JP7348519B2 - Method of dephosphorizing hot metal - Google Patents

Method of dephosphorizing hot metal Download PDF

Info

Publication number
JP7348519B2
JP7348519B2 JP2019227700A JP2019227700A JP7348519B2 JP 7348519 B2 JP7348519 B2 JP 7348519B2 JP 2019227700 A JP2019227700 A JP 2019227700A JP 2019227700 A JP2019227700 A JP 2019227700A JP 7348519 B2 JP7348519 B2 JP 7348519B2
Authority
JP
Japan
Prior art keywords
blowing
hot metal
dephosphorizing
dephosphorization
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019227700A
Other languages
Japanese (ja)
Other versions
JP2021095608A (en
Inventor
惇史 久志本
遼 北野
聡 木下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2019227700A priority Critical patent/JP7348519B2/en
Publication of JP2021095608A publication Critical patent/JP2021095608A/en
Application granted granted Critical
Publication of JP7348519B2 publication Critical patent/JP7348519B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Description

本発明は、吹錬によって溶銑に脱りん剤を吹付ける脱りん方法に関する。 The present invention relates to a dephosphorization method in which a dephosphorizing agent is sprayed onto hot metal by blowing.

近年、環境への配慮から蛍石を用いずにCaO粉を上吹きして脱りん処理を行う方法が採用されており、CaO粉の上吹き条件について様々な提案がなされている。 In recent years, a method of performing dephosphorization treatment by top-blowing CaO powder without using fluorite has been adopted due to environmental considerations, and various proposals have been made regarding top-blowing conditions for CaO powder.

特許文献1には、CaO粉上吹きによりCaO滓化率を低下させずに塩基度を高め、かつスラグフォーミングを抑制することで粒鉄ロスを抑制する技術が開示されている。特許文献2には、CaO粉供給速度を3kg/min/溶銑t以下とすること、さらには処理後のスラグの塩基度(CaO/SiO2比)の範囲を2~3とすることが開示されている。さらに特許文献3には、CaO粉供給速度が0.5kg/min/t~3.0kg/min/tとし、配合塩基度や粉体供給期間の条件を規定することが開示されている。 Patent Document 1 discloses a technique of increasing basicity without reducing the CaO slag formation rate by top-blowing CaO powder, and suppressing granular iron loss by suppressing slag foaming. Patent Document 2 discloses that the CaO powder supply rate is 3 kg/min/ton of hot metal or less, and that the basicity (CaO/SiO 2 ratio) of the slag after treatment is in the range of 2 to 3. ing. Further, Patent Document 3 discloses that the CaO powder supply rate is set to 0.5 kg/min/t to 3.0 kg/min/t, and the conditions of blend basicity and powder supply period are specified.

特許第5772645号公報Patent No. 5772645 特許第5553167号公報Patent No. 5553167 特許第5412994号公報Patent No. 5412994

特許文献1に記載の方法は脱りんを目的とした技術ではなく、スラグボリュームに関する記載がないため、脱りんとしての十分な効果あるかどうかが不明である。特許文献2及び3に記載の方法は、溶銑中のSi濃度など考慮すべき条件が不十分であるため、脱りん能が不足し、さらには脱りん効果がばらつくという問題点がある。 The method described in Patent Document 1 is not a technique aimed at dephosphorization, and there is no description regarding slag volume, so it is unclear whether it is sufficiently effective as dephosphorization. The methods described in Patent Documents 2 and 3 have problems in that the dephosphorization ability is insufficient and the dephosphorization effect varies because the conditions to be considered, such as the Si concentration in the hot metal, are insufficient.

本発明は前述の問題点を鑑み、高い脱りん効果が安定して得られる溶銑の脱りん方法を提供することを目的とする。 SUMMARY OF THE INVENTION In view of the above-mentioned problems, an object of the present invention is to provide a method for dephosphorizing hot metal that can stably obtain a high dephosphorizing effect.

本発明は、以下のとおりである。
(1)
溶銑の脱りん方法であって、
精錬容器に第一脱りん剤および酸化鉄を50質量%以上含む固体酸素源を装入する工程と、
次いで送酸ランスから酸素とともに第二脱りん剤を吹込むことにより前記溶銑を脱りん吹錬する工程とを備え、
前記脱りん吹錬工程中に前記第二脱りん剤を、前記酸素の吹込みを開始してから終了するまでの脱りん吹錬の全期間の50%以上の期間で連続して供給し、前記脱りん吹錬の50%の期間が経過した時点で前記第二脱りん剤の供給量WdeP-IIと副材装入量Wchargeとの関係が以下の(1)式を満たし、かつ前記酸素の吹込みが終了した時点での前記第二脱りん剤の供給量WdeP-IIと副材装入量Wchargeとの関係が以下の(2)式を満たすことを特徴とする溶銑の脱りん方法。
0.16<WdeP-II/Wcharge<0.25 ・・・(1)
0.30<WdeP-II/Wcharge0.44 ・・・(2)
charge=WdeP-I+Woxide+WSiO2 ・・・(3)
SiO2=0.0214×Wiron×[Si] ・・・(4)
ここで、WdeP-Iは前記第一脱りん剤の装入量(t)を表し、Woxideは前記固体酸素源の装入量(t)を表し、WSiO2は脱珪反応によって生成されたスラグ中のSiO2量(t)を表し、Wironは前記精錬容器に装入された溶銑の量(t)を表し、[Si]は脱りん処理前での前記溶銑中のSi濃度(質量%)を表す。
The present invention is as follows.
(1)
A method for dephosphorizing hot metal,
A step of charging a first dephosphorizing agent and a solid oxygen source containing 50% by mass or more of iron oxide into a refining container;
Next, a step of dephosphorizing and blowing the hot metal by blowing a second dephosphorizing agent together with oxygen from an oxygen supply lance,
During the dephosphorization blowing step, the second dephosphorizing agent is continuously supplied for a period of 50% or more of the entire period of the dephosphorization blowing from the start of the oxygen blowing until the end, When 50% of the period of the dephosphorization blowing has elapsed, the relationship between the supply amount W deP-II of the second dephosphorizing agent and the amount W charge of the auxiliary material satisfies the following formula (1), and Hot metal characterized in that the relationship between the supply amount W deP-II of the second dephosphorizing agent and the auxiliary material charging amount W charge at the time when the oxygen blowing is finished satisfies the following formula (2). Dephosphorization method.
0.16<W deP-II /W charge <0.25...(1)
0.30<W deP-II /W charge < 0.44 ...(2)
W charge =W deP-I +W oxide +W SiO2 ...(3)
W SiO2 =0.0214×W iron ×[Si]...(4)
Here, W deP-I represents the charging amount (t) of the first dephosphorizing agent, W oxide represents the charging amount (t) of the solid oxygen source, and W SiO2 is generated by the desiliconization reaction. W iron represents the amount (t) of the hot metal charged in the slag, [Si] represents the Si concentration (t) in the hot metal before dephosphorization treatment. mass%).

本発明によれば、高い脱りん効果が安定して得られる溶銑の脱りん方法を提供することを目的とする。 According to the present invention, it is an object of the present invention to provide a method for dephosphorizing hot metal that can stably obtain a high dephosphorizing effect.

脱りん吹錬でのスラグの塩基度の変化を説明するための図である。FIG. 3 is a diagram for explaining changes in basicity of slag during dephosphorization blowing. 吹錬前半での第二脱りん剤の供給量と溶銑中P濃度との関係を説明するための図である。It is a figure for explaining the relationship between the supply amount of the second dephosphorizing agent and the P concentration in hot metal in the first half of blowing. 吹錬終了時での第二脱りん剤の供給量と溶銑中P濃度との関係を説明するための図である。FIG. 3 is a diagram for explaining the relationship between the supply amount of the second dephosphorizing agent and the P concentration in hot metal at the end of blowing.

以下、本発明の実施形態について図面を参照しながら詳細に説明する。まず、本発明者らは、特に極低りん鋼を安定して溶製するための条件を見出すために、脱りん反応の詳細なプロセスについて鋭意検討した。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. First, the present inventors conducted intensive studies on the detailed process of the dephosphorization reaction, particularly in order to find conditions for stably producing ultra-low phosphorus steel.

溶銑表面に酸素ジェットが衝突する箇所(以下、火点)は2000℃以上の高温であり、かつ以下の(5)式に示すFeO生成反応、および以下の(6)式に示す脱炭反応とが並行して起こる。
2[Fe]+O2=2(FeO) ・・・(5)
(FeO)+[C]=[Fe]+CO↑ ・・・(6)
The point where the oxygen jet collides with the hot metal surface (hereinafter referred to as the fire point) is at a high temperature of 2000°C or higher, and the FeO production reaction shown in equation (5) below and the decarburization reaction shown in equation (6) below occur. occur in parallel.
2[Fe]+O 2 =2(FeO)...(5)
(FeO) + [C] = [Fe] + CO↑ ... (6)

ここで、酸素ジェットと共に微細なCaO粉をランスから火点に直接供給することでCaO自体の溶融を促進でき、かつFeOとの混合により低融点のカルシウムフェライト融体(以下、CF)を生成させることができるため、スラグの滓化促進および高液相率の維持に極めて有用である。また、CaO粉の供給速度によってCF中のFeO濃度が変化し、CaO粉を高速で供給するほどCF中のFeOの濃度および活量が低下するため、酸化物として安定化し、Cに還元され難く、スラグにFeOを安定供給できる。 Here, by supplying fine CaO powder directly from a lance to the fire point together with an oxygen jet, it is possible to promote the melting of CaO itself, and when mixed with FeO, a low melting point calcium ferrite melt (hereinafter referred to as CF) is generated. Therefore, it is extremely useful for promoting slag formation and maintaining a high liquid phase ratio. In addition, the FeO concentration in CF changes depending on the supply speed of CaO powder, and the faster the CaO powder is supplied, the lower the concentration and activity of FeO in CF, which makes it more stable as an oxide and less likely to be reduced to C. , FeO can be stably supplied to the slag.

一方で、脱りん反応は、ダイカルシウムシリケート(2CaO・SiO2、以下、C2S)固相を液相スラグ中に生成させることで液相スラグ中のPをトリカルシウムフォスフェート(3CaO・P25、以下C3P)として固相中に取り込むことが可能となり、液相スラグの脱りん能を高位に維持することができる。C2Sを生成させるためにはスラグの塩基度を一定値以上まで速やかに高める必要がある。一方で、脱りん吹錬末期までCaO粉を高速で過剰に供給し続けると、スラグの塩基度が高くなりすぎてしまう。スラグの塩基度が高すぎると、スラグ固相率が大きく増加してしまい、流動性が悪化して脱りん反応が大きく阻害されてしまう。 On the other hand, the dephosphorization reaction generates a dicalcium silicate (2CaO.SiO 2 , hereinafter referred to as C 2 S) solid phase in the liquid slag, converting P in the liquid slag into tricalcium phosphate (3CaO.P). It becomes possible to incorporate it into the solid phase as 2 O 5 (hereinafter referred to as C 3 P), and the dephosphorizing ability of the liquid phase slag can be maintained at a high level. In order to generate C 2 S, it is necessary to quickly increase the basicity of the slag to a certain value or higher. On the other hand, if CaO powder is continued to be supplied in excess at high speed until the final stage of dephosphorization blowing, the basicity of the slag will become too high. If the basicity of the slag is too high, the solid phase ratio of the slag will increase significantly, the fluidity will deteriorate, and the dephosphorization reaction will be greatly inhibited.

図1は、脱りん吹錬でのスラグの塩基度の変化を説明するための図である。図1に示すように、吹錬前半(吹錬全期間の50%までの期間)では、速やかにC2Sを生成させるためになるべく高速でCaO粉を供給するようにする。ただし、吹錬後半も粉体供給を継続する必要があるため、吹錬前半でCaO粉を供給しすぎると吹錬後半(吹錬全期間の50%以降の期間)の吹込速度次第ではスラグの固相が過剰になりスラグの流動性が悪化してしまうため、適正なスラグ組成に制御するためには吹込速度を抑える必要がある。 FIG. 1 is a diagram for explaining changes in basicity of slag during dephosphorization blowing. As shown in FIG. 1, in the first half of the blowing period (up to 50% of the total blowing period), CaO powder is supplied as fast as possible in order to quickly generate C 2 S. However, since it is necessary to continue supplying powder during the second half of blowing, if too much CaO powder is supplied during the first half of blowing, the slag may Since the solid phase becomes excessive and the fluidity of the slag deteriorates, it is necessary to suppress the blowing speed in order to control the slag composition to an appropriate level.

図1に示すように、吹錬後半では固相過剰領域に到達しない範囲で可能な限りスラグ塩基度を高める。このとき、CaO粉供給速度を一定以上確保し、スラグ中にFeOを安定供給できるようにする。 As shown in FIG. 1, in the latter half of blowing, the slag basicity is increased as much as possible without reaching the solid phase excess region. At this time, the CaO powder supply rate is ensured to be above a certain level so that FeO can be stably supplied into the slag.

次に、以上のように条件で脱りん処理を行う場合に、より具体的な条件について説明する。脱りん処理では、脱りん吹錬を行う前に、まず、転炉などの精錬容器内に溶銑、第一脱りん剤および固体酸素源を装入する。そして、送酸による溶銑の脱珪反応によってスラグ中にSiO2が生成した状態で脱りん吹錬を行う。 Next, more specific conditions will be described when performing the dephosphorization treatment under the conditions described above. In the dephosphorization treatment, before performing dephosphorization blowing, hot metal, a first dephosphorization agent, and a solid oxygen source are first charged into a refining vessel such as a converter. Then, dephosphorization blowing is performed in a state in which SiO 2 is generated in the slag by the desiliconization reaction of the hot metal by oxygen feeding.

溶銑に装入する第一脱りん剤は、スラグ塩基度を制御できるものであれば特に銘柄、粒径等は限定しないが、装入時の歩留まりを考慮すると、粉体よりは数mm~数10mm程度の粒状であることが好ましい。第一脱りん剤の種類としては、例えば生石灰、石灰石、ドロマイト系石灰などが挙げられる。 The brand and particle size of the first dephosphorizer to be charged to the hot metal are not particularly limited as long as it can control the basicity of the slag, but considering the yield at the time of charging, it is better to use a powder of several mm to several It is preferable that the particles be in the form of particles of about 10 mm. Examples of the first dephosphorizing agent include quicklime, limestone , and dolomitic lime.

溶銑に装入する固体酸素は、溶銑温度の調整、スラグの滓化促進のために装入される。酸化鉄を多量に含む(50質量%以上程度)ものであれば特に銘柄、粒径等は限定しない。具体的には例えば鉄鉱石などが挙げられる。 A solid oxygen source is charged into the hot metal in order to adjust the temperature of the hot metal and promote slag formation. As long as it contains a large amount of iron oxide (approximately 50% by mass or more), the brand, particle size, etc. are not particularly limited. Specific examples include iron ore.

次に、脱りん吹錬の詳細な条件について説明する。酸素吹錬を開始してから終了するまでの脱りん吹錬の全期間の50%以上の期間は、第二脱りん剤を連続して供給する。CaO粉を連続して供給することで低融点のCF融体をスラグに供給し続けることができるため、スラグの高FeO化、溶融性維持が可能となる。連続で供給する期間が全期間の50%未満であると、CFの供給が滞りスラグの液相率が低下してしまう。なお、酸素ジェットの送酸速度は基本的には一定とし、送酸速度は特に限定しないが、例えば溶銑が300t規模である場合には、脱りん吹錬中の送酸速度は概ね400~700Nm3/minの範囲内であることが多い。 Next, detailed conditions for dephosphorization blowing will be explained. The second dephosphorizing agent is continuously supplied for 50% or more of the entire period of dephosphorizing blowing from the start to the end of oxygen blowing. By continuously supplying CaO powder, it is possible to continue supplying a low melting point CF melt to the slag, making it possible to increase the FeO content of the slag and maintain its meltability. If the continuous supply period is less than 50% of the total period, the supply of CF will be delayed and the liquid phase ratio of the slag will decrease. Note that the oxygen delivery rate of the oxygen jet is basically constant, and the oxygen delivery rate is not particularly limited, but for example, if the hot metal is 300 tons, the oxygen delivery rate during dephosphorization blowing is approximately 400 to 700 Nm. It is often within the range of 3 /min.

また、第二脱りん剤は、スラグ塩基度を調整するために送酸ランスから火点に酸素ジェット共に直接供給される。CaO源を含むものであれば銘柄は特に限定しないが、CaOあるいはCaCO3を50質量%以上含有することが好ましい。また、第一脱りん剤とは異なり、第二脱りん剤は送酸ランスから供給されるため、粉体であることが好ましく、粒径が100μm未満であることがより好ましい。 Further, the second dephosphorizing agent is directly supplied together with the oxygen jet from the oxygen supply lance to the fire point in order to adjust the slag basicity. The brand is not particularly limited as long as it contains a CaO source, but preferably contains 50% by mass or more of CaO or CaCO 3 . Furthermore, unlike the first dephosphorizing agent, the second dephosphorizing agent is supplied from the oxygen supply lance, so it is preferably a powder, and more preferably has a particle size of less than 100 μm.

次に、第二脱りん剤の供給量について説明する。本発明者らは、スラグの脱りん能を高め、安定して高い脱りん効果を得るための第二脱りん剤の供給条件を検討し、試験やシミュレーション等を通じてその条件を見出した。 Next, the supply amount of the second dephosphorizing agent will be explained. The present inventors investigated the conditions for supplying the second dephosphorizing agent in order to increase the dephosphorizing ability of slag and obtain a stable and high dephosphorizing effect, and found the conditions through tests, simulations, etc.

図2は、吹錬前半での第二脱りん剤の供給量と溶銑中P濃度との関係を説明するための図であり、図3は、吹錬終了時での第二脱りん剤の供給量と溶銑中P濃度との関係を説明するための図である。図2及び図3に示す実験結果から、第二脱りん剤の供給量は、脱りん吹錬の全期間の50%が経過した段階で第二脱りん剤の供給量WdeP-IIと副材装入量W
chargeとの関係が以下の(1)式を満たし、かつ吹錬終了時での第二脱りん剤の供給量WdeP-IIと副材装入量Wchargeとの関係が以下の(2)式を満たすようにする。
0.16<WdeP-II/Wcharge<0.25 ・・・(1)
0.30<WdeP-II/Wcharge<0.45 ・・・(2)
charge=WdeP-I+Woxide+WSiO2 ・・・(3)
SiO2=0.0214×Wiron×[Si] ・・・(4)
Figure 2 is a diagram for explaining the relationship between the supply amount of the second dephosphorizing agent and the P concentration in hot metal in the first half of blowing, and Figure 3 is a diagram for explaining the relationship between the supply amount of the second dephosphorizing agent and the P concentration in hot metal in the first half of blowing. It is a figure for explaining the relationship between supply amount and P concentration in hot metal. From the experimental results shown in Figures 2 and 3, the supply amount of the second dephosphorizing agent is determined to be equal to the supply amount W deP-II of the second dephosphorizing agent and the Material charging amount W
The relationship with charge satisfies the following equation (1), and the relationship between the supply amount W deP-II of the second dephosphorizing agent and the auxiliary material charging amount W charge at the end of blowing is as shown in (2) below. Make sure that the formula is satisfied.
0.16<W deP-II /W charge <0.25...(1)
0.30<W deP-II /W charge <0.45...(2)
W charge =W deP-I +W oxide +W SiO2 ...(3)
W SiO2 =0.0214×W iron ×[Si]...(4)

ここで、WdeP-Iは第一脱りん剤の装入量(t)を表し、Woxideは固体酸素源の装入
量(t)、WSiO2は、脱珪反応により生成されたスラグ中のSiO2量(t)を表し、Wironは、精錬容器に装入された溶銑の量(t)を表し、[Si]は、脱りん処理前での溶銑中Si濃度(質量%)を表す。
Here, W deP-I represents the charging amount (t) of the first dephosphorizing agent, W oxide represents the charging amount (t) of the solid oxygen source, and W SiO2 represents the charging amount (t) of the first dephosphorizing agent. W iron represents the amount of hot metal (t) charged into the refining vessel, and [Si] represents the Si concentration (mass%) in the hot metal before dephosphorization treatment. represent.

前述したように、CaO粉供給速度は吹錬前半および吹錬後半でバランスが重要となる。吹錬前半(吹錬全期間の50%までの期間)までに塩基度を高めてC2Sを生成させておく必要があり、吹錬前半では、(1)式に示すように第二脱りん剤の供給量と副材装入量との比を0.16超とする。ただし、吹錬前半にCaO粉を過剰に供給すると、最終的なスラグ組成を適正範囲に収めるために吹錬後半で供給速度を大幅に低下させなければならず、CFの供給が滞る。そのため、吹錬前半では、(1)式に示すように第二脱りん剤の供給量と副材装入量との比を0.25未満とする。 As mentioned above, it is important to balance the CaO powder supply rate between the first half of blowing and the second half of blowing. It is necessary to increase the basicity and generate C2S by the first half of the blowing period (up to 50% of the total blowing period). The ratio between the supply amount of auxiliary material and the amount of auxiliary material charged is more than 0.16. However, if excessive CaO powder is supplied during the first half of blowing, the supply rate must be significantly reduced during the second half of blowing in order to keep the final slag composition within an appropriate range, and the supply of CF is delayed. Therefore, in the first half of blowing, the ratio between the amount of second dephosphorizing agent supplied and the amount of auxiliary material charged is set to be less than 0.25, as shown in equation (1).

一方、吹錬後半では、固液共存の範囲で可能な限りスラグ塩基度を高めておく必要がある。したがって、吹錬終了時では、(2)式に示すように、第二脱りん剤の供給量と副材装入量との比を0.30超とする。ただし、スラグ塩基度を過度に高めてしまうとスラグが完全固相となり、流動性が失われて脱りん反応が生じなくなる。そのため、吹錬終了時では、(2)式に示すように、第二脱りん剤の供給量と副材装入量との比を0.45未満とする。 On the other hand, in the latter half of blowing, it is necessary to increase the basicity of the slag as much as possible within the range of solid-liquid coexistence. Therefore, at the end of blowing, as shown in equation (2), the ratio between the amount of second dephosphorizing agent supplied and the amount of auxiliary material charged is set to exceed 0.30. However, if the slag basicity is increased too much, the slag becomes a complete solid phase, loses fluidity, and dephosphorization reaction no longer occurs. Therefore, at the end of blowing, as shown in equation (2), the ratio between the amount of second dephosphorizing agent supplied and the amount of auxiliary material charged is set to be less than 0.45.

以上のように、脱りん吹錬では、副材装入量との関係で第二脱りん剤の供給量を決定している。副材装入量は脱珪反応前の溶銑中Si濃度に基づいて決定されるため、効果にばらつきが生じにくく安定して高い脱りん効果を得ることができる。 As described above, in dephosphorization blowing, the supply amount of the second dephosphorizing agent is determined in relation to the amount of auxiliary material charged. Since the amount of the auxiliary material charged is determined based on the Si concentration in the hot metal before the desiliconization reaction, it is possible to obtain a stable and high dephosphorization effect without causing variations in the effect.

次に、本発明の実施例について説明するが、実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。 Next, an example of the present invention will be described. The conditions in the example are examples of conditions adopted to confirm the feasibility and effects of the present invention, and the present invention is based on this example of conditions. It is not limited. The present invention can adopt various conditions as long as the purpose of the present invention is achieved without departing from the gist of the present invention.

高炉処理を終えた300t規模の溶銑を溶銑鍋に出銑し、脱硫等の溶銑予備処理を実施した後に溶銑を転炉に装入した。その後第一脱りん剤および固体酸素源を転炉に装入し、送酸を開始して脱りん吹錬を開始した。なお、脱りん吹錬中の送酸速度は400Nm3/minとした。なお、脱りん吹錬を開始する前、および吹錬終了時で溶銑サンプルを採取して化学分析に供し、溶銑中のP濃度を分析した。吹錬開始前の溶銑中P濃度[P]0と吹錬終了時の溶銑中P濃度[P]脱P後との比が0.15であった場合に発明の効果が十分得られたと判断した。なお、表1及び表2中の下線は、本発明の範囲から外れた条件であることを示している。 After blast furnace treatment, 300 tons of hot metal was tapped into a hot metal ladle, and after performing preliminary treatment such as desulfurization, the hot metal was charged into a converter. Thereafter, the first dephosphorizing agent and solid oxygen source were charged into the converter, and oxygen supply was started to start dephosphorizing blowing. Note that the oxygen supply rate during dephosphorization blowing was 400 Nm 3 /min. Note that hot metal samples were taken before the start of dephosphorization blowing and at the end of blowing and subjected to chemical analysis to analyze the P concentration in the hot metal. It is determined that the effects of the invention have been sufficiently achieved when the ratio of the P concentration in hot metal [P] 0 before the start of blowing to the P concentration [P] in hot metal after dephosphorization at the end of blowing is 0.15. did. Note that the underlines in Tables 1 and 2 indicate conditions outside the scope of the present invention.

表1及び表2に示すように、Ch.No.1~3は、脱りん吹錬の全期間の50%以上の期間の間、第二脱りん剤を連続して供給し、かつ前述の(1)式および(2)式の条件を満たしていたため、発明の効果が十分に得られた。 As shown in Tables 1 and 2, Ch. No. 1 to 3, the second dephosphorizing agent is continuously supplied for 50% or more of the entire dephosphorizing blowing period, and the conditions of the above-mentioned formulas (1) and (2) are satisfied. Therefore, the effects of the invention were sufficiently obtained.

一方、Ch.No.4及びCh.No.5は前述の(1)式の条件を満たさなかったため、脱りん効果が不十分であった。また、Ch.No.6及びCh.No.7は前述の(2)式の条件を満たさなかったため、脱りん効果が不十分であった。さらに、Ch.No.8は第二脱りん剤を連続して供給した期間が、脱りん吹錬の全期間の50%未満であったため、脱りん効果が不十分であった。 On the other hand, Ch. No. 4 and Ch. No. No. 5 did not satisfy the conditions of the above-mentioned formula (1), so the dephosphorizing effect was insufficient. Also, Ch. No. 6 and Ch. No. Since Sample No. 7 did not satisfy the condition of the above-mentioned formula (2), the dephosphorizing effect was insufficient. Furthermore, Ch. No. In Sample No. 8, the period during which the second dephosphorizing agent was continuously supplied was less than 50% of the total period of dephosphorizing blowing, so the dephosphorizing effect was insufficient.

Claims (1)

溶銑の脱りん方法であって、
精錬容器に第一脱りん剤および酸化鉄を50質量%以上含む固体酸素源を装入する工程と、
次いで送酸ランスから酸素とともに第二脱りん剤を吹込むことにより前記溶銑を脱りん吹錬する工程とを備え、
前記脱りん吹錬工程中に前記第二脱りん剤を、前記酸素の吹込みを開始してから終了するまでの脱りん吹錬の全期間の50%以上の期間で連続して供給し、前記脱りん吹錬の50%の期間が経過した時点で前記第二脱りん剤の供給量WdeP-IIと副材装入量Wchargeとの関係が以下の(1)式を満たし、かつ前記酸素の吹込みが終了した時点での前記第二脱りん剤の供給量WdeP-IIと副材装入量Wchargeとの関係が以下の(2)式を満たすことを特徴とする溶銑の脱りん方法。
0.16<WdeP-II/Wcharge<0.25 ・・・(1)
0.30<WdeP-II/Wcharge0.44 ・・・(2)
charge=WdeP-I+Woxide+WSiO2 ・・・(3)
SiO2=0.0214×Wiron×[Si] ・・・(4)
ここで、WdeP-Iは前記第一脱りん剤の装入量(t)を表し、Woxideは前記固体酸素源の装入量(t)を表し、WSiO2は脱珪反応によって生成されたスラグ中のSiO2量(t)を表し、Wironは前記精錬容器に装入された溶銑の量(t)を表し、[Si]は脱りん処理前での前記溶銑中のSi濃度(質量%)を表す。
A method for dephosphorizing hot metal,
A step of charging a first dephosphorizing agent and a solid oxygen source containing 50% by mass or more of iron oxide into a refining container;
Next, a step of dephosphorizing and blowing the hot metal by blowing a second dephosphorizing agent together with oxygen from an oxygen supply lance,
During the dephosphorization blowing step, the second dephosphorizing agent is continuously supplied for a period of 50% or more of the entire period of the dephosphorization blowing from the start of the oxygen blowing until the end, When 50% of the period of the dephosphorization blowing has elapsed, the relationship between the supply amount W deP-II of the second dephosphorizing agent and the amount W charge of the auxiliary material satisfies the following formula (1), and Hot metal characterized in that the relationship between the supply amount W deP-II of the second dephosphorizing agent and the auxiliary material charging amount W charge at the time when the oxygen blowing is finished satisfies the following formula (2). Dephosphorization method.
0.16<W deP-II /W charge <0.25...(1)
0.30<W deP-II /W charge < 0.44 ...(2)
W charge =W deP-I +W oxide +W SiO2 ...(3)
W SiO2 =0.0214×W iron ×[Si]...(4)
Here, W deP-I represents the charging amount (t) of the first dephosphorizing agent, W oxide represents the charging amount (t) of the solid oxygen source, and W SiO2 is generated by the desiliconization reaction. W iron represents the amount (t) of the hot metal charged in the slag, [Si] represents the Si concentration (t) in the hot metal before dephosphorization treatment. mass%).
JP2019227700A 2019-12-17 2019-12-17 Method of dephosphorizing hot metal Active JP7348519B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019227700A JP7348519B2 (en) 2019-12-17 2019-12-17 Method of dephosphorizing hot metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019227700A JP7348519B2 (en) 2019-12-17 2019-12-17 Method of dephosphorizing hot metal

Publications (2)

Publication Number Publication Date
JP2021095608A JP2021095608A (en) 2021-06-24
JP7348519B2 true JP7348519B2 (en) 2023-09-21

Family

ID=76430766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019227700A Active JP7348519B2 (en) 2019-12-17 2019-12-17 Method of dephosphorizing hot metal

Country Status (1)

Country Link
JP (1) JP7348519B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008106296A (en) 2006-10-24 2008-05-08 Sumitomo Metal Ind Ltd Method for improving removability of slag after dephosphorization, and method for dephosphorizing molten iron using the same
JP2013253304A (en) 2012-06-08 2013-12-19 Nippon Steel & Sumitomo Metal Corp Method for dephosphorizing molten iron
JP2019522111A (en) 2016-07-08 2019-08-08 エス.ア.ロイスト ルシェルシュ エ デヴロップマン Method for producing briquettes containing calcium-magnesium compounds and iron-based compounds and briquettes obtained thereby

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008106296A (en) 2006-10-24 2008-05-08 Sumitomo Metal Ind Ltd Method for improving removability of slag after dephosphorization, and method for dephosphorizing molten iron using the same
JP2013253304A (en) 2012-06-08 2013-12-19 Nippon Steel & Sumitomo Metal Corp Method for dephosphorizing molten iron
JP2019522111A (en) 2016-07-08 2019-08-08 エス.ア.ロイスト ルシェルシュ エ デヴロップマン Method for producing briquettes containing calcium-magnesium compounds and iron-based compounds and briquettes obtained thereby

Also Published As

Publication number Publication date
JP2021095608A (en) 2021-06-24

Similar Documents

Publication Publication Date Title
JP6011728B2 (en) Hot metal dephosphorization method
JP5343506B2 (en) Hot phosphorus dephosphorization method
WO2019172195A1 (en) Dephosphorization method for molten iron
JP6693536B2 (en) Converter steelmaking method
JPWO2012108529A1 (en) Hot metal desiliconization and phosphorus removal methods
JP5268019B2 (en) How to remove hot metal
JP7151494B2 (en) Method for recycling converter slag
JP5999157B2 (en) Method of refining hot metal in the converter
JP7348519B2 (en) Method of dephosphorizing hot metal
JP5904238B2 (en) Method of dephosphorizing hot metal in converter
JP5233378B2 (en) Hot phosphorus dephosphorization method
JP5772645B2 (en) Dephosphorization method for hot metal
JP2008063646A (en) Dephosphorizing method of molten iron
JP2003239009A (en) Dephosphorization refining method of hot metal
JP2007270238A (en) Method for applying dephosphorize-treatment to molten iron
JP2016079462A (en) Method for refining hot pig iron
JP5131870B2 (en) Hot metal dephosphorization method
JP5412994B2 (en) How to remove hot metal
JP6658049B2 (en) Hot metal desiliconization method
JP5338251B2 (en) Hot phosphorus dephosphorization method
JP2833736B2 (en) Hot metal pretreatment method
JP2000129329A (en) Method for dephosphorizing molten iron
JP5803837B2 (en) Method of desiliconization and dephosphorization of hot metal
JP7107292B2 (en) Hot metal dephosphorization treatment method
JP2000345226A (en) Method for dephosphorizing molten iron

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230821

R151 Written notification of patent or utility model registration

Ref document number: 7348519

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151