JPH1110312A - Method for continuously producing single crystal - Google Patents

Method for continuously producing single crystal

Info

Publication number
JPH1110312A
JPH1110312A JP17032697A JP17032697A JPH1110312A JP H1110312 A JPH1110312 A JP H1110312A JP 17032697 A JP17032697 A JP 17032697A JP 17032697 A JP17032697 A JP 17032697A JP H1110312 A JPH1110312 A JP H1110312A
Authority
JP
Japan
Prior art keywords
seed crystal
mold
crystal
single crystal
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17032697A
Other languages
Japanese (ja)
Inventor
Hitoshi Yasuda
均 安田
Akihiko Takahashi
明彦 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP17032697A priority Critical patent/JPH1110312A/en
Publication of JPH1110312A publication Critical patent/JPH1110312A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To stably obtain large sized single crystal at a quick drawing speed without developing a nucleus by using raw material and a seed crystal being a castable metal or alloy and a heat-insulating mold and continuously and intermittently drawing out a corresponding length of the single crystal grown from the seed crystal by cooling of the seed crystal. SOLUTION: Al is charged as the seed crystal 4 into a graphite mold 3 at the bottom part of a graphite crucible 2, and a water-cooling nozzle 5 is set at a prescribed position of the seed crystal in the reverse direction to molten Al-0.5% copper alloy 1 as the raw material from the outlet end 3" of the mold, and the Al-0.5% copper alloy 1 charged into the graphite crucible 2 is melted while cooling with the water at the room temp. The temp. of the Al alloy at the inlet part 3' of the mold is stabilized at 720 deg.C and the seed crystal is partially melted in the graphite crucible 3, and after confirming that the solidified interface position is fixed, the cooling position of the seed crystal 4 is shifted to the crucible 3 side by 10 mm and held for 15 min. Thereafter, the seed crystal 4 is drawn out by 0.2 mm at 100 mm/min speed and successively, drawn at 2 sec interval by each 0.2 mm to start the casting.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、大型の単結晶が速
い鋳造速度で新たな核発生なく安定して製造できる、単
結晶の連続的製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for continuously producing single crystals, which can produce large single crystals stably at a high casting speed without generating new nuclei.

【0002】[0002]

【従来の技術】従来単結晶材は鋳型出口の内壁面温度が
凝固点以上に保たれた鋳型を用いる方法(特開昭55−
46265号公報)が知られている。この方法では加熱
した鋳型の外で原料を凝固させるため、特に大型の鋳塊
の鋳造ではブレークアウトの危険性が高くなる。そのた
め凝固界面の形状を精密に制御する必要があり、大型化
や結晶成長速度を早くして生産性を高めることが難しい
という欠点を有していた。また、特開平7−30066
7号公報に記載の種結晶を用いるアルミニウム合金単結
晶ターゲットの製造方法では鋳造材の引き出し方向を鋳
型中心軸に対し2°以内に精密に制御する必要があり、
引き出し方向のわずかなばらつきで鋳型表面に結晶核が
発生する等必ずしも十分なものではない。
2. Description of the Related Art Conventionally, a method of using a mold in which the temperature of the inner wall surface of a mold outlet is maintained at a temperature equal to or higher than a freezing point is used for a single crystal material (Japanese Patent Laid-Open No.
No. 46265). In this method, since the raw material is solidified outside the heated mold, the risk of breakout increases particularly in the casting of a large ingot. Therefore, it is necessary to precisely control the shape of the solidification interface, and it is difficult to increase the size and increase the crystal growth rate to increase the productivity. Also, Japanese Patent Application Laid-Open No. 7-30066
In the method for producing an aluminum alloy single crystal target using a seed crystal described in Japanese Patent Publication No. 7, it is necessary to precisely control the direction in which the cast material is drawn out within 2 ° with respect to the center axis of the mold.
It is not always sufficient that a slight variation in the drawing direction causes a crystal nucleus to be generated on the mold surface.

【0003】[0003]

【発明が解決しようとする課題】本発明の目的は、大型
の単結晶が速い結晶成長速度で核発生なく安定して製造
できる、生産性の高い単結晶の連続的製造方法に関する
ものである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for continuously producing a single crystal with high productivity, which can produce a large single crystal stably at a high crystal growth rate without generating nuclei.

【0004】[0004]

【課題を解決するための手段】本発明者らは、種結晶を
用いる大型単結晶の連続的製造方法において、単結晶が
成長する凝固界面に注目し、単結晶が成長する凝固界面
部分の鋳型の材質、構造や温度分布、種結晶の冷却機構
について鋭意検討した。その結果、断熱質鋳型を用いて
種結晶の冷却による単結晶の成長量と引き出しを量を特
定の条件に制御することによって、大型の単結晶が鋳型
表面に結晶核が発生することなく安定して高い成長速度
で製造できることを見い出し、本発明を完成させるに至
った。
Means for Solving the Problems In a continuous production method of a large single crystal using a seed crystal, the present inventors focused on a solidification interface where a single crystal grows, and used a mold for a solidification interface portion where a single crystal grows. The material, structure, temperature distribution, and cooling mechanism of the seed crystal were eagerly studied. As a result, by controlling the amount of growth and extraction of the single crystal by cooling the seed crystal to a specific condition using an adiabatic template, a large single crystal can be stabilized without generating crystal nuclei on the mold surface. It has been found that the present invention can be manufactured at a high growth rate, and the present invention has been completed.

【0005】すなわち、本発明は以下に示すものであ
る。 (1)断熱質鋳型と種結晶を用いて、加熱溶解した単結
晶の原料を種結晶と接触させて種結晶を部分的に溶解し
た後、単結晶の成長を開始する単結晶の連続的製造方法
において、単結晶の原料および種結晶が鋳造可能な金属
またはその合金であり、該種結晶の溶解が実質的に停滞
した後種結晶の冷却を開始または強化することにより種
結晶を成長させ、該冷却により種結晶から成長した単結
晶の長さ相当量を、結晶成長方向と逆方向に種結晶から
成長した該単結晶を鋳型から連続的または間欠的に引き
出すことにより単結晶を成長させる単結晶の連続的製造
方法。 (2)断熱質鋳型の材質が黒鉛またはセラミック質であ
る上記(1)記載の製造方法。 (3)断熱質鋳型が原料の融点以下に保温されている上
記(1)記載の製造方法。 (4)断熱質鋳型が底のない箱型または筒型状である上
記(1)記載の製造方法 (5)断熱質鋳型を下部に取り付けた溶解または保持用
ルツボで原料を溶解し、一定温度で保持して、該鋳型内
に該原料を装入する上記(1)記載の製造方法。 以下、本発明を詳細に説明する。
That is, the present invention is as follows. (1) Continuous production of a single crystal using a heat insulating template and a seed crystal, in which a single crystal material heated and melted is brought into contact with the seed crystal to partially dissolve the seed crystal and then start growing the single crystal. In the method, the single crystal raw material and the seed crystal are castable metals or alloys thereof, and the seed crystal is grown by starting or strengthening the cooling of the seed crystal after the dissolution of the seed crystal has substantially stagnated, The single crystal grown by seeding the single crystal grown from the seed crystal in the direction opposite to the crystal growth direction continuously or intermittently from the template in an amount corresponding to the length of the single crystal grown from the seed crystal by the cooling. A continuous production method for crystals. (2) The method according to the above (1), wherein the material of the heat insulating mold is graphite or ceramic. (3) The production method according to the above (1), wherein the heat insulating mold is kept at a temperature lower than the melting point of the raw material. (4) The manufacturing method according to the above (1), wherein the heat-insulating mold is a box-shaped or cylindrical shape without a bottom. The method according to the above (1), wherein the raw material is charged into the mold while holding the raw material. Hereinafter, the present invention will be described in detail.

【0006】[0006]

【発明の実施の形態】単結晶の連続的な製造方法として
は種結晶を用いた連続鋳造法がある。種結晶は、通常、
製造する単結晶と同じ結晶方位を有するものが必要であ
る。一般的な歪み焼鈍法やブリッジマン法により得られ
る単結晶が種結晶として利用できる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS As a continuous production method of a single crystal, there is a continuous casting method using a seed crystal. Seed crystals are usually
A crystal having the same crystal orientation as the single crystal to be manufactured is required. A single crystal obtained by a general strain annealing method or the Bridgman method can be used as a seed crystal.

【0007】連続鋳造法とは、溶融金属を底のない、あ
るいは両端が閉じていない鋳型(連続鋳造用鋳型)で連
続的に引き出すことにより、正方形、長方形、円形など
の断面形状の長尺製品を製造する方法をいう。一般的に
鋳型は、アルミニウム合金、銅、あるいは、変形が少な
く、潤滑剤を必要としないセラミック質や黒鉛等の材質
のものが使用される。連続鋳造装置には垂直式と水平式
があるが、本発明の製造方法はいずれにも適応出来る。
[0007] The continuous casting method is a method of continuously drawing a molten metal with a mold having no bottom or a closed end (continuous casting mold) to obtain a long product having a square, rectangular, circular or other cross-sectional shape. Means a method for producing Generally, the mold is made of an aluminum alloy, copper, or a material such as ceramics or graphite that does not require deformation and does not require a lubricant. The continuous casting apparatus includes a vertical type and a horizontal type, and the manufacturing method of the present invention can be applied to both.

【0008】本発明において用いる結晶方位を有する単
結晶材は、鋳型内に装入した種結晶に溶解した原料を一
方向に凝固成長させることで得られる。ここでいう単結
晶とは結晶構造が完全に均一な単結晶の他一般的な凝固
法で得られる空孔、転位、サブグレイン等の欠陥を含ん
だ結晶構造がやや不完全な単結晶を含む。
The single crystal material having a crystal orientation used in the present invention is obtained by unidirectionally growing a raw material dissolved in a seed crystal charged in a mold. The term "single crystal" as used herein includes a single crystal with a completely uniform crystal structure, as well as a single crystal with a slightly incomplete crystal structure including defects such as vacancies, dislocations, and subgrains obtained by a general solidification method. .

【0009】この種結晶の結晶方位を継承した単結晶を
成長させるために、種結晶は加熱溶解した単結晶原料と
接触させて部分的に溶解し、その溶解が実質的に停滞し
た後結晶成長を開始させる。鋳型は入り口側で種結晶の
融解点以上の高温、出口側でそれ以下の低温度の温度勾
配を有している。この鋳型内での溶解が実質的に停滞し
た時、鋳型入り口から融解点以上にある鋳型部分に接し
ているところまで種結晶が溶解して原料と混合し、種結
晶の先端における固液界面は鋳型内の一定位置に静止し
ている。この後、鋳型の温度分布を殆ど変化させず、種
結晶の冷却を開始または強化して種結晶から単結晶を成
長させる。続いてこの単結晶の成長長さ相当量を結晶成
長方向と逆方向に種結晶から成長した該単結晶を鋳型か
ら引き出して鋳造を開始する。この単結晶の成長部分に
対応する鋳型温度は原料の融解点以上である為、この引
き出し操作で鋳型から生じる結晶核による凝固は起こら
ない。種結晶の引き出し量に対応して単結晶が成長する
ので、単結晶の成長相当量を引き続き連続的または間欠
的に引き出す事により単結晶が成長する。
In order to grow a single crystal that inherits the crystal orientation of the seed crystal, the seed crystal is partially melted by contact with a heat-melted single crystal raw material, and after the melting is substantially stopped, the crystal growth is stopped. To start. The mold has a high temperature gradient above the melting point of the seed crystal on the entrance side and a low temperature gradient below the melting point on the exit side. When the dissolution in the mold is substantially stagnant, the seed crystal dissolves and mixes with the raw material from the entrance of the mold to a point in contact with the mold portion that is above the melting point, and the solid-liquid interface at the tip of the seed crystal is It is stationary at a certain position in the mold. Thereafter, the cooling of the seed crystal is started or strengthened, and the single crystal is grown from the seed crystal without substantially changing the temperature distribution of the template. Subsequently, the single crystal grown from the seed crystal in the direction opposite to the crystal growth direction by an amount corresponding to the growth length of the single crystal is pulled out of the mold to start casting. Since the temperature of the mold corresponding to the growth portion of the single crystal is equal to or higher than the melting point of the raw material, no solidification occurs due to crystal nuclei generated from the mold in this drawing operation. Since the single crystal grows in accordance with the amount of the seed crystal pulled out, the single crystal grows by continuously or intermittently pulling out the growth amount of the single crystal.

【0010】本発明の方法により使用できる原料や種結
晶に制限はないが、断熱質鋳型の材質上金属またはその
合金の単結晶の製造が容易である。またアルミニウムま
たはその合金においては黒鉛質の断熱質鋳型を用いるこ
とにより、特に高純度な原料が汚染なく使用できるメリ
ットがある。
Although there are no limitations on the raw materials and seed crystals that can be used by the method of the present invention, it is easy to produce a single crystal of a metal or an alloy thereof on the material of the heat insulating mold. In addition, the use of a graphite-based heat-insulating mold for aluminum or its alloy has the advantage that particularly high-purity raw materials can be used without contamination.

【0011】断熱質鋳型は原料の溶湯と反応しない、熱
伝導率の低い黒鉛やセラミック質が好ましい。また、断
熱質鋳型を原料の融点以下の範囲に保温しておくと、凝
固界面での単結晶の成長量と引き出し量の制御が容易に
なる。さらに、本発明の方法には鋳型表面から生じる結
晶核による凝固を防止するためにも断熱質の鋳型が良好
であり、黒鉛やセラミック質等が好ましい。
The heat-insulating mold is preferably made of graphite or ceramic having low thermal conductivity, which does not react with the raw material melt. In addition, when the heat insulating mold is kept at a temperature lower than the melting point of the raw material, it is easy to control the growth amount and the extraction amount of the single crystal at the solidification interface. Further, in the method of the present invention, a heat-insulating mold is preferable in order to prevent solidification due to crystal nuclei generated from the mold surface, and graphite and ceramics are preferable.

【0012】本発明の方法は、鋳造可能な金属およびそ
の合金に適用できる。具体的には、原子番号12のマグ
ネシウムから原子番号82の鉛までの金属およびその合
金に適用できる。また、これら金属元素の中で融点の低
いアルミニウム、銅、亜鉛、ガリウム、錫、鉛、金、銀
は鋳型材質に黒鉛等の一般的な素材が利用できることか
ら適用が容易である。
The method of the present invention is applicable to castable metals and their alloys. Specifically, it can be applied to metals and alloys thereof, from magnesium having an atomic number of 12 to lead having an atomic number of 82. Among these metal elements, aluminum, copper, zinc, gallium, tin, lead, gold, and silver, which have low melting points, can be easily applied since a general material such as graphite can be used as a mold material.

【0013】次に一例として本発明の連続的製造方法に
よりアルミニウム合金単結晶を製造する場合について説
明する。原料であるアルミニウム合金はルツボ内で溶解
し、そのルツボの下部に取り付けられた鋳型には種結晶
が装入されている。鋳造開始前の鋳型温度分布は、その
ルツボや溶解したアルミニウム合金からの熱の流入によ
り鋳型入り口がアルミニウム合金の融点以上に加熱さ
れ、一方の鋳型出口側では必要に応じて冷却され融点以
下になっている。この鋳型は鋳型入り口がアルミニウム
合金の融点以上になるよう周囲を加熱しても良い。
Next, a case where an aluminum alloy single crystal is manufactured by the continuous manufacturing method of the present invention will be described as an example. An aluminum alloy as a raw material is melted in a crucible, and a seed crystal is charged in a mold attached to a lower part of the crucible. Before the start of casting, the mold temperature distribution is such that the inlet of the mold is heated above the melting point of the aluminum alloy due to the inflow of heat from the crucible and the melted aluminum alloy, and cooled at the outlet of the mold as necessary at the outlet of the mold. ing. The periphery of the mold may be heated so that the entrance of the mold is higher than the melting point of the aluminum alloy.

【0014】種結晶の冷却位置を鋳型出口を基準に一定
位置に保持して、種結晶側からの脱熱とアルミニウム合
金溶湯からの熱の供給とがバランスして種結晶が一部溶
解した状態に種結晶を冷却する。この操作により原料溶
湯と種結晶の固液凝固界面が鋳型内で一定位置に形成さ
れ、種結晶の固液凝固界面が一定位置に静止した後、種
結晶の冷却を開始または強化し、数秒から数十分保持す
る。これにより種結晶からの結晶成長が起こり凝固界面
がアルミニウム合金溶湯側に移動して種結晶の結晶方位
を継承した単結晶が成長する。この成長は鋳型の高温側
に向かい、成長した単結晶材の凝固界面相当位置の鋳型
温度はアルミニウム合金の融点以上にあり、鋳型から生
じる結晶核の発生がなく、種結晶のみから単結晶が成長
する。この種結晶の冷却強化は種結晶の脱・給熱バラン
ス時の冷却位置を鋳型側に移動したり冷却水等の冷却媒
の量を増すことで達成できる。たとえば種結晶の冷却位
置の鋳型側への移動は単結晶の継続的な成長の為には凝
固界面の温度バランスを大きく変化させないよう1〜2
mmから50〜100mm程度が良い。
The cooling position of the seed crystal is maintained at a fixed position with respect to the mold outlet, and the heat removal from the seed crystal side and the supply of heat from the molten aluminum alloy are balanced to partially dissolve the seed crystal. Cool the seed crystal. By this operation, the solid-liquid solidification interface between the raw material melt and the seed crystal is formed at a certain position in the mold, and after the solid-liquid solidification interface of the seed crystal has stopped at a certain position, the cooling of the seed crystal is started or strengthened, and from several seconds Hold for tens of minutes. As a result, crystal growth from the seed crystal occurs, the solidification interface moves to the aluminum alloy melt side, and a single crystal that inherits the crystal orientation of the seed crystal grows. The growth proceeds toward the high temperature side of the mold, and the mold temperature at the position corresponding to the solidification interface of the grown single crystal material is higher than the melting point of the aluminum alloy.There is no generation of crystal nuclei generated from the mold, and the single crystal grows only from the seed crystal. I do. The cooling of the seed crystal can be enhanced by moving the cooling position of the seed crystal to the mold side at the time of de-heating / supplying heat, or by increasing the amount of a cooling medium such as cooling water. For example, the movement of the cooling position of the seed crystal to the mold side is performed so that the temperature balance at the solidification interface is not significantly changed for the continuous growth of the single crystal.
It is good to be about 50 to 100 mm from mm.

【0015】続いてこの冷却条件の変更によるアルミニ
ウム合金の凝固進行量と同じ距離もしくはそれ以下を凝
固方向とは逆方向に引き出し、鋳造を開始する。このよ
うな条件で引き出しを開始した後は単結晶の成長する時
間を置き、成長分を引き出す操作を繰り返して鋳造を続
ける。凝固量と引き出し量が実質的に一致させ得られれ
ばこの操作は間欠だけではなく連続して行なうことも可
能である。引き出し速度は2mm/分以上であることが望
ましく数mm/分から300mm/分が好ましい。2mm/分以
下では合金元素の偏析が生じる為、純アルミニウムの場
合は問題無いが合金材では均一な濃度の単結晶材が得ら
れない。300mm/分以上では装置の機構上単結晶化のバ
ランスをとる事は難しく、引き出し量の制御が難しくな
る。
Subsequently, the same distance or less as the solidification progress amount of the aluminum alloy due to the change of the cooling condition is drawn out in the direction opposite to the solidification direction, and casting is started. After starting the drawing under such conditions, a time for growing the single crystal is set, and the operation of drawing out the grown portion is repeated to continue casting. This operation can be performed not only intermittently but also continuously if the coagulation amount and the withdrawal amount can be substantially matched. The withdrawal speed is desirably 2 mm / min or more, preferably several mm / min to 300 mm / min. At 2 mm / min or less, alloying elements are segregated, so there is no problem in the case of pure aluminum, but a single crystal material having a uniform concentration cannot be obtained with an alloy material. At 300 mm / min or more, it is difficult to balance single crystallization due to the mechanism of the apparatus, and it is difficult to control the amount of extraction.

【0016】あらかじめセットした時間あるいは長さを
任意の速度で鋳造材を引き出し、その後所定の時間静止
させ、さらに引き出すといったサイクルを繰り返す事に
より連続した単結晶材が得られる。このような間欠ある
いは連続的な引き出し法を用いることにより、鋳型内で
の凝固が規則的になり、鋳造開始から終了時にかけて種
結晶以外からの新しい核の発生が防止でき、安定した鋳
造開始と早い鋳造速度での単結晶化が容易に達成される
とともに、平滑な鋳肌面が得られる。
A continuous single crystal material can be obtained by repeating a cycle of drawing out the cast material for a preset time or length at an arbitrary speed, stopping the cast material for a predetermined time, and then drawing out the cast material. By using such an intermittent or continuous drawing method, solidification in the mold becomes regular, and from the start to the end of casting, the generation of new nuclei other than seed crystals can be prevented, and stable casting can be achieved. Single crystallization at a high casting speed is easily achieved, and a smooth casting surface is obtained.

【0017】本発明の方法によれば単結晶が連続的に製
造でき、特に大型の単結晶が得られる。本発明により製
造した単結晶は、例えば、スパッタリングターゲット等
に利用することができる。スパッタリング法は、良質の
薄膜が得られ、生産性が高く、被コート材のダメージが
少ない等の理由により、反射膜、遮光膜、防湿膜、配線
材等に工業的に広く利用されている。また、スパッタリ
ング用ターゲットの結晶方位を制御することで成膜特性
を優れたものにすることができる。
According to the method of the present invention, a single crystal can be continuously produced, and a particularly large single crystal can be obtained. The single crystal produced according to the present invention can be used for, for example, a sputtering target. The sputtering method is widely used industrially as a reflection film, a light-shielding film, a moisture-proof film, a wiring material, and the like because a high-quality thin film is obtained, the productivity is high, and the material to be coated is less damaged. Further, by controlling the crystal orientation of the sputtering target, the film formation characteristics can be improved.

【0018】[0018]

【実施例】以下に本発明の実施例を示すが、本発明はこ
れに限定されるものではない。
EXAMPLES Examples of the present invention will be described below, but the present invention is not limited to these examples.

【0019】実施例1 図1に示すように、黒鉛坩堝2の底部に水平に取り付け
た内寸が幅400mm、高さ15mm、長さ200mm
の黒鉛鋳型3内に、幅395mm、厚さ15mm、長さ
300mmの表面が(110)面を持つアルミニウムを
種結晶4として鋳型に装入し、その鋳型の出口端3’’
から原料の(Al−0.5%Cu)合金1の溶湯と反対
方向に100mmの種結晶の位置に水冷ノズル5セット
し、室温(約20℃)の水1リットル/分で冷却しながら黒
鉛坩堝2に装入した原料の0.5%の銅を含有するアル
ミニウム合金を溶解した。鋳型入り口部分(図1の鋳型
入口端3’)のアルミニウム合金溶湯温度が720℃に
安定し、黒鉛鋳型3内で種結晶が一部溶解し凝固界面の
位置が一定となるのを確認した後、種結晶4の冷却位置
を黒鉛鋳型3側に10mm移動して15分保持した。そ
の後100mm/分の速度で種結晶4を0.2mm引き
出し、続いて2秒間隔で0.2mmづつ引き出し鋳造を
開始した。長さ600mmの大型の連続鋳造板を得た。
得られた板はX線回折による方位測定の結果、種結晶か
ら連続して成長した(110)面を持つアルミニウム
(Al−0.5%Cu)合金の単結晶であることを確認
した。結晶方位は、この連続鋳造板と種結晶から切り出
した測定試料の測定面を旋盤にて約1mm切削し切削に
よる表面の極薄い変形層を王水にて除去し、X線回折装
置((株)リガク製:RU−200)を用いてシュルツ
反射方位で測定した極点図から求めた。
EXAMPLE 1 As shown in FIG. 1, the inner dimensions of a graphite crucible 2 horizontally mounted on the bottom were 400 mm wide, 15 mm high, and 200 mm long.
In a graphite mold 3, aluminum having a width of 395 mm, a thickness of 15 mm, and a length of 300 mm and having a (110) plane as a seed crystal 4 is charged into the mold, and an exit end 3 ″ of the mold is provided.
5 sets of water-cooling nozzles at the position of a seed crystal of 100 mm in the opposite direction to the melt of the raw material (Al-0.5% Cu) alloy 1 and graphite while cooling with 1 liter / minute of water at room temperature (about 20 ° C) The aluminum alloy containing 0.5% copper of the raw material charged in the crucible 2 was melted. After confirming that the temperature of the aluminum alloy melt at the mold entrance (mold entrance end 3 ′ in FIG. 1) is stabilized at 720 ° C., the seed crystal partially dissolves in the graphite mold 3 and the position of the solidification interface becomes constant. Then, the cooling position of the seed crystal 4 was moved by 10 mm toward the graphite mold 3 and held for 15 minutes. Thereafter, the seed crystal 4 was drawn out at a rate of 100 mm / min by 0.2 mm, and then draw drawing was started at an interval of 2 seconds by 0.2 mm. A large continuous cast plate having a length of 600 mm was obtained.
As a result of orientation measurement by X-ray diffraction, the obtained plate was confirmed to be a single crystal of an aluminum (Al-0.5% Cu) alloy having a (110) plane continuously grown from a seed crystal. The crystal orientation was determined by cutting the measurement surface of the measurement sample cut from the continuous cast plate and the seed crystal with a lathe by about 1 mm, removing an extremely thin deformed layer on the surface with aqua regia, and using an X-ray diffractometer (Co., Ltd.). ) Rigaku: RU-200) to determine from the pole figure measured in the Schultz reflection direction.

【0020】実施例2 実施例1と同じ装置を用いて0.5%の銅を含有するア
ルミニウム合金を溶解し、実施例と同条件で原料の0.
5%の銅を含有するアルミニウム合金を溶解した。鋳型
入り口部分(図1の鋳型入口端3’)のアルミニウム合
金溶湯温度が720℃に安定し、種結晶が一部溶解し凝
固界面の位置が一定となるのを確認した後、種結晶の冷
却位置をそのままにして冷却水量を2リットル/分に増して
15分保持した。その後実施例1と同条件で引抜き、停
止を開始して連続的に鋳造して長さ600mmの大型の
連続鋳造板を得た。得られた板は種結晶から連続して成
長したアルミニウム合金の単結晶であることを確認し
た。
Example 2 Using the same apparatus as in Example 1, an aluminum alloy containing 0.5% of copper was melted.
An aluminum alloy containing 5% copper was melted. After confirming that the temperature of the aluminum alloy melt at the mold entrance (mold entrance end 3 ′ in FIG. 1) is stable at 720 ° C., the seed crystal is partially melted, and the position of the solidification interface becomes constant, the seed crystal is cooled. While maintaining the position, the cooling water amount was increased to 2 liter / min and held for 15 minutes. Thereafter, the sheet was drawn under the same conditions as in Example 1, stopped, started, and continuously cast to obtain a large continuous cast plate having a length of 600 mm. It was confirmed that the obtained plate was a single crystal of an aluminum alloy continuously grown from a seed crystal.

【0021】実施例3 鋳型の材質を炭化ホウ素を10%含有する黒鉛質の鋳型
を使用した以外は実施例1と同じ条件で鋳造して長さ6
00mmの大型の連続鋳造板を得た。得られた板は種結
晶から連続して成長したアルミニウム合金の単結晶であ
ることを確認した。
Example 3 A cast was made under the same conditions as in Example 1 except that a graphite mold containing 10% boron carbide was used as the mold material.
A large continuous cast plate of 00 mm was obtained. It was confirmed that the obtained plate was a single crystal of an aluminum alloy continuously grown from a seed crystal.

【0022】比較例1 実施例1と同じ装置を用いて0.5%の銅を含有するア
ルミニウム合金を溶解し、鋳型入り口部分(図1の鋳型
入口端3’)のアルミニウム合金溶湯温度が720℃に
一定した後更に15分放置し(温度は720℃で一定で
あった)、種結晶の冷却位置をそのままにして実施例1
と同条件で鋳造して長さ600mmの連続鋳造板を得
た。得られた板は鋳造開始部分から幅約5mmの結晶が
鋳造方向に連続して発生した多結晶組織であった。
COMPARATIVE EXAMPLE 1 Using the same apparatus as in Example 1, an aluminum alloy containing 0.5% of copper was melted, and the temperature of the molten aluminum alloy at the entrance of the mold (mold entrance end 3 'in FIG. 1) was 720. After the temperature was kept constant at 0 ° C., the mixture was left for 15 minutes (the temperature was kept constant at 720 ° C.).
A continuous cast plate having a length of 600 mm was obtained by casting under the same conditions as described above. The obtained plate had a polycrystalline structure in which crystals having a width of about 5 mm were continuously generated in the casting direction from the casting start portion.

【0023】比較例2 実施例1と同じ装置を用いて0.5%の銅を含有するア
ルミニウム合金を溶解し、鋳型入り口部分(図1の鋳型
入口端3’)のアルミニウム合金溶湯温度が720℃に
安定した後、種結晶の冷却位置を鋳型側に10mm移動
して15分保持した。その後100mm/分の速度で5
mmを種結晶4を引き出し、鋳造を開始した。続いて2
秒間隔で0.2mmづつ引き出し、長さ600mmの連続鋳造板を
得た。得られた板は鋳造開始部分から幅約5mmの結晶
が鋳造方向に連続して発生した多結晶組織であった。種
結晶の冷却強化による単結晶の成長量以上を引き出した
事に起因すると考えられる。
COMPARATIVE EXAMPLE 2 Using the same apparatus as in Example 1, an aluminum alloy containing 0.5% of copper was melted, and the temperature of the molten aluminum alloy at the entrance of the mold (mold entrance end 3 'in FIG. 1) was 720. After the temperature was stabilized at ° C, the cooling position of the seed crystal was moved 10 mm to the mold side and held for 15 minutes. Then, at a speed of 100 mm / min, 5
Then, the seed crystal 4 was pulled out of the mm, and casting was started. Then 2
At a time interval of 0.2 mm, the sheet was drawn out by 0.2 mm to obtain a continuous cast plate having a length of 600 mm. The obtained plate had a polycrystalline structure in which crystals having a width of about 5 mm were continuously generated in the casting direction from the casting start portion. This is considered to be due to the fact that more than the growth amount of the single crystal was extracted by the cooling enhancement of the seed crystal.

【0024】[0024]

【発明の効果】本発明によれば、純金属はもちろん合金
においても偏析の無い大型の単結晶が成長中の核発生な
く安定して製造でき、各種単結晶の連続的製造方法とし
てその工業的価値は極めて大きい。
According to the present invention, a large single crystal without segregation can be stably produced without any nucleation during growth, not only in pure metals but also in alloys. The value is extremely large.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に用いる鋳造装置の図面FIG. 1 is a drawing of a casting apparatus used in the present invention.

【符号の説明】[Explanation of symbols]

1.原料の(Al−0.5%Cu)合金 2.黒鉛坩堝 3.黒鉛鋳型 3’.鋳型入口端 3’’.鋳型出口端 4.種結晶 5.水冷ノズル 6.ノズルスライドレール 1. 1. Raw material (Al-0.5% Cu) alloy Graphite crucible 3. Graphite mold 3 '. Mold entrance end 3 ''. 3. Mold exit end Seed crystal 5. Water cooling nozzle 6. Nozzle slide rail

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】断熱質鋳型と種結晶を用いて、加熱溶解し
た単結晶の原料を種結晶と接触させて種結晶を部分的に
溶解した後、単結晶の成長を開始する単結晶の連続的製
造方法において、単結晶の原料および種結晶が鋳造可能
な金属またはその合金であり、該種結晶の溶解が実質的
に停滞した後種結晶の冷却を開始または強化することに
より種結晶を成長させ、該冷却により種結晶から成長し
た単結晶の長さ相当量を、結晶成長方向と逆方向に種結
晶から成長した該単結晶を鋳型から連続的または間欠的
に引き出すことにより単結晶を成長させることを特徴と
する単結晶の連続的製造方法。
1. A method for producing a single crystal, comprising: a step of bringing a single crystal material heated and melted into contact with the seed crystal to partially dissolve the seed crystal using a heat insulating template and a seed crystal; In a typical manufacturing method, a single crystal raw material and a seed crystal are castable metals or alloys thereof, and the seed crystal is grown by starting or strengthening the cooling of the seed crystal after the dissolution of the seed crystal has substantially stopped. A single crystal is grown by continuously or intermittently withdrawing the single crystal grown from the seed crystal from the template in the direction opposite to the crystal growth direction by an amount equivalent to the length of the single crystal grown from the seed crystal by the cooling. A method for continuously producing a single crystal.
【請求項2】鋳造可能な金属が原子番号12から82の
金属である請求項1記載の製造方法。
2. The method according to claim 1, wherein the castable metal is a metal having an atomic number of 12 to 82.
【請求項3】鋳造可能な金属がアルミニウム、銅、亜
鉛、ガリウム、錫、鉛、金、銀である請求項1記載の製
造方法。
3. The method according to claim 1, wherein the castable metal is aluminum, copper, zinc, gallium, tin, lead, gold or silver.
【請求項4】鋳造可能な金属がアルミニウムである請求
項1記載の製造方法。
4. The method according to claim 1, wherein the castable metal is aluminum.
【請求項5】断熱質鋳型の材質が黒鉛またはセラミック
質である請求項1乃至4記載の製造方法。
5. The method according to claim 1, wherein the material of the heat insulating mold is graphite or ceramic.
【請求項6】断熱質鋳型が原料の融点以下に保温されて
いる請求項1乃至5記載の製造方法。
6. The method according to claim 1, wherein the heat insulating mold is kept at a temperature lower than the melting point of the raw material.
【請求項7】断熱質鋳型が底のない箱型または筒型状で
ある請求項1乃至6記載の製造方法。
7. The method according to claim 1, wherein the heat-insulating mold has a box shape or a tubular shape without a bottom.
【請求項8】断熱質鋳型を下部に取り付けた溶解または
保持用ルツボで原料を溶解し、一定温度で保持して、該
鋳型内に該原料を装入する請求項1乃至7記載の製造方
法。
8. The method according to claim 1, wherein the raw material is melted in a melting or holding crucible having a heat insulating mold attached to a lower portion, the raw material is held at a constant temperature, and the raw material is charged into the mold. .
JP17032697A 1997-06-26 1997-06-26 Method for continuously producing single crystal Pending JPH1110312A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17032697A JPH1110312A (en) 1997-06-26 1997-06-26 Method for continuously producing single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17032697A JPH1110312A (en) 1997-06-26 1997-06-26 Method for continuously producing single crystal

Publications (1)

Publication Number Publication Date
JPH1110312A true JPH1110312A (en) 1999-01-19

Family

ID=15902885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17032697A Pending JPH1110312A (en) 1997-06-26 1997-06-26 Method for continuously producing single crystal

Country Status (1)

Country Link
JP (1) JPH1110312A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110200841A1 (en) * 2009-12-22 2011-08-18 Grain Free Products, Inc. System for the production of grain free metal products
JP2015529189A (en) * 2012-09-21 2015-10-05 ブサン ナショナル ユニバーシティー インダストリアル ユニバーシティー コオペレーション ファウンデーションBusan National University Industrial University Cooperation Foundation Metal single crystal with substituted metal atoms
CN115415488A (en) * 2022-07-27 2022-12-02 上海交通大学 Horizontal continuous casting preparation process for ultra-high quality single crystal copper

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110200841A1 (en) * 2009-12-22 2011-08-18 Grain Free Products, Inc. System for the production of grain free metal products
JP2015529189A (en) * 2012-09-21 2015-10-05 ブサン ナショナル ユニバーシティー インダストリアル ユニバーシティー コオペレーション ファウンデーションBusan National University Industrial University Cooperation Foundation Metal single crystal with substituted metal atoms
CN115415488A (en) * 2022-07-27 2022-12-02 上海交通大学 Horizontal continuous casting preparation process for ultra-high quality single crystal copper

Similar Documents

Publication Publication Date Title
KR100318112B1 (en) Manufacturing method of aluminum alloy single crystal sputtering target
Ohno Continuous casting of single crystal ingots by the OCC process
JP3919256B2 (en) Method for producing directionally solidified castings and apparatus for carrying out this method
US3608050A (en) Production of single crystal sapphire by carefully controlled cooling from a melt of alumina
CN111364096B (en) Substrate-triggered single crystal high-temperature alloy directional solidification process
JPS6345112A (en) Purification of silicon
JP3329013B2 (en) Continuous refining method and apparatus for Al-Si aluminum scrap
JP2009513469A (en) Apparatus and method for producing a ribbon of silicon or other crystalline material
WO2007093082A1 (en) A process of producing silicon wafer employing float method and apparatus thereof
JPS61169149A (en) Continuous casting method
JP3725620B2 (en) Method and apparatus for producing high purity copper single crystal
JPH1110312A (en) Method for continuously producing single crystal
JP2000176606A (en) Production of high purity aluminum and alloy continuously cast material and cast material thereof and aluminum alloy single crystal target using it
JP2001226721A (en) Refining method for aluminum and its application
JPH1112727A (en) Aluminum alloy single crystal target
JPS58103941A (en) Production of metallic material having specular surface
JPH0578195A (en) Production of cast ingot of high-purity copper single crystal
JP4141467B2 (en) Method and apparatus for producing spherical silicon single crystal
JPS62292242A (en) Method and apparatus for continuous casting of metallic material
JP2007045640A (en) Forming method of semiconductor bulk crystal
JPH07256398A (en) Continuous casting equipment for silicon sheet of horizontally heated mold type
RU2662004C1 (en) METHOD FOR MELTING WITH DIRECTIONAL CRYSTALIZATION OF MAGNETIC ALLOY OF THE Fe-Al-Ni-Co SYSTEM
JP3718989B2 (en) Aluminum purification method and purification apparatus
US5785753A (en) Single crystal manufacturing method
JP3318012B2 (en) Method and apparatus for producing metal single crystal