JP2001234223A - Method for refining converter type molten pig iron dephosphorization furnace - Google Patents

Method for refining converter type molten pig iron dephosphorization furnace

Info

Publication number
JP2001234223A
JP2001234223A JP2000040573A JP2000040573A JP2001234223A JP 2001234223 A JP2001234223 A JP 2001234223A JP 2000040573 A JP2000040573 A JP 2000040573A JP 2000040573 A JP2000040573 A JP 2000040573A JP 2001234223 A JP2001234223 A JP 2001234223A
Authority
JP
Japan
Prior art keywords
dephosphorization
slag
hot metal
refining
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000040573A
Other languages
Japanese (ja)
Other versions
JP4414544B2 (en
Inventor
Shinya Kitamura
信也 北村
Naoto Sasaki
直人 佐々木
Yoji Idemoto
庸司 出本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2000040573A priority Critical patent/JP4414544B2/en
Publication of JP2001234223A publication Critical patent/JP2001234223A/en
Application granted granted Critical
Publication of JP4414544B2 publication Critical patent/JP4414544B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

PROBLEM TO BE SOLVED: To execute a molten pig iron dephosphorization treatment with a little quicklime unit requirement and without using halide. SOLUTION: In the method for executing the molten pig iron dephosphrization treatment by the quicklime and oxygen and/or iron oxide in a top and bottom blown converter, a stage of tapping the molten pig iron while allowing dephosphorization slag to remain wholly or partly in the furnace after the end of the dephosphorization treatment, then charging the molten pig iron of the next charge into the furnace in the state of allowing the dephosphorization slag to remain and subjecting the molten pig iron to the dephosphorization is executed at least >=1 times. The slag basicity at the end of the dephosphorization treatment is preferably regulated to 1.5 to 3 and the [Si] concentration in the molten pig iron to be charged to <=0.3%. The stages described above may be repetitively executed in a range where the (P) concentration in the slag amount after the dephosphorization refining is <=35%.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は溶銑脱燐処理方法に
関する。
[0001] The present invention relates to a hot metal dephosphorization method.

【0002】[0002]

【従来の技術】溶銑を生石灰と酸化剤を用いて脱燐する
方法は広く用いられている。輸送容器であるトピードカ
ーを反応容器として用いる場合には、上部空間の体積
(フリーボード)が少ないため、高塩基度で低い(T・
Fe)としてスラグフォーミングを抑制するために、あ
らかじめ脱珪処理をした溶銑を用いて多い生石灰原単位
での脱燐を実施している(例えば、鉄と鋼,第69巻,1
983年発行,1818ページ以降)。この場合には、
事前に脱珪を施しているものの生石灰原単位が多いため
脱燐スラグが多いという問題があり、また高塩基度のた
め滓化が悪くなり、蛍石や塩化カルシウムのようなハロ
ゲン化物を多量に用いる必要があるため、スラグ量が増
え、耐火物溶損が激しくなるという問題が生じる。
2. Description of the Related Art A method for dephosphorizing hot metal using quick lime and an oxidizing agent is widely used. When a topped car, which is a transport container, is used as a reaction container, the volume of the upper space (free board) is small, so that it has a high basicity and a low (T ·
In order to suppress slag forming as Fe), dephosphorization is performed in a large amount of quick lime by using hot metal that has been desiliconized in advance (for example, iron and steel, Vol. 69, 1).
983, pp. 1818). In this case,
Although desiliconization has been performed in advance, there is a problem that the amount of dephosphorized slag is large due to the large amount of quicklime, and the slagification is poor due to the high basicity, and a large amount of halides such as fluorite and calcium chloride are used. Since it is necessary to use the slag, there arises a problem that the amount of slag increases and erosion of the refractory becomes severe.

【0003】従来から、ハロゲン化物を用いずに溶銑脱
燐の反応効率を向上させる試みはなされている。
[0003] Conventionally, attempts have been made to improve the reaction efficiency of hot metal dephosphorization without using a halide.

【0004】例えば、特開平2−11712号公報で
は、酸化鉄、CaOとSiO2を混合して溶融あるいは
焼結した脱燐剤が開示されている。特開昭56−938
06号公報では、塩基度(CaO/SiO2)を1.8
〜2.3となるように配合し2CaO・SiO2になる
粉末原料を焼結した脱燐剤が開示されている。これらの
場合には、溶融又は焼結に要する費用が高いため実用化
には至っていない。
For example, Japanese Patent Application Laid-Open No. Hei 2-11712 discloses a dephosphorizing agent obtained by mixing iron oxide, CaO and SiO 2 and melting or sintering them. JP-A-56-938
No. 06 discloses a basicity (CaO / SiO 2 ) of 1.8.
A dephosphorizing agent is disclosed, which is obtained by sintering a powdery raw material which becomes 2CaO.SiO 2 by being blended so as to be 2.3 to 2.3. In these cases, the cost required for melting or sintering is high, so that they have not been put to practical use.

【0005】特開平8−157921号公報には、転炉
での溶銑脱燐において、塩基度=1.2〜2.0、Al
23=2〜16%、(T・Fe)=7〜30%にする方
法が開示されている。この場合は、転炉のため反応がト
ップスラグによってのみ起こるため、トップスラグの塩
基度を低下させ、かつ、中性酸化物であるAl23を多
量に添加することで脱燐能が大幅に低下するという問題
がある。
Japanese Patent Application Laid-Open No. 8-157921 discloses that in dephosphorization of hot metal in a converter, the basicity is 1.2 to 2.0,
A method is disclosed in which 2 O 3 = 2 to 16% and (T · Fe) = 7 to 30%. In this case, since the reaction takes place only by the top slag due to the converter, the basicity of the top slag is reduced, and the dephosphorization ability is greatly increased by adding a large amount of neutral oxide, Al 2 O 3. There is a problem that it decreases.

【0006】一方、脱炭滓を用いた溶銑脱燐は、特開昭
63−93813号公報には、2基の転炉の一方を脱燐
炉、他方を脱炭炉とし、脱炭炉で発生した転炉滓と生石
灰を主成分とした精錬剤で脱燐する方法が開示されてい
る。しかし、転炉滓(脱炭滓)は転炉吹き止め温度であ
る1650℃では溶融状態にあるものの、溶銑脱燐の場
合は1350℃程度のため容易には溶融することはでき
ず、脱燐効率は生石灰を用いた場合よりも低下する。さ
らに、脱炭滓は脱燐処理が進行して温度やスラグ組成が
溶解に適した条件に到達した時点で急激に溶解する。し
かし、脱炭滓中には高い濃度の(T・Fe)が含まれるた
め、脱炭滓が溶融すると急激に脱炭反応が生じるためス
ロッピングが多発するという問題がある。
On the other hand, hot metal dephosphorization using decarburized slag is disclosed in Japanese Unexamined Patent Publication No. 63-93813 by using one of two converters as a dephosphorizing furnace and the other as a decarburizing furnace. There is disclosed a method of dephosphorizing the generated converter slag and a refining agent mainly containing quicklime. However, although the converter slag (decarburized slag) is in a molten state at the converter blow-off temperature of 1650 ° C., in the case of hot metal dephosphorization, it cannot be melted easily because it is about 1350 ° C. Efficiency is lower than with quicklime. Furthermore, the decarburized slag rapidly dissolves when the dephosphorization process proceeds and the temperature and the slag composition reach conditions suitable for dissolution. However, since the decarburized slag contains a high concentration of (T.Fe), there is a problem that when the decarburized slag is melted, a decarburizing reaction occurs rapidly, so that slopping frequently occurs.

【0007】一方、溶銑脱燐スラグの処理方法として、
例えば特開昭57−179090号公報には、[P]を
0.15〜0.5%含む高燐銑を脱燐処理することで生
成スラグ中の(P25)を15%以上として燐酸肥料原
料とする方法が開示されているが、溶銑[P]が低い条件
でスラグ中に濃縮できる(P25)濃度については何ら
の知見も示されていない。
On the other hand, as a method for treating hot metal dephosphorization slag,
For example, Japanese Patent Application Laid-Open No. 57-179090 discloses a phosphate fertilizer in which (P 2 O 5 ) in the produced slag is reduced to 15% or more by dephosphorizing high-phosphorus iron containing 0.15 to 0.5% of [P]. Although a method using the raw material is disclosed, there is no knowledge about the (P 2 O 5 ) concentration that can be concentrated in the slag under the condition that the hot metal [P] is low.

【0008】[0008]

【発明が解決しようとする課題】本発明は、従来技術が
持つ、高塩基度の低(T・Fe)処理の場合の、生石灰
原単位が多く、滓化のためハロゲン化物を多量に用いる
必要があるという問題や、特開平2−11712号公報
や特開昭56−93806号公報で開示されたCaOと
SiO2を混合して溶融/焼結した脱燐剤では、溶融又
は焼結に要する費用が高いという問題、特開平8−15
7921号公報に開示された、転炉での溶銑脱燐におけ
るトップスラグ組成を制御する方法では脱燐能が大幅に
低下するという問題、特開昭63−93813号公報に
開示された技術では、脱燐効率は生石灰を用いた場合よ
りも低下し、脱炭滓が溶融すると急激に脱炭反応が生じ
るためスロッピングが多発するという問題を解決し、ハ
ロゲン化物を用いることなく脱燐反応効率を上げてスラ
グ発生量を低下させることを可能とする溶銑脱燐方法を
提供するものである。
SUMMARY OF THE INVENTION The present invention requires a large amount of quicklime and a large amount of halide for slagging in the case of high basicity and low (T.Fe) treatment of the prior art. and a problem that there is, in the dephosphorization agent by mixing the disclosed CaO and SiO 2 was melted / sintered in JP-a 2-11712 and JP 56-93806, JP-required melting or sintering The problem of high cost,
In the technique disclosed in Japanese Patent Application Laid-Open No. 63-93813, the method of controlling the top slag composition in hot metal dephosphorization in a converter disclosed in Japanese Patent No. 7921 significantly reduces the dephosphorization ability. The dephosphorization efficiency is lower than when using quick lime, and when the decarburization slag is melted, the decarburization reaction occurs abruptly, which solves the problem of frequent slopping.The dephosphorization reaction efficiency is reduced without using halide. An object of the present invention is to provide a hot metal dephosphorization method capable of raising the slag generation amount by lowering.

【0009】[0009]

【課題を解決するための手段】本発明の要旨は以下の通
りである。
The gist of the present invention is as follows.

【0010】(1) 上底吹き転炉で生石灰と酸素及び
/又は酸化鉄による溶銑脱燐処理を実施する方法におい
て、脱燐処理終了後に炉内に脱燐スラグの全量又は一部
を残留させたまま溶銑を出湯し、次いで、該脱燐スラグ
を残したままで次チャージの溶銑を装入して脱燐処理を
行う工程を、少なくとも1回以上実施することを特徴と
する転炉型溶銑脱燐炉の精錬方法。ここで、脱燐処理と
は、生石灰と上吹き酸素及び/又は酸化鉄を供給しつつ
攪拌する処理を示す。
(1) In a method of performing hot metal dephosphorization treatment with quick lime and oxygen and / or iron oxide in a top and bottom blown converter, the whole or a part of the dephosphorization slag is left in the furnace after completion of the dephosphorization treatment. A step of performing dephosphorization treatment at least once by charging hot metal while leaving the dephosphorized slag and then charging the next charge of hot metal while leaving the dephosphorized slag. Refining method of phosphorus furnace. Here, the dephosphorization treatment refers to a treatment of stirring while supplying quicklime and top-blown oxygen and / or iron oxide.

【0011】(2) 前記(1)において、脱燐処理終
了時のスラグ塩基度が1.5〜3であることを特徴とす
る転炉型溶銑脱燐炉の精錬方法。
(2) The method for refining a converter type hot metal dephosphorization furnace according to (1), wherein the slag basicity at the end of the dephosphorization treatment is 1.5 to 3.

【0012】(3) 前記(1)又は(2)において、
装入される溶銑中の[Si]濃度が0.3%以下である
ことを特徴とする転炉型溶銑脱燐炉の精錬方法。
(3) In the above (1) or (2),
A refining method for a converter type hot metal dephosphorization furnace, wherein the [Si] concentration in the hot metal charged is 0.3% or less.

【0013】(4) 前記(1)〜(3)において、脱
燐精錬後のスラグ量中の(P)濃度が35%以下の範囲
で、該工程を繰り返し実施することを特徴とする転炉型
溶銑脱燐炉の精錬方法。
(4) The converter according to any one of (1) to (3), wherein the step (P) in the slag after the dephosphorizing refining is repeated within a range of 35% or less. Refining method for hot metal dephosphorization furnace.

【0014】[0014]

【発明の実施の形態】本発明は、脱燐処理で生成したス
ラグは、さらなる脱燐能力を有するという事実に基づ
く。
DETAILED DESCRIPTION OF THE INVENTION The invention is based on the fact that the slag produced in the dephosphorization process has an additional dephosphorization capacity.

【0015】溶銑脱燐処理は、(T・Fe)が高く酸素活
量が高いスラグ相と、炭素飽和に近く酸素活量が低い溶
鉄との間で起こる非平衡系のプロセスであり、脱燐速度
は(1)式で表される。
The hot metal dephosphorization treatment is a non-equilibrium system process that occurs between a slag phase having a high (T.Fe) and a high oxygen activity and a molten iron having a low oxygen activity close to carbon saturation. The speed is expressed by equation (1).

【0016】 −d[%P]/dt=(A・k/W){[%P]−aPO2.5/L} ・・・… (1)−d [% P] / dt = (A · k / W) {[% P] −a PO2.5 / L} (1)

【0017】ここで、[%P]は溶銑中の燐濃度、tは時
間(s)、Aは反応界面積(cm2)、kは総括物質移動係数
(cm/s)、Wは溶銑量(t)、aPO2.5はスラグ中(PO2.5)の
活量、Lは界面での平衡分配比でありで示す界面濃度
により(2)式で表される。また、濃度(%)は質量パー
セントを意味する(以下も同様とする)。
Here, [% P] is the phosphorus concentration in the hot metal, t is time (s), A is the reaction interface area (cm 2 ), and k is the overall mass transfer coefficient.
(cm / s), W is the amount of hot metal (t), a PO2.5 is the activity in (PO 2.5 ) in slag, L is the equilibrium distribution ratio at the interface, and the interface concentration indicated by * is given by equation (2). expressed. The concentration (%) means percent by mass (the same applies to the following).

【0018】 L=aPO2.5 /[%P]* = K×a * 2.5 ・・・… (2)[0018] L = a PO2.5 * / [% P] * = K × a O * 2.5 ··· ... (2)

【0019】ここで、Kは平衡定数、a *は界面酸素
活量である。
Here, K is an equilibrium constant, and aO * is an interfacial oxygen activity.

【0020】仮に、aPO2.5がスラグ中(PO2.5)の濃度に
比例し、かつ、Lが十分には大きくない場合、スラグ中
(PO2.5)濃度の増加に伴い(1)式のaPO2.5/Lが大きく
なるため脱燐速度は低下する。
[0020] If, in proportion to the concentration of a PO2.5 is slag (PO 2.5), and, if L is not large enough, the slag
As the (PO 2.5 ) concentration increases, a PO2.5 / L in equation (1) increases, so that the dephosphorization rate decreases.

【0021】しかし、本発明者らの詳細な研究によれ
ば、溶銑脱燐スラグの場合、スラグ中(PO2.5)濃度が変
化しても(1)式のaPO2.5/Lはほとんど影響を受けな
いことを見出した。これは、以下の2つの要因によるも
のである。
However, according to a detailed study by the present inventors, in the case of hot metal dephosphorization slag, even if the (PO 2.5 ) concentration in the slag changes, a PO2.5 / L in the equation (1) is hardly affected. I did not receive it. This is due to the following two factors.

【0022】1) 反応が起こる溶銑とスラグの接触界
面は、バルク溶銑とスラグの界面ではなく、スラグ中に
上吹きや底吹きのエネルギーで懸濁した溶鉄粒子の表面
が主であり、この界面の酸素活量は、ほぼスラグ側の
(T・Fe)と平衡する値に近く、十分に大きい。従っ
て、(2)式からわかるようにLが十分に大きくなるため
PO 2.5/Lはスラグ中(PO2.5)濃度が変化しても、常に
無視できるほどに小さい。
1) The contact interface between the hot metal and the slag at which the reaction takes place is not the interface between the bulk hot metal and the slag, but is mainly the surface of the molten iron particles suspended in the slag by the energy of top blowing or bottom blowing. Oxygen activity of the slag side
It is close to a value that balances with (T.Fe) and is sufficiently large. Therefore, as can be seen from equation (2), L is sufficiently large, so that a PO 2.5 / L is always negligibly small even if the (PO 2.5 ) concentration in the slag changes.

【0023】2) スラグ中(PO2.5)濃度が変化して
も、スラグが2CaO・SiO2と3CaO・P2O5の2相飽和である
限り、aPO2.5は一定である。従って、aPO2.5/Lはス
ラグ中(PO2.5)濃度が変化しても全く変化しない。
2) Even if the (PO 2.5 ) concentration in the slag changes, a PO2.5 is constant as long as the slag is two-phase saturated with 2CaO · SiO 2 and 3CaO · P 2 O 5 . Therefore, a PO2.5 / L does not change at all even if the (PO 2.5 ) concentration in the slag changes.

【0024】このことが、脱燐処理後のスラグに(P
O2.5)が含まれてはいるものの、再度利用しても、さら
に脱燐が可能であることの原理である。
This means that (P)
O 2.5 ) is included, but the principle is that dephosphorization is possible even if reused.

【0025】さらに、脱燐滓に含まれる(PO2.5)は界面
活性成分のため脱炭に伴うCO気泡の核発生を抑制する
作用があり、脱燐中の脱炭を抑制し(T・Fe)を固く保
つことができる。従って、(PO2.5)を含む脱燐滓を用い
た脱燐処理では脱炭が少なく、次工程である転炉での熱
裕度を大幅に増大させることができる。
Further, (PO 2.5 ) contained in the dephosphorization slag has a function of suppressing the nucleation of CO bubbles due to decarburization because it is a surface active component. ) Can be kept firm. Therefore, in the dephosphorization treatment using the dephosphorization slag containing (PO 2.5 ), decarburization is small, and the heat tolerance in the converter, which is the next step, can be greatly increased.

【0026】前記(1)に係る発明はこれを利用したも
のであり、上底吹き転炉で生石灰と酸素及び/又は酸化
鉄による溶銑脱燐処理を実施する方法において、脱燐処
理終了後に炉内に脱燐スラグの全量又は一部を残留させ
たまま溶銑を出湯し、次いで、該脱燐スラグを残したま
まで次チャージの溶銑を装入して脱燐処理を行う工程
を、少なくとも1回以上実施するものである。
The invention according to the above (1) utilizes this, and in the method of performing hot metal dephosphorization treatment with quick lime and oxygen and / or iron oxide in a top and bottom blown converter, the furnace is provided after the dephosphorization treatment is completed. A step of discharging hot metal while leaving the whole or a part of the dephosphorized slag inside, and then performing a dephosphorization treatment by charging hot metal of the next charge while leaving the dephosphorized slag, at least once The above is to be implemented.

【0027】炉内に残留させる脱燐スラグは1),2)
の作用効果を充分に示すために、10kg/t以上であ
ることが望ましい。また、当該工程は1回以上実施すれ
ば、1),2)の作用効果を充分に示すため、上限は特
に規定しない。スラグ量が増大するとスラグへの鉄分ロ
スや熱裕度の低下が起こるが、スラグ量の一部のみを排
滓し、スラグ量を30〜150kg/tの範囲に維持すれ
ば、何回でも実施することが可能である。
The dephosphorized slag remaining in the furnace is 1), 2).
Is preferably 10 kg / t or more in order to sufficiently exhibit the effect of the present invention. In addition, if this step is performed one or more times, the effects of 1) and 2) are sufficiently exhibited, so the upper limit is not particularly defined. If the amount of slag increases, iron loss to the slag and decrease in heat tolerance will occur.However, if only a part of the slag is discharged and the slag amount is maintained in the range of 30 to 150 kg / t, it will be carried out any number of times. It is possible to

【0028】ここで、上底吹き転炉とした理由は、反応
が起こる溶銑とスラグの接触界面を、バルク溶銑とスラ
グの界面ではなく、スラグ中に上吹きや底吹きのエネル
ギーで懸濁した溶鉄粒子の表面を主体とさせるためであ
る。上吹きによる粒鉄の発生を促進するため上吹き送酸
速度としては0.5〜2.5Nm3/min/tが望ましく、底
吹きによる粒鉄の発生を促進するため底吹きガス流量と
しては0.03〜0.2Nm3/min/tが望ましい。上吹き
送酸速度が0.5Nm3/min/tよりも小さい場合には、粒
鉄発生が少ないため高い酸素活量の反応界面積が少なく
なるためスラグ中の(PO2.5)濃度の影響を受けやすくな
り、逆に、2.5Nm3/min/tよりも大きい場合には、上
吹きによる粒鉄の発生が激しすぎるためスプラッシュが
多量に発生し操業に支障を与えがちになる。底吹きガス
流量が0.03Nm3/min/tよりも小さい場合には、粒鉄
発生が少ないため高い酸素活量の反応界面積が少なくな
るためスラグ中の(PO2.5)濃度の影響を受けやすくな
り、逆に、0.2Nm3/min/tよりも大きい場合には、底
吹きによる粒鉄の発生が激しすぎるためスプラッシュが
多量に発生し操業に支障を与えがちになる。炉内に残留
させる脱燐スラグ量は特に規定はしないが、前述の理由
により150kg/t以下であることが望ましい。
Here, the reason for using the top-bottom blow converter is that the contact interface between the hot metal and the slag where the reaction takes place is suspended not in the interface between the bulk hot metal and the slag but in the slag with the energy of the top blow and the bottom blow. This is because the surface of the molten iron particles is mainly used. In order to promote the generation of granular iron by top blowing, the top blowing acid transfer rate is preferably 0.5 to 2.5 Nm 3 / min / t, and the bottom blowing gas flow rate to promote the generation of granular iron by bottom blowing 0.03 to 0.2 Nm 3 / min / t is desirable. When the top blowing acid transfer rate is less than 0.5 Nm 3 / min / t, the influence of the (PO 2.5 ) concentration in the slag is small because the reaction area of the high oxygen activity is small due to the small generation of iron particles. On the other hand, when it is larger than 2.5 Nm 3 / min / t, the generation of granular iron by top blowing is too severe, and a large amount of splash is generated, which tends to hinder the operation. When the bottom blown gas flow rate is less than 0.03 Nm 3 / min / t, the reaction interface area of the high oxygen activity is reduced due to the small generation of iron particles, so the influence of the (PO 2.5 ) concentration in the slag is affected. On the other hand, when it is larger than 0.2 Nm 3 / min / t, the generation of granular iron due to bottom blowing is too severe, and a large amount of splash is generated, which tends to hinder the operation. The amount of dephosphorized slag remaining in the furnace is not particularly limited, but is desirably 150 kg / t or less for the above-mentioned reason.

【0029】前記(2)に係る発明は、脱燐処理終了時
におけるスラグ塩基度(CaO/ SiO2)を規定したもの
で、塩基度が1.5〜3であるとしている。塩基度が1.
5よりも低い場合にはCaO・SiO2飽和のスラグとなるた
め、スラグが2CaO・SiO2と3CaO・P2O5の2相飽和である
という条件を満たさなくなるためaPO2.5が増大し、逆
に、塩基度が3よりも高い場合には3CaO・SiO2飽和のス
ラグとなるため、スラグが2CaO・SiO2と3CaO・P2O5の2
相飽和であるという条件を満たさなくなるためaPO 2.5
が増大し、図1に示すように、いずれの場合も脱燐効率
が大幅に低下する。ここで脱燐効率(K)は(3)式で
定義される。
In the invention according to the above (2), the slag basicity (CaO / SiO 2 ) at the end of the dephosphorization treatment is specified, and the basicity is 1.5 to 3. Basicity is 1.
If it is lower than 5, the slag becomes saturated with CaO.SiO 2 , and the slag does not satisfy the condition of two-phase saturation of 2CaO.SiO 2 and 3CaO.P 2 O 5 , so that aPO2.5 increases. on the contrary, since the basicity is slag 3CaO · SiO 2 saturation is higher than 3, the slag is 2CaO · SiO 2 and 3CaO · P 2 O 5 2
Since the condition of phase saturation is not satisfied, a PO 2.5
, And as shown in FIG. 1, the dephosphorization efficiency is greatly reduced in each case. Here, the dephosphorization efficiency (K) is defined by equation (3).

【0030】 K={ln(処理前[%P]/処理後[%P])}/生石灰原単位(kg/t) … (3)K = {ln (before treatment [% P] / after treatment [% P])} / quick lime basic unit (kg / t) (3)

【0031】前記(3)に係る発明は、脱燐炉に装入さ
れる溶銑組成を規定したもので、装入される溶銑中の
[Si]濃度を0.3%以下としたものである。[S
i]濃度が0.3%よりも高い場合には、脱燐のための
塩基度を確保するために、繰り返し生石灰を添加する必
要があり経済的でない。下限は特に規定しないが、脱珪
作業時の負荷を考えると0.1%以上であることが望ま
しい。
In the invention according to the above (3), the composition of the hot metal charged into the dephosphorization furnace is specified, and the [Si] concentration in the hot metal charged is set to 0.3% or less. . [S
i] When the concentration is higher than 0.3%, it is necessary to repeatedly add quicklime to secure basicity for dephosphorization, which is not economical. The lower limit is not particularly defined, but is preferably 0.1% or more in consideration of the load during the desiliconization work.

【0032】前記(4)に係る発明は、繰り返し実施す
る場合の上限を規定したもので、脱燐精錬後のスラグ量
中の(P)濃度が35%以下の範囲で、該工程を繰り返
し実施するものである。脱燐精錬後のスラグ量中の
(P)濃度が35%よりも高い場合には、スラグが2Ca
O・SiO2と3CaO・P2O5の2相飽和であるという条件を満た
さなくなるためaPO2.5が増大し、図2に示すように脱
燐能力が大幅に低下する。
In the invention according to the above (4), the upper limit in the case of repeating the process is specified, and the process is repeatedly performed when the (P) concentration in the slag after dephosphorization refining is 35% or less. Is what you do. When the (P) concentration in the slag after dephosphorization refining is higher than 35%, the slag is 2Ca
O · SiO 2 and 3CaO · P 2 O a PO2.5 for not satisfy the condition that a two-phase saturation 5 increases, the dephosphorization capacity as shown in FIG. 2 significantly reduced.

【0033】[0033]

【実施例】実施例は6トン規模の上底吹き転炉を用いて
実施した。上吹きランスには7mmφの4孔ランスを用
い、酸素供給速度は350Nm3/hとした。底吹きは小径
集合管羽口とし、窒素を22Nm3/h供給した。
EXAMPLES The examples were carried out using a 6 ton scale top and bottom blown converter. A 4-mm lance having a diameter of 7 mm was used as the upper blowing lance, and the oxygen supply rate was 350 Nm 3 / h. The bottom was blown with a small diameter collecting pipe tuyere, and nitrogen was supplied at 22 Nm 3 / h.

【0034】他の溶解炉で溶製した、C:4.15%、
Si:0.21%、Mn:0.23%、P:0.095
%、S:0.012%で温度が1330℃の、約6トン
の溶銑を転炉に装入し、脱燐精錬を7分間行った。脱燐
中には生石灰を9.3kg/t、鉄鉱石を16.4kg/t、上部
バンカーから投入した。処理後はC:3.84%、S
i:0.02%、Mn:0.08%、P:0.021%、
S:0.015%で温度は1365℃であった。生成し
た脱燐スラグの組成は、T・Fe:9.25%、CaO:47.
3%、SiO2:25.5%、PO2.5:8.65%、MnO:5.
55%、Al2O3:2.32%、MgO:3.13%で、塩基度
は1.85で約20kg/tの量であった。脱燐効率は0.
163であった。
C: 4.15% melted in another melting furnace,
Si: 0.21%, Mn: 0.23%, P: 0.095
%, S: 0.012%, about 6 tons of hot metal at a temperature of 1330 ° C. was charged into a converter, and dephosphorization refining was performed for 7 minutes. During dephosphorization, 9.3 kg / t of quicklime and 16.4 kg / t of iron ore were fed from the upper bunker. After treatment: C: 3.84%, S
i: 0.02%, Mn: 0.08%, P: 0.021%,
S: 0.015% and the temperature was 1365 ° C. The composition of the resulting dephosphorized slag was T.Fe: 9.25%, CaO: 47.
3%, SiO 2 : 25.5%, PO 2.5 : 8.65%, MnO: 5.5
55%, Al 2 O 3: 2.32%, MgO: 3.13% basicity was an amount of about 20 kg / t 1.85. Dephosphorization efficiency is 0.
163.

【0035】上記処理後、溶銑を出湯し、引き続き、脱
燐スラグを全量炉内に残したままC:4.11%、S
i:0.18%、Mn:0.20%、P:0.11%、
S:0.014%で温度が1320℃の、約6トンの溶
銑を転炉に装入し、脱燐精錬を7分間行った。脱燐中に
は生石灰を5.7kg/t、鉄鉱石を14.5kg/t、上部バン
カーから投入した。処理後はC:3.95%、Si:0.
02%、Mn:0.095%、P:0.012%、S:
0.016%で温度は1370℃であった。生成した脱
燐スラグの組成は、T・Fe:13.75%、CaO:45.3
%、SiO2:26.5%、PO 2.5:12.1%、MnO:6.5
5%、Al2O3:2.84%、MgO:3.53%で、塩基度が
1.71で約35kg/tの量であった。脱燐効率は0.3
89と極めて高かった。
After the above treatment, the hot metal is discharged, and
C: 4.11%, S with all phosphorus slag remaining in the furnace
i: 0.18%, Mn: 0.20%, P: 0.11%,
S: about 6 tons of solution at 0.014% at a temperature of 1320 ° C
The iron was charged into the converter, and dephosphorization refining was performed for 7 minutes. During dephosphorization
Is 5.7kg / t for quicklime, 14.5kg / t for iron ore, upper bun
I put it in the car. After the treatment, C: 3.95%, Si: 0.2.
02%, Mn: 0.095%, P: 0.012%, S:
The temperature was 1370 ° C at 0.016%. Generated
The composition of the phosphorus slag is T.Fe: 13.75%, CaO: 45.3
%, SiOTwo: 26.5%, PO 2.5: 12.1%, MnO: 6.5
5%, AlTwoOThree: 2.84%, MgO: 3.53%, basicity is
At 1.71, it was about 35 kg / t. Dephosphorization efficiency is 0.3
It was extremely high at 89.

【0036】[0036]

【比較例】比較例では6トン規模の溶銑鍋を用いたイン
ジェクション脱燐試験を実施した。インジェクションラ
ンス先端に7mmφの2孔ノズルを設け、キャリアーガ
スは窒素として10Nm3/h供給するとともに、生石灰と
鉄鉱石を約2kg/min/tの速度で吹き込んだ。
Comparative Example In a comparative example, an injection dephosphorization test using a 6-ton scale hot metal pot was conducted. A 7 mmφ two-hole nozzle was provided at the tip of the injection lance. Carrier gas was supplied as nitrogen at 10 Nm 3 / h, and quick lime and iron ore were blown at a rate of about 2 kg / min / t.

【0037】他の溶解炉で溶製した、C:4.25%、
Si:0.10%、Mn:0.21%、P:0.11%、
S:0.011%で温度が1340℃の、約6トンの溶
銑を溶銑鍋に装入し、脱燐精錬を15分間行った。脱燐
中には生石灰を19.5kg/t、鉄鉱石を43.4kg/tイン
ジェクションした。処理後はC:4.14%、Si:0.
02%、Mn:0.18%、P:0.023%、S:0.
008%で温度は1325℃であった。生成した脱燐ス
ラグの組成は、T・Fe:4.05%、CaO:59.3%、SiO
2:14.65%、PO2.5:7.75%、MnO:4.15%、
Al2O3:3.53%、MgO:2.85%で、塩基度が4.0
8で約34kg/tの量であった。脱燐効率は0.08であ
った。
Melted in another melting furnace, C: 4.25%,
Si: 0.10%, Mn: 0.21%, P: 0.11%,
S: About 6 tons of hot metal at a temperature of 1340 ° C. at 0.011% was charged into a hot metal pot, and dephosphorization refining was performed for 15 minutes. During the dephosphorization, 19.5 kg / t of quicklime and 43.4 kg / t of iron ore were injected. After the treatment, C: 4.14%, Si: 0.1.
02%, Mn: 0.18%, P: 0.023%, S: 0.1%
At 008% the temperature was 1325 ° C. The composition of the resulting dephosphorized slag is as follows: T.Fe: 4.05%, CaO: 59.3%, SiO
2: 14.65%, PO 2.5: 7.75%, MnO: 4.15%,
Al 2 O 3 : 3.53%, MgO: 2.85%, basicity 4.0
8 was about 34 kg / t. The dephosphorization efficiency was 0.08.

【0038】上記処理後、溶銑を出湯し、引き続き、脱
燐スラグを全量鍋内に残したままC:4.15%、S
i:0.12%、Mn:0.25%、P:0.11%、
S:0.014%で温度が1365℃の、約6トンの溶
銑を装入し、脱燐精錬を15分間行った。脱燐中には生
石灰を17.7kg/t、鉄鉱石を42.5kg/tインジェクシ
ョンした。処理後はC:4.05%、Si:0.02%、
Mn:0.15%、P:0.042%、S:0.011%
で温度は1345℃であり、十分には脱燐できなかっ
た。脱燐効率は0.054と極めて低かった。
After the above treatment, the hot metal is discharged, and subsequently, while the entire amount of dephosphorized slag remains in the pot, C: 4.15%, S
i: 0.12%, Mn: 0.25%, P: 0.11%,
About 6 tons of hot metal having a S of 0.014% and a temperature of 1365 ° C. was charged, and the dephosphorization refining was performed for 15 minutes. During dephosphorization, 17.7 kg / t of quicklime and 42.5 kg / t of iron ore were injected. After the treatment, C: 4.0%, Si: 0.02%,
Mn: 0.15%, P: 0.042%, S: 0.011%
And the temperature was 1345 ° C., and the phosphorous could not be sufficiently removed. The dephosphorization efficiency was extremely low at 0.054.

【0039】[0039]

【発明の効果】本発明により、脱燐スラグを再利用する
ことで少ない生石灰原単位で、かつ、蛍石に代表される
ハロゲン化物を用いること無しに溶銑脱燐処理を実施す
ることが可能となる。
According to the present invention, it is possible to carry out hot metal dephosphorization treatment with a small amount of quicklime and without using a halide represented by fluorite by recycling dephosphorized slag. Become.

【図面の簡単な説明】[Brief description of the drawings]

【図1】脱燐処理における塩基度と脱燐効率との関係を
示す図である。
FIG. 1 is a diagram showing the relationship between basicity and dephosphorization efficiency in dephosphorization treatment.

【図2】脱燐精錬後のスラグ量中の(P)濃度と脱燐効
率との関係を示す図である。
FIG. 2 is a diagram showing the relationship between the (P) concentration in the slag amount after dephosphorization refining and the dephosphorization efficiency.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 出本 庸司 富津市新富20−1 新日本製鐵株式会社技 術開発本部内 Fターム(参考) 4K002 AB04 AC07 AC09 AD05 AE00 AE02 4K014 AA03 AB03 AB04 AC16 AD00 ────────────────────────────────────────────────── ─── Continuing from the front page (72) Inventor Yoji Demoto 20-1 Shintomi, Futtsu Nippon Steel Corporation Technology Development Division F term (reference) 4K002 AB04 AC07 AC09 AD05 AE00 AE02 4K014 AA03 AB03 AB04 AC16 AD00

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 上底吹き転炉で生石灰と酸素及び/又は
酸化鉄による溶銑脱燐処理を実施する方法において、脱
燐処理終了後に炉内に脱燐スラグの全量又は一部を残留
させたまま溶銑を出湯し、次いで、該脱燐スラグを残し
たままで次チャージの溶銑を装入して脱燐処理を行う工
程を、少なくとも1回以上実施することを特徴とする転
炉型溶銑脱燐炉の精錬方法。
1. A method for performing hot metal dephosphorization treatment with quick lime and oxygen and / or iron oxide in a top and bottom blown converter, wherein all or part of the dephosphorization slag is left in the furnace after the dephosphorization treatment is completed. A converter-type hot metal dephosphorization method characterized by performing at least one or more steps of removing hot metal as it is, and then performing a dephosphorization treatment by charging hot metal of a next charge while the dephosphorized slag is left. Furnace refining method.
【請求項2】 請求項1記載の転炉型溶銑脱燐炉の精錬
方法において、脱燐処理終了時のスラグ塩基度が1.5
〜3であることを特徴とする転炉型溶銑脱燐炉の精錬方
法。
2. A refining method for a converter type hot metal dephosphorization furnace according to claim 1, wherein the slag basicity at the end of the dephosphorization treatment is 1.5.
A refining method for a converter type hot metal dephosphorization furnace, characterized in that:
【請求項3】 請求項1又は2記載の転炉型溶銑脱燐炉
の精錬方法において、装入される溶銑中の[Si]濃度
が0.3%以下であることを特徴とする転炉型溶銑脱燐
炉の精錬方法。
3. The method for refining a converter type hot metal dephosphorization furnace according to claim 1, wherein the [Si] concentration in the hot metal charged is 0.3% or less. Refining method for hot metal dephosphorization furnace.
【請求項4】 請求項1〜3のいずれか記載の転炉型溶
銑脱燐炉の精錬方法において、脱燐精錬後のスラグ量中
の(P)濃度が35%以下の範囲で、該工程を繰り返し
実施することを特徴とする転炉型溶銑脱燐炉の精錬方
法。
4. The method for refining a converter type hot metal dephosphorization furnace according to claim 1, wherein the (P) concentration in the slag after dephosphorization refining is within a range of 35% or less. The method for refining a converter-type hot metal dephosphorization furnace, wherein the method is repeated.
JP2000040573A 2000-02-18 2000-02-18 Refining method for converter type hot metal dephosphorization furnace Expired - Fee Related JP4414544B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000040573A JP4414544B2 (en) 2000-02-18 2000-02-18 Refining method for converter type hot metal dephosphorization furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000040573A JP4414544B2 (en) 2000-02-18 2000-02-18 Refining method for converter type hot metal dephosphorization furnace

Publications (2)

Publication Number Publication Date
JP2001234223A true JP2001234223A (en) 2001-08-28
JP4414544B2 JP4414544B2 (en) 2010-02-10

Family

ID=18563935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000040573A Expired - Fee Related JP4414544B2 (en) 2000-02-18 2000-02-18 Refining method for converter type hot metal dephosphorization furnace

Country Status (1)

Country Link
JP (1) JP4414544B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003013126A (en) * 2001-06-29 2003-01-15 Kawasaki Steel Corp Method for dephosphorizing molten iron
JP2008223089A (en) * 2007-03-13 2008-09-25 Jfe Steel Kk Method for dephosphorizing molten iron in converter type refining furnace
CN109536670A (en) * 2018-12-21 2019-03-29 首钢京唐钢铁联合有限责任公司 Method for recycling dephosphorization residues in full-three-removal process in thermal state

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003013126A (en) * 2001-06-29 2003-01-15 Kawasaki Steel Corp Method for dephosphorizing molten iron
JP2008223089A (en) * 2007-03-13 2008-09-25 Jfe Steel Kk Method for dephosphorizing molten iron in converter type refining furnace
CN109536670A (en) * 2018-12-21 2019-03-29 首钢京唐钢铁联合有限责任公司 Method for recycling dephosphorization residues in full-three-removal process in thermal state

Also Published As

Publication number Publication date
JP4414544B2 (en) 2010-02-10

Similar Documents

Publication Publication Date Title
JP6693536B2 (en) Converter steelmaking method
JPH0437132B2 (en)
JP4414544B2 (en) Refining method for converter type hot metal dephosphorization furnace
JP2003239009A (en) Dephosphorization refining method of hot metal
JP3440630B2 (en) Hot metal dephosphorization method
JP4695312B2 (en) Hot metal pretreatment method
JPH11323420A (en) Pretreating method for molten iron
JP3288208B2 (en) Hot metal dephosphorization method
JP3772918B2 (en) Dephosphorization method of hot metal in converter type refining vessel
JP2001049320A (en) Production of iron and steel using high phosphorus ore as raw material
JPH07179920A (en) Production of molten steel
JPH01147011A (en) Steelmaking method
JP2019151535A (en) Method of producing phosphate slag fertilizer
JPH11323419A (en) Refining of molten iron
JP2002256326A (en) Method for refining molten iron
JPH0557327B2 (en)
JP3823595B2 (en) Hot metal refining method
JPH1150122A (en) Dephosphorize-refining of molten iron in converter type refining vessel
JPS6342686B2 (en)
JP4356275B2 (en) Hot metal refining method
JP2004307941A (en) Method for dephosphorizing molten iron using converter-type vessel
JPS62290815A (en) Steel making method
JP2004156146A (en) Method for refining molten iron
JP2023070413A (en) Converter refining method
JPH11193410A (en) Molten iron refining method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070105

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070105

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091120

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4414544

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131127

Year of fee payment: 4

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131127

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees