탕로부(510) 및 제 2 연결탕로부(520)의 배치를 통하여 실리콘 용탕 내에 휘발성 불순물이 제거될 수 있는 시간과 공간이 충분히 확보할 수 있게 되어 실리콘 정련 효과를 향상시킬 수 있다.Through the arrangement of the raw material supply unit 120, the first connection furnace 510 and the second connection furnace 520 it is possible to ensure a sufficient time and space to remove the volatile impurities in the molten silicon The silicon refining effect can be improved.
또한, 종래 기술에 따른 폴리실리콘 잉곳을 회분 방식으로 1회씩 생산하는 것과 달리, 본 실시예에 따른 실리콘의 정련 장치를 이용하여 폴리실리콘 잉곳을 연속적으로 제조할 수 있고, 제조 비용을 절감할 수 있다.In addition, unlike producing the polysilicon ingot according to the prior art once in a batch method, the polysilicon ingot can be continuously manufactured using the silicon refining apparatus according to the present embodiment, and the manufacturing cost can be reduced. .
본 발명은 위에서 설명된 실시예에 한정되지 않고, 청구범위에 기재된 바에 의해 정의되며, 본 발명의 분야에서 통상의 지식을 가진 자가 청구범위에 기재된 권리범위 내에서 다양한 변형과 개작을 할 수 있다는 것은 자명하다.The invention is not limited to the embodiments described above, but is defined by the claims, and it is understood that those skilled in the art can make various modifications and adaptations within the scope of the claims. Self-explanatory

Claims (23)

  1. 진공 분위기를 유지하는 진공 챔버;A vacuum chamber for maintaining a vacuum atmosphere;
    상기 진공 챔버에 구비되어 전자빔을 조사하는 적어도 하나 이상의 전자총(Electron-gun);At least one electron gun provided in the vacuum chamber to irradiate an electron beam;
    상기 진공챔버 내에 실리콘 원료물질을 공급하는 원료 공급부;A raw material supply unit supplying a silicon raw material to the vacuum chamber;
    상기 전자빔이 조사되는 영역 내에 배치되며, 상기 실리콘 원료물질이 장입되어 상기 전자빔에 의해 상기 실리콘 원료물질이 용융되어 실리콘용탕이 형성되는 실리콘 용융부; A silicon melting part disposed in a region where the electron beam is irradiated, wherein the silicon raw material is charged and the silicon raw material is melted by the electron beam to form a silicon melt;
    상기 실리콘 용융부로부터 공급되는 실리콘용탕을 응고시키는 일방향 응고부; 및A one-way solidifying unit for solidifying the silicon melt supplied from the silicon melting unit; And
    상기 실리콘 용융부의 제 1 채널부와 상기 일방향 응고부의 제 2 채널부가 서로 접하여 이루어진 연결탕로부를 포함하고,A first hot water channel part of the silicon melting part and a second channel part of the one-way solidification part including a connection hot water part formed in contact with each other,
    상기 연결탕로부의 중심축은 상기 원료 공급부의 투입구의 중심축과 다른 위치에 있는 실리콘의 정련 장치.And the central axis of the connection hot water passage is different from the central axis of the inlet of the raw material supply unit.
  2. 제 1항에 있어서,The method of claim 1,
    상기 연결탕로부의 중심축이 연장된 제 1 가상선은 상기 원료 공급부의 투입구의 중심축이 연장된 제 2 가상선과 평행한 것을 특징으로 하는 실리콘의 정련 장치.And a first virtual line in which the central axis of the connection hot water passage is extended is parallel to a second virtual line in which the central axis of the inlet of the raw material supply unit extends.
  3. 제 2항에 있어서,The method of claim 2,
    상기 제 1 가상선과 상기 제 2 가상선은 상기 제 1 실리콘 용융부 내에서 최대로 이격되는 것을 특징으로 하는 실리콘의 정련 장치.And the first virtual line and the second virtual line are spaced apart at the maximum in the first silicon melted portion.
  4. 제 1항에 있어서,The method of claim 1,
    상기 실리콘 용융부는 직육면체 형상을 갖고,The silicon melt has a rectangular parallelepiped shape,
    상기 연결탕로부의 중심축이 연장된 제 1 가상선은 상기 원료공급부의 중심축이 연장된 제 2 가상선과 수직한 것을 특징으로 하는 실리콘의 정련 장치.And a first virtual line in which the central axis of the connection water passage is extended is perpendicular to a second virtual line in which the central axis of the raw material supply part is extended.
  5. 제 4항에 있어서,The method of claim 4, wherein
    상기 제 1 가상선과 상기 제 2 가상선의 수직점이 상기 실리콘 용융부의 모서리부에 최대로 인접되는 것을 특징으로 하는 실리콘의 정련 장치.And a vertical point of the first virtual line and the second virtual line is adjacent to a corner portion of the silicon melt portion to the maximum.
  6. 제 1항에 있어서,The method of claim 1,
    상기 연결탕로부는 하면부와 상기 하면부의 양 끝단에서 실질적으로 수직방향으로 연장된 한쌍의 측면부를 포함하고, 상기 실리콘 용탕이 이송되는 방향에 따라 상기 하면부의 단면적이 작아지는 것을 특징으로 하는 실리콘의 정련 장치.The connection flow passage portion includes a lower surface portion and a pair of side portions extending substantially in the vertical direction at both ends of the lower surface portion, and the cross-sectional area of the lower surface portion is reduced according to the direction in which the molten silicon is conveyed refinery.
  7. 일단에 제 1 채널부를 갖는 실리콘 용융부;A silicon melt having a first channel portion at one end;
    상기 제 1 채널부와 접하여 연결탕로부를 형성하는 제 2 채널부를 갖는 일방향 응고부; 및A one-way solidification part having a second channel part in contact with the first channel part to form a connection bath; And
    상기 실리콘 용융부에 실리콘 원료물질을 이송하는 원료 공급부를 포함하고,A raw material supply part for transferring a silicon raw material to the silicon melting part,
    상기 원료 공급부의 투입구는 상기 실리콘 용융부에 실리콘 원료물질이 공급되는 위치에서 용융되어 상기 연결탕로부로 이동하는 경로가 가장 최대가 되도록 상기 실리콘 용융부 상부에 배치되는 것을 특징으로 하는 실리콘의 정련 장치.The inlet of the raw material supply unit is disposed in the upper part of the silicon melter so that the path to be melted at the position where the silicon raw material is supplied to the silicon melter to move to the connection hot water passage is the maximum .
  8. 제 7항에 있어서,The method of claim 7, wherein
    상기 실리콘 용융부는 직육면체 형상을 갖고,The silicon melt has a rectangular parallelepiped shape,
    상기 제 1 채널부는 상기 실리콘 용융부의 모서리부에 위치하는 것을 특징으로 하는 실리콘의 정련 장치.And the first channel portion is located at an edge portion of the silicon melt portion.
  9. 제 7항에 있어서,The method of claim 7, wherein
    상기 원료 공급부의 투입구는 상기 제 1 채널부와 상기 원료 공급부의 투입구를 연결하는 직선이 가장 최대가 되도록 상기 실리콘 용융부 상부에 배치되는 것을 특징으로 하는 실리콘의 정련 장치.Inlet of the raw material supply unit is silicon refining apparatus, characterized in that disposed on the upper part of the silicon melted portion so that the straight line connecting the first channel portion and the inlet of the raw material supply is the maximum.
  10. 제 7항에 있어서,The method of claim 7, wherein
    상기 연결탕로부는 상기 제 1 채널부와 상기 제 2 채널부로 이루어진 채널의 폭이 상기 실리콘 용탕이 이송되는 방향에 따라 좁아지는 것을 특징으로 하는 실리콘의 정련 장치.And the connecting hot dividing unit narrows the width of the channel formed by the first channel unit and the second channel unit along the direction in which the molten silicon is transferred.
  11. 제 7항에 있어서,The method of claim 7, wherein
    상기 실리콘 용융부 또는 상기 일방향 응고부는The silicon melting portion or the one-way solidification portion
    구리 재질을 가지는 것을 특징으로 하는 실리콘의 정련 장치.Refining apparatus of silicon, characterized by having a copper material.
  12. 제 7항에 있어서,The method of claim 7, wherein
    상기 실리콘 용융부는 외측에 배치되며, 유체가 흐르는 유로부를 포함하고,The silicon melt is disposed on the outside, and includes a flow path flows through the fluid,
    상기 유로부는 The flow path part
    복수 개의 슬릿에 의해 형성된 복수의 유로를 포함하는 제 1 유로부와 A first flow path part including a plurality of flow paths formed by a plurality of slits;
    상기 제 1 유로부에 연장되고, 상기 복수의 유로가 서로 연결되어 하나의 유로를 형성하는 제 2 유로부를 포함하는 것을 특징으로 하는 실리콘의 정련 장치.And a second flow passage portion extending to the first flow passage portion, wherein the plurality of flow passages are connected to each other to form one flow passage.
  13. 제 7항에 있어서,The method of claim 7, wherein
    상기 일방향 응고부는 외측에 설치된 유체가 흐르는 제 1 냉각유로부와 제 2 냉각유로부를 포함하고,The one-way solidification part includes a first cooling channel portion and a second cooling channel portion flowing through the fluid installed on the outside,
    상기 제 1 냉각유로부에 흐르는 유체의 유량은 상기 제 2 냉각유로부에 흐르는 유체의 유량보다 많은 것을 특징으로 하는 실리콘의 정련 장치.A flow rate of the fluid flowing in the first cooling channel portion is greater than the flow rate of the fluid flowing in the second cooling channel portion.
  14. 실리콘 용탕이 저장되는 제 1 실리콘 용융부;A first silicon melter in which silicon melt is stored;
    상기 제 1 실리콘 용융부는 제 1 채널부를 갖고, 상기 제 1 채널부와 접하여 제 1 연결탕로부를 형성하는 제 2 채널부를 갖는 제 2 실리콘 용융부; 및A second silicon melting part having a first channel part and having a second channel part contacting with the first channel part to form a first connection bath; And
    상기 제 2 실리콘 용융부는 제 3 채널부를 갖고, 상기 제 3 채널부와 접하여 제 2 연결탕로부를 형성하는 제 4 채널부를 갖는 일방향 응고부를 포함하고,The second silicon melt part includes a one-way solidification part having a third channel part and having a fourth channel part contacting with the third channel part to form a second connection bath;
    상기 제 1 연결탕로부는 상기 실리콘용탕이 상기 제 2 연결탕로부로 이동하는 경로가 가장 최대가 되도록 배치되는 실리콘의 정련 장치.And the first connection hot water supply part is disposed so that the path of the silicon melt to the second connection hot water part is maximized.
  15. 제 14항에 있어서,The method of claim 14,
    상기 제 2 실리콘 용융부는 직육면체 형상을 갖고,The second silicon melt portion has a rectangular parallelepiped shape,
    상기 제 3 채널부는 상기 제 2 실리콘 용융부의 모서리부에 위치하는 것을 특징으로 하는 실리콘의 정련 장치.And the third channel portion is located at an edge portion of the second silicon melt portion.
  16. 제 14항에 있어서,The method of claim 14,
    상기 제 2 채널부는 상기 제 2 채널부와 상기 제 3 채널부를 연결하는 직선이 가장 최대가 되도록 상기 제 2 실리콘 용융부 상부에 배치되는 것을 특징으로 하는 실리콘의 정련 장치.And the second channel portion is disposed above the second silicon melt portion so that a straight line connecting the second channel portion and the third channel portion is the maximum.
  17. 제 14항에 있어서,The method of claim 14,
    상기 원료 공급부의 투입구는 상기 제 1 실리콘 용융부에 실리콘 원료물질이 공급되는 위치에서 용융되어 상기 제 1 연결탕로부로 이동하는 경로가 최대로 되도록 배치되는 것을 특징으로 하는 실리콘의 정련 장치.Inlet of the raw material supply unit is silicon refining apparatus, characterized in that arranged so that the path to be melted at the position where the silicon raw material is supplied to the first silicon melting portion to move to the first connection hot water passage portion to the maximum.
  18. 제 17항에 있어서,The method of claim 17,
    상기 제 1 실리콘 용융부는 직육면체 형상을 갖고,The first silicon melt portion has a rectangular parallelepiped shape,
    상기 제 1 채널부는 상기 제 1 실리콘 용융부의 모서리부에 위치하는 것을 특징으로 하는 실리콘의 정련 장치.And the first channel portion is positioned at an edge portion of the first silicon melt portion.
  19. 제 18항에 있어서,The method of claim 18,
    상기 원료 공급부의 투입구는 상기 제 1 채널부와 상기 원료 공급부의 투입구를 연결하는 직선이 가장 최대가 되도록 상기 실리콘 용융부 상부에 배치되는 것을 특징으로 하는 실리콘의 정련 장치.Inlet of the raw material supply unit is silicon refining apparatus, characterized in that disposed on the upper part of the silicon melted portion so that the straight line connecting the first channel portion and the inlet of the raw material supply is the maximum.
  20. 제 14항에 있어서,The method of claim 14,
    상기 제 1 연결탕로부는 상기 제 1 채널부와 상기 제 2 채널부로 이루어진 채널 또는 상기 제 2 연결탕로부는 상기 제 3 채널부와 상기 일방향 응고부의 제 4채널부로 이루어진 채널의 폭이 상기 실리콘 용탕이 이송되는 방향에 따라 좁아지는 것을 특징으로 하는 실리콘의 정련 장치.The first connection hot water supply part includes a channel consisting of the first channel part and the second channel part, or the second connection hot water supply part has a width of a channel including the third channel part and the fourth channel part of the one-way solidification part. The refinement | purification apparatus of silicon characterized by narrowing according to the conveyance direction.
  21. 제 14항에 있어서,The method of claim 14,
    상기 실리콘 용융부는 각 외측에 배치된 각각의 유로부를 포함하고,The silicon melt portion includes a respective flow path portion disposed on each outside,
    상기 인접한 외측에 배치된 유로부들은 상기 실리콘 용융부의 내부를 관통하여 서로 공간적으로 연결되는 것을 특징으로 하는 실리콘의 정련장치.Refining apparatus of the silicon, characterized in that the flow path portion disposed in the adjacent outer side is spaced through each other through the inside of the silicon melt portion.
  22. 제 14항에 있어서,The method of claim 14,
    상기 실리콘 용융부는 외측에 배치된 복수의 유로부를 갖고,The silicon melting part has a plurality of flow path parts disposed on the outside,
    상기 복수의 유로부 중 적어도 어느 하나의 유로부의 유로 폭은 나머지 유로부의 유로 폭보다 큰 것을 특징으로 하는 실리콘의 정련 장치.The flow path width of at least one flow path portion of the plurality of flow path portions is larger than the flow path width of the remaining flow path portions.
  23. 제 14항에 있어서,The method of claim 14,
    상기 일방향 응고부는 외측에 배치된 복수의 냉각유로부를 갖고,The one-way solidification portion has a plurality of cooling flow path portion disposed outside,
    상기 복수의 냉각유로부 중 적어도 어느 하나의 냉각유로부의 유로 폭은 나머지 유로 폭보다 큰 것을 특징으로 하는 실리콘의 정련 장치.A flow path width of at least one of the plurality of cooling flow path portions is greater than that of the remaining flow paths.
PCT/KR2013/004545 2012-07-10 2013-05-23 Silicon refining apparatus WO2014010825A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2012-0075044 2012-07-10
KR1020120075044A KR101441856B1 (en) 2012-07-10 2012-07-10 Apparatus for Refining Silicon

Publications (1)

Publication Number Publication Date
WO2014010825A1 true WO2014010825A1 (en) 2014-01-16

Family

ID=49916236

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/004545 WO2014010825A1 (en) 2012-07-10 2013-05-23 Silicon refining apparatus

Country Status (2)

Country Link
KR (1) KR101441856B1 (en)
WO (1) WO2014010825A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117886326A (en) * 2024-03-14 2024-04-16 四川优赛思智能科技有限公司 Industrial silicon smelting system with automatic burning-through function

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10139415A (en) * 1996-10-30 1998-05-26 Kawasaki Steel Corp Solidification and purification of molten silicon
JPH11209195A (en) * 1998-01-21 1999-08-03 Kawasaki Steel Corp Purification method of silicon
JP2009078948A (en) * 2007-09-26 2009-04-16 Ulvac Japan Ltd Method for refining material
KR20110048530A (en) * 2008-08-12 2011-05-11 가부시키가이샤 아루박 Purification method of silicon

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10139415A (en) * 1996-10-30 1998-05-26 Kawasaki Steel Corp Solidification and purification of molten silicon
JPH11209195A (en) * 1998-01-21 1999-08-03 Kawasaki Steel Corp Purification method of silicon
JP2009078948A (en) * 2007-09-26 2009-04-16 Ulvac Japan Ltd Method for refining material
KR20110048530A (en) * 2008-08-12 2011-05-11 가부시키가이샤 아루박 Purification method of silicon

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117886326A (en) * 2024-03-14 2024-04-16 四川优赛思智能科技有限公司 Industrial silicon smelting system with automatic burning-through function

Also Published As

Publication number Publication date
KR20140008066A (en) 2014-01-21
KR101441856B1 (en) 2014-09-19

Similar Documents

Publication Publication Date Title
WO2010008211A2 (en) Batch-type heat treatment device and heater used therein
EP0477784B1 (en) Production of high-purity silicon ingot
WO2016104879A1 (en) Hot press-formed member with excellent powdering resistance at time of press forming, and method for manufacturing same
WO2013103194A1 (en) Substrate treatment device including treatment unit
WO2013147407A1 (en) (100)[ovw] non-oriented electrical steel sheet with excellent magnetic property and manufacturing method thereof
WO2011132885A2 (en) Substrate processing apparatus
WO2017126810A1 (en) Method and device for miniaturizing magnetic domains of directional electric steel plate
WO2012148173A2 (en) Wire electrode for electrical discharge machining, and method for manufacturing same
WO2014168270A1 (en) Manganese-containing molten steel production method, temperature-holding furnace and manganese-containing molten steel production equipment using temperature-holding furnace
WO2013022306A2 (en) Apparatus for plasma generation, method for manufacturing rotating electrodes for plasma generation apparatus, method for plasma treatment of substrate, and method for forming thin film of mixed structure using plasma
WO2020111640A1 (en) Non-oriented electrical steel sheet having low iron loss and excellent surface quality, and manufacturing method therefor
WO2020036346A1 (en) Refinement apparatus and method
KR100564770B1 (en) apparatus for continuously casting an low electroconductive material by induction
WO2014010825A1 (en) Silicon refining apparatus
WO2013089473A1 (en) Method for manufacturing a solar cell
WO2017126814A1 (en) Method and device for magnetic domain refinement of oriented electrical steel plate
WO2017111523A1 (en) Plating device and plating method
WO2021025460A1 (en) Led spin chuck
WO2011034290A2 (en) Cooling apparatus and cooling method for an indirect extruder
WO2013025072A2 (en) Device for manufacturing semiconductor or metallic oxide ingot
WO2019083261A1 (en) Deposition device
WO2020213836A1 (en) Sic edge ring
RU2403299C1 (en) Vacuum silicone cleaning method and device for its implementation (versions)
WO2018056717A9 (en) Method for setting electrolytic reduction conditions of metal and method for electrolytic reduction of rare-earth metal using same
WO2022010030A1 (en) Method for manufacturing hot press formed member with excellent producibility, weldability and formability

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13817630

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13817630

Country of ref document: EP

Kind code of ref document: A1