JP5803837B2 - Method of desiliconization and dephosphorization of hot metal - Google Patents

Method of desiliconization and dephosphorization of hot metal Download PDF

Info

Publication number
JP5803837B2
JP5803837B2 JP2012169717A JP2012169717A JP5803837B2 JP 5803837 B2 JP5803837 B2 JP 5803837B2 JP 2012169717 A JP2012169717 A JP 2012169717A JP 2012169717 A JP2012169717 A JP 2012169717A JP 5803837 B2 JP5803837 B2 JP 5803837B2
Authority
JP
Japan
Prior art keywords
hot metal
oxygen
blowing
cao
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012169717A
Other languages
Japanese (ja)
Other versions
JP2014028992A (en
Inventor
明大 杉本
明大 杉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2012169717A priority Critical patent/JP5803837B2/en
Publication of JP2014028992A publication Critical patent/JP2014028992A/en
Application granted granted Critical
Publication of JP5803837B2 publication Critical patent/JP5803837B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Description

本発明は、転炉で溶銑を脱珪脱りん処理する際に、フッ素を含む副原料を使わず、またスロッピングやスピッティングを抑制し、かつ低コストで短時間に高脱りん能を実現する溶銑の脱珪脱りん処理方法に関する。   The present invention does not use fluorine-containing auxiliary materials when desiliconizing and dephosphorizing hot metal in a converter, and it realizes high dephosphorization performance in a short time at a low cost by suppressing slopping and spitting. The present invention relates to a desiliconization and dephosphorization method for molten iron.

鉄鋼製品の低りん化ニーズの高まり、およびその製造プロセスを高能率化する必要性に応じて、近年、転炉製鋼プロセスを溶銑予備脱燐処理と溶銑脱炭処理に分割して行う比率が増加している。加えて、製鋼プロセスによる地球環境への負荷低減も益々重要になっている。そのため、溶銑予備脱りん処理においても、蛍石等のフッ素を含む副原料を使わずに脱燐能力が高く、かつ、脱りん処理能率も高い技術が強く求められている。   In recent years, the ratio of the converter steelmaking process divided into hot metal preliminary dephosphorization and hot metal decarburization has increased in response to the growing need for low phosphatization of steel products and the need to increase the efficiency of its manufacturing process. doing. In addition, reducing the burden on the global environment through the steelmaking process is becoming increasingly important. Therefore, in hot metal preliminary dephosphorization treatment, a technique that has high dephosphorization ability and high dephosphorization treatment efficiency without using a secondary raw material containing fluorine such as fluorite is strongly demanded.

蛍石等のフッ素を含む副原料を使わずに脱燐能力が高い脱りん処理方法として「粉体上吹脱りん法」の発明(特許文献1)があり、それを更に改良した発明が近年多数公開されている。例えば、(1)脱りん処理中のスピッティング量を低減するために、カバースラグを生成した後にCaO含有脱りん剤を吹付ける方法(特許文献2)や、(2)発生スラグ量を抑制するために、Si濃度が0.20質量%以下の溶銑を用いて脱りん処理後のスラグ塩基度を2.5超4.95以下で処理する脱りん方法(特許文献3)、(3)高速脱りん処理と滓化率維持を両立させるため、低塩基度かつ粉粒状固体酸素源のランスからの吹込みを併用する方法(特許文献4)がある。   As a dephosphorization treatment method having a high dephosphorization ability without using an auxiliary raw material containing fluorine such as fluorite, there is an invention of “powder-on-powder dephosphorization method” (Patent Document 1), and an invention that has been further improved in recent years Many have been released. For example, (1) a method of spraying a CaO-containing dephosphorizing agent after generating cover slag to reduce the amount of spitting during the dephosphorization process (Patent Document 2), and (2) suppressing the amount of generated slag Therefore, a dephosphorization method in which the slag basicity after dephosphorization treatment is carried out with hot metal having a Si concentration of 0.20% by mass or less at more than 2.5 and 4.95 or less (Patent Document 3), (3) high speed In order to achieve both dephosphorization treatment and hatching rate maintenance, there is a method (Patent Document 4) in which blowing from a lance of a low basicity and granular solid oxygen source is used.

特開平8−311523号公報JP-A-8-311523 特許第3687433号明細書Japanese Patent No. 3687433 特許第3952846号明細書Japanese Patent No. 3952846 特開2008−266666号公報JP 2008-266666 A

しかし、(1)はスピッティング抑制には効果的であり、(2)は高脱りん能を得られるかもしれないが、いずれも高能率化との関係は不明である。一方、(3)は高能率脱りん操業が可能かもしれないが、粉粒状の固体酸素源を吹込む特別な装置が必要であり、容易に実施することはできない。   However, (1) is effective in suppressing spitting, and (2) may provide a high dephosphorization ability, but the relationship with increasing the efficiency is unclear. On the other hand, (3) may be capable of high-efficiency dephosphorization, but requires a special device for blowing a granular solid oxygen source and cannot be easily implemented.

溶銑脱りん処理の高能率化のためには、塩基度アップと滓化率向上およびスピッティング抑制の両立、スラグ中FeO増加とスロッピング抑制の両立といった難課題の解決が必要であり、未だに課題は山積している。つまり、粉体上吹脱りん法をベースとして余分なコストを発生させず、スロッピングやスピッティングを抑制し、なおかつ従来以上の高処理効率を実現することは、既存の発明だけでは困難であった。   In order to improve the efficiency of hot metal dephosphorization, it is necessary to solve difficult problems such as compatibility of increasing basicity, increasing hatchability and suppressing spitting, and simultaneously increasing FeO in slag and suppressing slopping. Is piled up. In other words, it is difficult for existing inventions alone to achieve sludge and spitting, and to achieve higher processing efficiency than before, without generating extra costs based on the powder top blowing dephosphorization method. It was.

本発明は、以上のような従来技術が有する課題を解決し、より低コストで高脱りん処理効率、高脱りん能を確保する脱硅脱りん処理技術を確立することを目的とする。   The object of the present invention is to solve the above-mentioned problems of the prior art and to establish a dephosphorization / dephosphorization technology that ensures high dephosphorization efficiency and high dephosphorization performance at a lower cost.

本発明は以下に記載の通りである。
(1)上吹きランスと底吹きノズルを備えた上底吹き型の転炉に、質量濃度で、C:4.3〜4.6%、Si:0.30〜0.50%およびP:0.090〜0.120%を有する溶銑を装入して、前記上吹ランスから酸素とともに粉状生石灰を吹付けて脱硅脱りん処理する方法であって、
固体酸素源を溶銑上に、前記上吹きランスから酸素供給を開始する直前または直後30秒間以内に、酸素流量に換算して2.0〜4.0Nm/t添加し、
前記上吹きランスからの上吹き酸素供給速度を2.0〜3.0Nm/min/tとし、
前記底吹きノズルからの底吹きガス供給速度を、脱硅処理期間中には0.2〜0.3Nm/min/tとするとともに、脱硅処理後脱りん処理終了までは0.4〜0.5Nm/min/tとし、
装入塩基度を質量比率でCaO/SiO:2.5〜3.0として、
該装入塩基度の計算に含まれる全CaO質量の80%以上を、最大粒径が0.5mm以下とした粉状生石灰により6kg/min/t以下の吹込み速度で調整して前記上吹きランスから酸素とともに溶銑に吹付け、
該上吹酸素の供給時間が6分間以下であり、
処理終了後の溶銑中C濃度を質量濃度で3.4〜3.7%とすること
を特徴とする溶銑の脱硅脱りん処理方法。
The present invention is as described below.
(1) In an upper bottom blowing type converter equipped with an upper blowing lance and a bottom blowing nozzle, C: 4.3 to 4.6%, Si: 0.30 to 0.50% and P: It is a method of charging molten iron having 0.090-0.120% and spraying powdered quicklime with oxygen from the upper blowing lance to degassing and dephosphorizing,
A solid oxygen source is added to the hot metal, and 2.0 to 4.0 Nm 3 / t in terms of oxygen flow rate is added within 30 seconds immediately before or immediately after the start of oxygen supply from the top blowing lance,
The top blowing oxygen supply rate from the top blowing lance is 2.0 to 3.0 Nm 3 / min / t,
The bottom blowing gas supply rate from the bottom blowing nozzle is set to 0.2 to 0.3 Nm 3 / min / t during the degassing process period, and 0.4 to 0.4 after the degassing process until the end of the dephosphorization process. 0.5 Nm 3 / min / t,
The charge basicity is CaO / SiO 2 : 2.5 to 3.0 by mass ratio,
80% or more of the total CaO mass included in the calculation of the charging basicity is adjusted at a blowing rate of 6 kg / min / t or less with powdered quicklime having a maximum particle size of 0.5 mm or less, and the above top blowing Sprayed hot metal with oxygen from the lance,
The supply time of the top blowing oxygen is 6 minutes or less,
A degassing / dephosphorizing method for hot metal, wherein the concentration of C in the hot metal after the treatment is 3.4 to 3.7% by mass.

但し、脱硅処理期間とは、前記上吹酸素の供給開始から溶銑中のSiが除去されるまでの期間であって、(1)式により計算される時間(min)である。   However, the degassing treatment period is a period from the start of the supply of the above blown oxygen to the removal of Si in the hot metal, and is a time (min) calculated by the equation (1).

([Si]×8−Q’)/Q・・・・・(1)
[Si]:転炉へ装入する溶銑のSi濃度(質量%)
’:上吹きランスから酸素供給を開始する直前または直後30秒間以内に溶銑上に添加する固体酸素量(Nm/t)
:上吹きランスから供給する酸素流量(Nm/min/t)
([Si] 0 × 8−Q o ′) / Q o (1)
[Si] 0 : Si concentration (mass%) of the hot metal charged into the converter
Q o ′: solid oxygen amount (Nm 3 / t) to be added onto the hot metal within 30 seconds immediately before or after the start of oxygen supply from the top blowing lance
Q o : Oxygen flow rate supplied from top blowing lance (Nm 3 / min / t)

本発明により、フッ素を含む副原料を使わずに高脱りん能を確保しつつ、スロッピングやスピッティングを抑制し、かつ低コストで短時間での脱りん処理を実現することが可能となり、環境負荷低減(フッ素レス化)、高脱りん能確保(処理後[P]低下)、および高脱りん処理効率(高速脱りん吹錬)を同時に達成することが可能になった。   According to the present invention, it is possible to realize a dephosphorization process in a short time at a low cost, while suppressing a slopping and spitting while ensuring a high dephosphorization ability without using an auxiliary material containing fluorine. It has become possible to simultaneously achieve environmental load reduction (fluorine-free), high dephosphorization ability (lower [P] after treatment), and high dephosphorization efficiency (high-speed dephosphorization blowing).

1)基本的な実施態様
高炉から出銑された溶銑を、基本的には溶銑予備脱珪処理を施さず、必要に応じて溶銑予備脱硫処理を施して、質量濃度で、C:4.3〜4.6%、Si:0.30〜0.50%およびP:0.090〜0.120%を有する溶銑を、上吹きランスと底吹きノズルを備えた上底吹き型の転炉に装入し、上吹酸素の供給時間が6分間以下で処理終了後の溶銑中C濃度を質量濃度で3.4〜3.7%として、処理終了後の溶銑中P濃度を質量濃度で0.015%以下に低減する。
1) Basic Embodiment The hot metal discharged from the blast furnace is basically not subjected to hot metal preliminary desiliconization treatment, but is subjected to hot metal preliminary desulfurization treatment as necessary, and in terms of mass concentration, C: 4.3 The hot metal having ˜4.6%, Si: 0.30 to 0.50% and P: 0.090 to 0.120% is converted into an upper bottom blowing type converter equipped with an upper blowing lance and a bottom blowing nozzle. The hot metal supply time is 6 minutes or less and the C concentration in the molten iron after the treatment is 3.4 to 3.7% by mass concentration, and the P concentration in the molten iron after the treatment is 0 in mass concentration. Reduce to .015% or less.

このような短時間で上記した脱珪脱燐処理を終了させるためには、上吹きランスからの上吹き酸素供給速度を処理対象溶銑1トン当たり2.0〜3.0Nm/minとする必要があり、しかも近年の地球環境への負荷低減を意識して蛍石等のフッ素を含む副原料を使わず、かつ、脱燐剤使用コストを低減するためにCaO源として高価な合成造滓材(カルシウムアルミネートやカルシウムフェライト等)も使用せずに、スロッピングやスピッティングの発生を抑制して、溶銑の低燐濃度化を達成する必要がある。 In order to complete the above desiliconization and phosphorus removal treatment in such a short time, it is necessary to set the oxygen supply rate of the top blowing oxygen from the top blowing lance to 2.0 to 3.0 Nm 3 / min per ton of hot metal to be treated. In addition, in order to reduce the burden on the global environment in recent years, no synthetic raw materials containing fluorine such as fluorite are used, and in order to reduce the cost of using a dephosphorization agent, a synthetic synthetic material that is expensive as a CaO source Without using calcium aluminate, calcium ferrite, etc., it is necessary to suppress the occurrence of slopping and spitting and achieve a low phosphorus concentration in the hot metal.

2)フッ素を含む副原料を使わずに高脱りん能を確保する手段
粉状CaO含有物質(以降粉体CaOと記す)を上吹酸素とともに溶銑へ上吹する。これは微細CaO含有物質を高温の火点へ直接吹き付けることで、フッ素を含む副原料を使用せずに滓化を促進させるためである。
2) Means for ensuring high dephosphorization without using fluorine-containing auxiliary materials A powdered CaO-containing substance (hereinafter referred to as powder CaO) is blown up to hot metal together with top blowing oxygen. This is because the fine CaO-containing material is directly sprayed onto a high-temperature fire point to promote hatching without using a secondary raw material containing fluorine.

粉体CaOとしては、最大粒径が0.5mm以下等と細かくしておく必要があり、最大粒径は0.1mm以下等と細かくしておくほど滓化が速く安定しているため好ましい。材質は生石灰粉が好適であるが、CaO含有濃度が80質量%以上とした生石灰粉と石灰石粉の混合物等でもよい。   As the powder CaO, it is necessary to make the maximum particle size as fine as 0.5 mm or less, and as the maximum particle size is made as fine as 0.1 mm or less, hatching is faster and more stable. The material is preferably quick lime powder, but may be a mixture of quick lime powder and limestone powder having a CaO concentration of 80% by mass or more.

炉内へ供給するCaO質量の内、上記した高速滓化機構を利用するために、粉体CaOで供給する質量比率は80%以上でなければならない。この比率が80%未満では、供給CaOの滓化が遅れ、所望する処理後の溶銑中P濃度を安定して得ることができない。また、供給CaOの滓化が遅れてスラグの塩基度制御に問題が生じるほか、後述するスラグフォーミング抑制機能が十分に発揮されなくなり、スロッピングが発生し易くなってしまう。   In order to use the above-described high-speed hatching mechanism among the mass of CaO supplied into the furnace, the mass ratio supplied with powder CaO must be 80% or more. If this ratio is less than 80%, hatching of the supplied CaO is delayed, and the desired P concentration in the hot metal after the treatment cannot be stably obtained. In addition, the hatching of the supplied CaO is delayed, causing problems in slag basicity control, and the slag forming suppression function described later is not sufficiently exhibited, and slopping is likely to occur.

粉体CaOで供給する比率は、なるべく高いほうがよく、100%であることが最も好ましい。   The ratio supplied by the powder CaO is preferably as high as possible, and is most preferably 100%.

3)高速処理におけるスロッピング抑制手段
炉内スラグ量のコントロールおよび炉内スラグの塩基度制御が重要である。
3) Slopping suppression means in high-speed processing Control of the amount of slag in the furnace and basicity control of the slag in the furnace are important.

(1)炉内スラグ量に関しては、高速送酸に伴うスピッティング防止のほか、溶銑中Pを低減するためには一定量以上を確保する必要があるが、必要以上の生成はスロッピングを誘発し、操業阻害要因となる。   (1) Regarding the amount of slag in the furnace, in addition to preventing spitting due to high-speed acid feeding, it is necessary to ensure a certain amount or more in order to reduce P in the hot metal, but excessive generation induces slopping. Therefore, it becomes an operation impediment factor.

スラグ生成量はCaO供給量やFeO生成量にも依存するが、基本的には溶銑中Si濃度によってコントロールすることができる。そこで、スピッティング防止や脱りん能力確保を安定して達成することができ、しかもスロッピングを抑制することが出来るスラグ量を検討した結果、溶銑中Si濃度を0.30〜0.50質量%程度にしておく必要があると分かった。   The amount of slag produced depends on the amount of CaO supplied and the amount of FeO produced, but can basically be controlled by the Si concentration in the hot metal. Therefore, as a result of examining the amount of slag that can stably achieve the prevention of spitting and the dephosphorization ability and suppress the slopping, the Si concentration in the hot metal is 0.30 to 0.50 mass%. I knew that it was necessary to keep it at a certain level.

このSi濃度範囲を外れる溶銑については、本発明に係る他の要件を満たしても上吹き酸素の供給時間が6分間以下で、所望する低P濃度の溶銑を得ることはできないので、他の対策を施す必要がある。   For hot metal outside this Si concentration range, even if the other requirements according to the present invention are satisfied, the supply time of the top blown oxygen is 6 minutes or less and the desired low P concentration hot metal cannot be obtained. It is necessary to apply.

(2)炉内スラグ塩基度に関しては、脱硅処理期間終了後には供給CaOの滓化率を低下させないようにできる範囲内で、なるべく速やかに上昇させなければならない。なぜなら、脱珪処理期間終了後には、上吹き酸素は主として溶銑中Cと反応するようになるため発生COガス量は増加し、スラグ量が多い、あるいは粘性が高くてCOガスが抜け難いようなスラグの場合には、スロッピングが発生し易くなるからである。   (2) Regarding the slag basicity in the furnace, it must be increased as soon as possible within a range in which the hatching rate of the supplied CaO can be prevented from decreasing after the end of the degassing treatment period. This is because, after the desiliconization period, the top blown oxygen mainly reacts with C in the molten iron, so the amount of generated CO gas increases, the amount of generated slag increases, or the viscosity is high and the CO gas is difficult to escape. This is because slapping tends to occur in the case of slag.

このためには、粉体CaOを活用することを前提として、スラグ量を脱りん推進のために多くする必要がある脱りん処理末期の時点で、スラグ塩基度(CaO/SiO)を2.3〜2.9程度に高めておく必要がある。このようなスラグ塩基度は、装入塩基度を、質量比率でCaO/SiO:2.5〜3.0と高めに設定し、併せてCaOの滓化率を90%以上等と高める工夫を施すことによって達成される。 For this purpose, assuming that powder CaO is used, the slag basicity (CaO / SiO 2 ) is set to 2. at the end of the dephosphorization process where it is necessary to increase the amount of slag to promote dephosphorization. It is necessary to raise it to about 3 to 2.9. Such slag basicity is a device that sets the charging basicity as high as CaO / SiO 2 : 2.5 to 3.0 by mass ratio and increases the hatching rate of CaO to 90% or more. Is achieved by applying

その工夫の基本的な手段としては、装入塩基度の計算に含まれる全CaO質量のなるべく多く(80%以上)を粉体CaOにより、上吹き酸素とともに溶銑に吹き付けることが必要で、この粉状で供給されるCaOの比率は100%であることが好ましい。   As a basic means of the device, it is necessary to spray as much as possible (80% or more) of the total CaO mass included in the calculation of the charging basicity with powdered CaO onto the hot metal together with top blowing oxygen. The ratio of CaO supplied in the form is preferably 100%.

ただし、粉状で供給されるCaOは、上吹き酸素とともに溶銑に吹き付ける必要があるため、その供給速度が速過ぎると溶銑表面部での滓化率が低下し、スラグ中を経由して炉外へ飛散してしまう比率が高くなる。一方、溶銑表面部で滓化しなかったCaOは、スラグがフォーミングしている場合にその破泡に役立つため、供給するCaOのうち数%程度はある方が好ましく、この破泡機能を利用するために、脱珪処理期間終了後から脱燐処理終了まで粉体CaOは吹き付け続けることが好ましい。   However, since CaO supplied in powder form needs to be sprayed onto the hot metal together with the upper blowing oxygen, if the supply speed is too fast, the hatching rate at the hot metal surface portion will decrease, and the outside of the furnace will pass through the slag. The ratio of splashing to becomes higher. On the other hand, CaO that has not hatched on the hot metal surface part is useful for breaking bubbles when the slag is forming. Therefore, about several percent of the supplied CaO is preferable, and this bubble breaking function is used. In addition, it is preferable to continue spraying the powder CaO after the desiliconization period ends until the dephosphorization process ends.

しかし、供給するCaOの滓化率低下は、脱燐処理に要する副原料使用コストの増加に繋がるため、その90%程度以上は溶融スラグにすることが好ましい。このような溶銑表面部でのCaOの滓化は、上吹き酸素の供給速度が2.0〜3.0Nm/min/tと決まっている以上、粉体CaOの供給速度を適切に制御することで達成される。粉体CaOの供給速度については、スピッティング抑制対策と併せて後述する。 However, since the decrease in the hatching rate of the supplied CaO leads to an increase in the cost of using the secondary raw materials required for the dephosphorization treatment, it is preferable that about 90% or more of the molten slag is used. Such hatching of the CaO at the hot metal surface part appropriately controls the supply rate of the powder CaO as long as the supply rate of the top blown oxygen is determined to be 2.0 to 3.0 Nm 3 / min / t. Is achieved. The supply rate of the powder CaO will be described later together with measures for suppressing spitting.

4)高速処理におけるスピッティング抑制手段
吹錬初期から一定量のカバースラグを形成させること、および形成したスラグを溶融状態に保持することが重要である。
4) Spitting suppression means in high-speed processing It is important to form a certain amount of cover slag from the initial stage of blowing and to keep the formed slag in a molten state.

(1)まずカバースラグ形成策として、敢えて炉外脱硅処理は行わず、0.30質量%以上のSi濃度を有する溶銑を用い、吹錬開始時から上吹き酸素により生成されるSiOと粉体CaOとを迅速に反応させ低融点スラグを生成させて、その後添加するCaOの滓化を促進させる。 (1) First, as a cover slag formation measure, there is no out-of-furnace degassing treatment, using hot metal having a Si concentration of 0.30% by mass or more, and SiO 2 produced by top blowing oxygen from the start of blowing It reacts rapidly with powdered CaO to produce a low melting point slag, and then promotes the hatching of the added CaO.

ここで、上吹き酸素供給開始時点で溶銑上に溶融スラグを確保するため、上吹きランスから酸素供給を開始する直前または直後に、固体酸素源(スケールが好ましい)を添加して一部を溶銑中Siと反応させ、主として酸化鉄およびSiOからなる溶融スラグを生成させる必要がある。固体酸素源を上吹き酸素流量に換算して2.0〜4.0Nm添加した場合、固体酸素源の溶銑中Siとの反応効率を50%と仮定すると生成されるSiOは2.5〜5.0kg/tであり、初期カバースラグとしては十分量確保される。 Here, in order to secure molten slag on the hot metal at the time of starting the supply of top blowing oxygen, a solid oxygen source (preferably a scale) is added immediately before or after the start of oxygen supply from the top blowing lance to partially melt the hot metal. It is necessary to react with middle Si to produce a molten slag mainly composed of iron oxide and SiO 2 . When 2.0 to 4.0 Nm 3 is added when the solid oxygen source is converted into the top blown oxygen flow rate, assuming that the reaction efficiency of the solid oxygen source with Si in the molten iron is 50%, the generated SiO 2 is 2.5. It is ˜5.0 kg / t, and a sufficient amount is secured as the initial cover slag.

また、上吹き酸素の供給速度を2.0〜3.0Nm/min/tとする本発明においては、初期の溶銑中Siと上吹き酸素との反応効率を100%と仮定すれば、SiO生成速度は2.5〜3.7kg/min/tとなる。ただし、溶銑中Si濃度は0.30〜0.50質量%なので、全生成SiO質量は6.4〜10.7kg/tに過ぎず、スロッピングを誘発するレベルではない。 In the present invention in which the supply rate of top blown oxygen is 2.0 to 3.0 Nm 3 / min / t, assuming that the reaction efficiency between Si in the initial hot metal and top blown oxygen is 100%, SiO 2 2 The production rate is 2.5 to 3.7 kg / min / t. However, since the Si concentration in the hot metal is 0.30 to 0.50% by mass, the total mass of SiO 2 is only 6.4 to 10.7 kg / t, which is not a level that induces slapping.

(2)炉内形成スラグの溶融状態維持に関しては、粉体CaOの吹付け速度をコントロールすることで対応する。まず、初期に生成させる溶融スラグは、転炉内の溶銑温度が1300〜1350℃程度の低温であることを考慮し、その温度でも溶融状態を保つことができるように、塩基度(CaO/SiO)は1.0程度であることが望ましい。一方、最終的には装入塩基度を質量比率でCaO/SiO:2.5〜3.0まで高める必要があるため、10〜20kg/tのCaOが必要になる。 (2) Regarding the maintenance of the molten state of the in-furnace slag, it can be handled by controlling the spraying speed of the powder CaO. First, the molten slag to be generated in the initial stage is considered to have a basicity (CaO / SiO 2) so that the molten metal temperature in the converter is a low temperature of about 1300 to 1350 ° C. and can maintain a molten state even at that temperature. 2 ) is preferably about 1.0. On the other hand, since it is necessary to finally increase the charging basicity by mass ratio to CaO / SiO 2 : 2.5 to 3.0, 10 to 20 kg / t of CaO is required.

全体の処理時間を6分間以内とすることが前提であるため、脱珪処理期間終了後の期間が4〜5分間程度であることを考えると、CaOの供給速度は平均して5kg/min/t以上に高める必要はなく、脱珪処理終了時から1〜2分間のスラグ塩基度の上昇速度を高めたい期間においても、6kg/min/t以下で十分と考えられる。この速度が速過ぎると、上吹き酸素とともに吹き付けられる粉体CaOの運動量が高くなり、スピッティングを発生させ易くなるので好ましくない。   Since it is assumed that the entire treatment time is within 6 minutes, considering that the period after the desiliconization treatment period is about 4 to 5 minutes, the CaO supply rate is on average 5 kg / min / It is not necessary to increase it to t or more, and 6 kg / min / t or less is considered to be sufficient even in a period in which it is desired to increase the rate of increase in slag basicity for 1 to 2 minutes from the end of the desiliconization treatment. If this speed is too high, the momentum of the powder CaO sprayed together with the top-blown oxygen is increased, and spitting tends to occur, which is not preferable.

ただし、吹錬開始後まもなくの比較的低温条件とはいえ、スラグの塩基度があまり低いと転炉耐火物の溶損が懸念されるし、スラグのフォーミングも心配である。したがって、この期間の粉体CaOの供給速度は3kg/min/t程度以上としておくことが好ましい。   However, although it is a relatively low temperature condition immediately after the start of blowing, if the basicity of the slag is too low, the refractory of the converter refractory may be melted and the slag may be formed. Therefore, the supply rate of the powder CaO during this period is preferably about 3 kg / min / t or more.

本発明において「脱珪処理期間」とは、上吹酸素の供給開始から溶銑中のSiが除去されるまでの期間であって、溶銑中Siの1.0質量%がSiOになるためには8.0Nm/tの酸素が必要であることから、前記(1)式:([Si]×8−Q’)/Qにより計算される時間(min)として規定される。 In the present invention, the “desiliconization treatment period” is a period from the start of supply of top blowing oxygen to the removal of Si in the hot metal, since 1.0% by mass of Si in the hot metal becomes SiO 2. Since 8.0 Nm 3 / t of oxygen is required, it is defined as the time (min) calculated by the equation (1): ([Si] 0 × 8−Q o ′) / Q o .

5)高速処理における脱りん促進手段
一定量のスラグ量確保、供給するCaOの滓化率確保、およびスラグ−メタル反応の促進が挙げられる。前述の通り、スラグ量確保のためには溶銑成分範囲を定め、スラグ塩基度を高くする工夫を、滓化率確保のためには主に粉体CaO供給速度を制限する工夫を行い、スラグ−メタル反応の促進については、底吹ガス流量および処理終了時点の溶銑中C濃度をコントロールすることで対応する。
5) Dephosphorization promoting means in high-speed treatment Ensuring a certain amount of slag, securing the hatching rate of the supplied CaO, and promoting the slag-metal reaction. As described above, in order to ensure the amount of slag, the hot metal component range is determined and the slag basicity is increased, and in order to ensure the hatching rate, the powder CaO supply rate is mainly limited. The metal reaction is promoted by controlling the bottom blowing gas flow rate and the C concentration in the hot metal at the end of the treatment.

(1)底吹ガスに関しては、吹錬開始後から脱硅終了までの期間は流量を低下させ溶銑の撹拌を比較的弱くしておくほうが望ましい。なぜなら、上吹き酸素は溶銑中Siとの反応を主体とし、残りの酸素はFeと反応してFeOを生成することが好ましく、逆に生成スラグ中のFeOが溶銑のCと反応して還元されてしまうことは炉内スラグを溶融状態に保つ上で好ましくない。   (1) Regarding the bottom blowing gas, it is desirable to lower the flow rate and relatively weakly stir the hot metal during the period from the start of blowing to the end of degassing. This is because it is preferable that the top blown oxygen mainly reacts with Si in the hot metal, and the remaining oxygen reacts with Fe to produce FeO. Conversely, FeO in the produced slag reacts with C in the hot metal and is reduced. It is not preferable to keep the in-furnace slag in a molten state.

一方、脱硅処理期間終了後の、炉内スラグ塩基度を上昇させつつスラグ生成を促進させる期間は、スラグ量が増加するとともに溶銑とスラグとを強撹拌して、溶銑中のCとスラグ中のFeOとが反応してしまうことを厭わずに、溶銑中のPとスラグとの反応を促進しなければならない。そこで、本発明における底吹ガス流量は脱硅処理期間中には0.2〜0.3Nm/min/t、脱硅処理後脱りん処理終了までは0.4〜0.5Nm/min/tとする。 On the other hand, during the period in which the slag generation is promoted while increasing the slag basicity in the furnace after completion of the degassing treatment period, the amount of slag is increased and the molten iron and slag are vigorously stirred, so that C in the molten iron and the slag The reaction between P and slag in the hot metal must be promoted without hesitation that FeO will react. Therefore, the bottom blowing gas flow rate in the present invention is de硅processing period 0.2~0.3Nm 3 / min / t during de-硅processed to dephosphorization process ends 0.4~0.5Nm 3 / min / T.

(2)また、脱珪処理期間終了後には、上吹き酸素は基本的に溶銑中Cと反応してCOとなるため、底吹きガス流量と比べてそのガス流量は約10倍であるから、このCOガスを適切に利用することによって、脱燐反応は大いに促進される。このCOガス発生量は、溶銑中Cの酸化減少量によって決まるため、処理終了時点の溶銑中C濃度を管理することで、COガスによる溶銑とスラグの撹拌をコントロールすることができる。この目的で、処理終了時点での溶銑中C濃度は、低目の3.4〜3.7質量%とすることが適切である。   (2) Also, after the desiliconization period, the top blown oxygen basically reacts with C in the molten iron to become CO, so the gas flow rate is about 10 times that of the bottom blown gas flow rate. By appropriately utilizing this CO gas, the dephosphorization reaction is greatly accelerated. Since this CO gas generation amount is determined by the amount of oxidation reduction of hot metal C, the hot metal and slag stirring by CO gas can be controlled by managing the hot metal C concentration at the end of the treatment. For this purpose, it is appropriate that the C concentration in the hot metal at the end of the treatment is 3.4 to 3.7% by mass, which is the lower value.

本発明実施後の溶銑は、転炉を用いて溶鋼を製造する脱炭処理に供されるため、処理後の溶銑中C濃度が低くなり過ぎると脱炭処理時の加熱源が不足してしまう。したがって、処理終了時点での溶銑中C濃度は、3.4質量%以上としなければならない。   Since the hot metal after carrying out the present invention is subjected to a decarburization process for producing molten steel using a converter, if the C concentration in the hot metal after the process becomes too low, the heat source during the decarburization process will be insufficient. . Therefore, the hot metal C concentration at the end of the treatment must be 3.4% by mass or more.

本発明は、上記技術思想の着想に基づき、その着想を具現化するための検討を総合的に進めた結果、一体として具備すべき必要要件として得られたものである。   The present invention has been obtained as a necessary requirement to be integrated as a result of a comprehensive study based on the idea of the technical idea described above, and to realize the idea.

溶銑78t〜85t(組成:[C]約4.4質量%、[Si]0.30〜0.50質量%、[P]0.090〜0.120質量%)を上底吹転炉へ装入し、上吹酸素2.0〜3.0Nm/min/tにて脱珪脱りん処理を行った。上吹き酸素の溶銑への供給を開始する20〜30秒前に、固体酸素源としてスケール(主としてFeO)を酸素量に換算して2.0〜4.5Nm/t添加し、上吹き酸素の供給開始と同時に、粉体CaOとしてCaOを92%含有し最大粒径が0.1mm以下である粉状生石灰を、溶銑1トン当たりCaO純分で3.8〜6.4kg/minの吹付け速度で、酸素とともに溶銑浴面へ吹き付けて脱硅脱りん処理を行った。また、上吹き酸素の供給開始前あるいはその供給開始直後に、最大粒径が60mm以下の塊状生石灰によりCaOを0〜7.4kg/t投入した。なお、フッ素含有副原料およびカルシウムアルミネート等の合成造滓材は一切使用しなかった。 Hot metal 78t to 85t (composition: [C] about 4.4% by mass, [Si] 0.30 to 0.50% by mass, [P] 0.090 to 0.120% by mass) to the top bottom blow converter Then, desiliconization and phosphorus removal treatment was performed with up-blowing oxygen of 2.0 to 3.0 Nm 3 / min / t. Twenty to thirty seconds before starting the supply of top-blown oxygen to the hot metal, 2.0 to 4.5 Nm 3 / t of scale (mainly FeO) was added as a solid oxygen source in terms of oxygen amount, and the top-blown oxygen Simultaneously with the start of supply, powdered quicklime containing 92% CaO as powder CaO and having a maximum particle size of 0.1 mm or less was blown at a rate of 3.8 to 6.4 kg / min in terms of pure CaO per ton of hot metal. The dephosphorization and dephosphorization treatment was carried out by spraying on the hot metal bath surface with oxygen at an attaching speed. Moreover, 0 to 7.4 kg / t of CaO was introduced using massive quicklime having a maximum particle size of 60 mm or less immediately before starting the supply of top-blown oxygen or immediately after the start of the supply. No synthetic ironmaking materials such as fluorine-containing auxiliary materials and calcium aluminate were used.

装入塩基度は2.1〜3.0とし、実塩基度との関係を調査した。なお、装入塩基度とは、(添加したCaO含有副原料中のCaO合計量)/(溶銑中[Si]が酸化して生成したSiO量と炉内投入副原料中のSiO量の合計)であり、実塩基度とは、(スラグのCaO質量濃度%)/(スラグのSiO質量濃度%)である。 The charge basicity was 2.1 to 3.0, and the relationship with the actual basicity was investigated. The charge basicity is (total amount of CaO in the added CaO-containing auxiliary material) / (the amount of SiO 2 produced by oxidation of [Si] in the hot metal and the amount of SiO 2 in the auxiliary raw material charged in the furnace) And the actual basicity is (CaO mass concentration% of slag) / (SiO 2 mass concentration% of slag).

脱りん処理中、底吹羽口からはNガスを0.2〜0.5Nm/min/tで溶銑中へ吹き込んで撹拌を行った。 During the dephosphorization process, N 2 gas was blown into the hot metal at 0.2 to 0.5 Nm 3 / min / t from the bottom blowing nozzle, and stirring was performed.

脱りん処理後の溶銑温度(転炉から出湯後に、鍋内で測定した溶銑温度)は1302〜1341℃であり、処理後溶銑[C]は3.38〜3.68質量%にコントロールされていた。この調査における各脱りん処理の具体的な条件とその処理結果を表1にまとめて示す。   The hot metal temperature after dephosphorization (the hot metal temperature measured in the pan after the hot water from the converter) was 1302 to 1341 ° C., and the hot metal [C] after the treatment was controlled to 3.38 to 3.68% by mass. It was. Table 1 summarizes the specific conditions and results of each dephosphorization treatment in this investigation.

本発明の目的は、一切のフッ素含有副原料を使用せず、また粉体CaOおよび塊CaO以外に合成造滓材を使用することなく、(1)処理後溶銑[P]≦0.015質量%、(2)スロッピング,スピッティング抑制、(3)脱燐処理時間(上吹き酸素の供給時間)6分間以下を達成することであり、本発明で規定する条件にて脱りん処理を行った場合には(1)〜(3)すべてを満足することが確認された(表1の本発明例1〜9参照)。   The object of the present invention is to use no fluorine-containing auxiliary materials, and without using a synthetic iron making material other than powder CaO and lump CaO, (1) hot metal after processing [P] ≦ 0.015 mass %, (2) Sloping and spitting suppression, and (3) Dephosphorization treatment time (supplying time of top blowing oxygen) of 6 minutes or less, and dephosphorization treatment is performed under the conditions specified in the present invention. In this case, it was confirmed that all of (1) to (3) were satisfied (see Invention Examples 1 to 9 in Table 1).

一方、本発明で規定する条件を一つでも満足しない条件で処理した場合には、処理後[P]>0.015質量%あるいはスロッピング、スピッティングが発生し、安定操業に支障をきたす結果となった(表1の比較例10〜16参照)。   On the other hand, when the treatment is performed under conditions that do not satisfy even one of the conditions defined in the present invention, [P]> 0.015 mass% after treatment or slopping or spitting occurs, resulting in hindering stable operation. (See Comparative Examples 10 to 16 in Table 1).

Figure 0005803837
Figure 0005803837

まず、本発明例と比較例10,11について述べる。粉体吹込速度が6.0kg/min/tを超える条件では、その粉体吹付け中にスピッティングが激しくなり、酸素上吹きランスに地金付着が発生した。また、処理後スラグ中に未滓化のCaO(f.CaO)が1質量%以上存在しており、供給したCaOの滓化不良が生じていることが分かった。その結果、脱りん処理後の溶銑[P]も0.015質量%以上となり、脱りん能の低下が確認された。   First, examples of the present invention and comparative examples 10 and 11 will be described. Under conditions where the powder blowing speed exceeded 6.0 kg / min / t, spitting became intense during the powder spraying, and adhesion of metal to the oxygen top blowing lance occurred. Moreover, 1 mass% or more of un-hatched CaO (f.CaO) was present in the slag after the treatment, and it was found that the hatching failure of the supplied CaO occurred. As a result, the hot metal [P] after dephosphorization was also 0.015% by mass or more, and a decrease in dephosphorization ability was confirmed.

次に、本発明例と比較例12〜14について述べる。脱Si期から底吹ガス流量を0.5Nm/min/tで強撹拌し続けた結果、処理後[P]が0.015質量%以上となった。これは生成したFeOが強撹拌により溶銑中の[C]と反応してしまい、炉内スラグが溶融状態で維持されなかったためと考えられる。また、脱硅反応が急速に進行した一方でCaOの滓化が遅れてしまった結果、大規模スロッピングが発生し、炉内に残存するスラグ量が減少してしまうことでの脱りん能の低下が確認された。比較例12のように処理後の溶銑[P]≦0.015質量%を達成する場合も稀に存在するが、スロッピングのレベルが激しくなり安定操業を阻害するため、やはり連続操業条件としては適さない。 Next, examples of the present invention and comparative examples 12 to 14 will be described. As a result of continuing strong stirring at a bottom blowing gas flow rate of 0.5 Nm 3 / min / t from the Si removal period, [P] after treatment was 0.015% by mass or more. This is presumably because the generated FeO reacted with [C] in the hot metal by vigorous stirring, and the slag in the furnace was not maintained in a molten state. Moreover, the dephosphorization reaction progressed rapidly, but the hatching of CaO was delayed. As a result, large-scale slopping occurred, and the amount of slag remaining in the furnace decreased. Decline was confirmed. As in Comparative Example 12, there are rare cases where the hot metal after processing [P] ≦ 0.015% by mass is achieved, but since the level of slopping becomes severe and the stable operation is hindered, the continuous operation condition is still Not suitable.

最後に、本発明例と比較例15,16について述べる。粉体CaO比率を80%未満として処理した結果、処理後スラグ中(f.CaO)が1.5質量%以上となってしまい、上吹き酸素の供給時間6分間以下の高速処理においては、塊状で供給されたCaOは十分に滓化が進んでいないことが確認された。その結果、処理後の溶銑[P]≦0.015質量%は達成することが難しいと分かった。   Finally, examples of the present invention and comparative examples 15 and 16 will be described. As a result of the treatment with the powder CaO ratio being less than 80%, the slag after treatment (f.CaO) becomes 1.5 mass% or more, and in the high-speed treatment where the supply time of the top blowing oxygen is 6 minutes or less, it is a lump. It was confirmed that the CaO supplied in No. 1 did not sufficiently hatch. As a result, it was found that it was difficult to achieve molten iron [P] ≦ 0.015 mass% after the treatment.

以上の結果から、フッ素を含む副原料を使わずに高脱りん能を確保しつつ、スロッピングやスピッティングを抑制し、かつ低コストで短時間での脱りん処理を実現するためには、本発明で規定する条件の範囲内で操業することの有効性が確認された。   From the above results, in order to achieve high dephosphorization capability without using fluorine-containing auxiliary materials, suppress slopping and spitting, and realize dephosphorization processing in a short time at low cost, The effectiveness of operation within the range of conditions defined in the present invention was confirmed.

Claims (1)

上吹きランスと底吹きノズルを備えた上底吹き型の転炉に、質量濃度で、C:4.3〜4.6%、Si:0.30〜0.50%およびP:0.090〜0.120%を有する溶銑を装入して、前記上吹ランスから酸素とともに粉状生石灰を吹付けて脱硅脱りん処理する方法であって、
固体酸素源を溶銑上に、前記上吹きランスから酸素供給を開始する直前または直後30秒間以内に、酸素流量に換算して2.0〜4.0Nm/t添加し、
前記上吹きランスからの上吹き酸素供給速度を2.0〜3.0Nm/min/tとし、
前記底吹きノズルからの底吹きガス供給速度を、脱硅処理期間中には0.2〜0.3Nm/min/tとするとともに、脱硅処理後脱りん処理終了までは0.4〜0.5Nm/min/tとし、
装入塩基度を質量比率でCaO/SiO:2.5〜3.0として、
該装入塩基度の計算に含まれる全CaO質量の80%以上を、最大粒径が0.5mm以下とした粉状生石灰により6kg/min/t以下の吹込み速度で調整して前記上吹きランスから酸素とともに溶銑に吹付け、
該上吹酸素の供給時間が6分間以下であり、
処理終了後の溶銑中C濃度を質量濃度で3.4〜3.7%とすること
を特徴とする溶銑の脱硅脱りん処理方法。
但し、脱硅処理期間とは、前記上吹酸素の供給開始から溶銑中のSiが除去されるまでの期間であって、(1)式により計算される時間(min)である。
([Si]×8−Q’)/Q・・・・・(1)
[Si]:転炉へ装入する溶銑のSi濃度(質量%)
’:上吹きランスから酸素供給を開始する直前または直後30秒間以内に溶銑上に添加する固体酸素量(Nm/t)
:上吹きランスから供給する酸素流量(Nm/min/t)
In an upper bottom blowing type converter equipped with an upper blowing lance and a bottom blowing nozzle, by mass concentration, C: 4.3 to 4.6%, Si: 0.30 to 0.50%, and P: 0.090. A method of charging molten iron having ˜0.120%, and spraying powdered quicklime with oxygen from the upper blowing lance to degassing and dephosphorizing,
A solid oxygen source is added to the hot metal, and 2.0 to 4.0 Nm 3 / t in terms of oxygen flow rate is added within 30 seconds immediately before or immediately after the start of oxygen supply from the top blowing lance,
The top blowing oxygen supply rate from the top blowing lance is 2.0 to 3.0 Nm 3 / min / t,
The bottom blowing gas supply rate from the bottom blowing nozzle is set to 0.2 to 0.3 Nm 3 / min / t during the degassing process period, and 0.4 to 0.4 after the degassing process until the end of the dephosphorization process. 0.5 Nm 3 / min / t,
The charge basicity is CaO / SiO 2 : 2.5 to 3.0 by mass ratio,
80% or more of the total CaO mass included in the calculation of the charging basicity is adjusted at a blowing rate of 6 kg / min / t or less with powdered quicklime having a maximum particle size of 0.5 mm or less, and the above top blowing Sprayed hot metal with oxygen from the lance,
The supply time of the top blowing oxygen is 6 minutes or less,
A degassing / dephosphorizing method for hot metal, wherein the concentration of C in the hot metal after the treatment is 3.4 to 3.7% by mass.
However, the degassing treatment period is a period from the start of the supply of the above blown oxygen to the removal of Si in the hot metal, and is a time (min) calculated by the equation (1).
([Si] 0 × 8−Q o ′) / Q o (1)
[Si] 0 : Si concentration (mass%) of the hot metal charged into the converter
Q o ′: solid oxygen amount (Nm 3 / t) to be added onto the hot metal within 30 seconds immediately before or after the start of oxygen supply from the top blowing lance
Q o : Oxygen flow rate supplied from top blowing lance (Nm 3 / min / t)
JP2012169717A 2012-07-31 2012-07-31 Method of desiliconization and dephosphorization of hot metal Active JP5803837B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012169717A JP5803837B2 (en) 2012-07-31 2012-07-31 Method of desiliconization and dephosphorization of hot metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012169717A JP5803837B2 (en) 2012-07-31 2012-07-31 Method of desiliconization and dephosphorization of hot metal

Publications (2)

Publication Number Publication Date
JP2014028992A JP2014028992A (en) 2014-02-13
JP5803837B2 true JP5803837B2 (en) 2015-11-04

Family

ID=50201736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012169717A Active JP5803837B2 (en) 2012-07-31 2012-07-31 Method of desiliconization and dephosphorization of hot metal

Country Status (1)

Country Link
JP (1) JP5803837B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110809629B (en) 2017-06-30 2022-04-05 杰富意钢铁株式会社 Method for monitoring operation of converter and method for operating converter

Also Published As

Publication number Publication date
JP2014028992A (en) 2014-02-13

Similar Documents

Publication Publication Date Title
JP6481774B2 (en) Molten iron dephosphorizing agent, refining agent and dephosphorizing method
JP2006274349A (en) Method for refining steel
JP6011728B2 (en) Hot metal dephosphorization method
JP5343506B2 (en) Hot phosphorus dephosphorization method
JP5553167B2 (en) How to remove hot metal
JP5904238B2 (en) Method of dephosphorizing hot metal in converter
JP5061545B2 (en) Hot metal dephosphorization method
JP2006009146A (en) Method for refining molten iron
JP5803837B2 (en) Method of desiliconization and dephosphorization of hot metal
JP5182322B2 (en) Hot phosphorus dephosphorization method
JP2009249723A (en) Method for dephosphorizing molten iron
JP5131872B2 (en) Hot metal dephosphorization method
JP5131870B2 (en) Hot metal dephosphorization method
JP6642739B2 (en) Hot metal dephosphorization method
JP5412994B2 (en) How to remove hot metal
JP6460265B2 (en) Converter blowing method
JP2004083989A (en) Method for producing molten low phosphorus iron
JPS6333512A (en) Pre-treating method for molten iron
JP5304816B2 (en) Manufacturing method of molten steel
JP5447554B2 (en) Dephosphorization method for hot metal
JP5333423B2 (en) Hot metal dephosphorization method
JP2011058046A (en) Method for dephosphorizing molten iron
JP2010095785A (en) Method for dephosphorizing molten iron
JP5370347B2 (en) How to remove hot metal
JP2002275521A (en) Method for dephosphorizing molten high carbon steel

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20140411

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140811

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150817

R151 Written notification of patent or utility model registration

Ref document number: 5803837

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350