JPH0377246B2 - - Google Patents

Info

Publication number
JPH0377246B2
JPH0377246B2 JP61239245A JP23924586A JPH0377246B2 JP H0377246 B2 JPH0377246 B2 JP H0377246B2 JP 61239245 A JP61239245 A JP 61239245A JP 23924586 A JP23924586 A JP 23924586A JP H0377246 B2 JPH0377246 B2 JP H0377246B2
Authority
JP
Japan
Prior art keywords
furnace
dephosphorization
slag
hot metal
converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61239245A
Other languages
Japanese (ja)
Other versions
JPS6393813A (en
Inventor
Tooru Matsuo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP23924586A priority Critical patent/JPS6393813A/en
Publication of JPS6393813A publication Critical patent/JPS6393813A/en
Publication of JPH0377246B2 publication Critical patent/JPH0377246B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

<産業上の利用分野> この発明は、全製鋼工程を通じての生石灰使用
量を極力抑えつつ高能率脱燐を行い、品質の良好
な鋼をコスト安く溶製する方法に関するものであ
る。 <従来技術とその問題点> 近年、各種鋼材に対する品質要求は日増しに高
度化しており、これにともなつて製鋼法にも各種
の工夫が試みられ、様々な新しい手法が導入され
てきた。 このような中にあつて、最近、低燐鋼をより一
層低いコストで安定溶製する手段の開発に大きな
期待が寄せられるようになり、その実現に向けて
多くの研究が積み重ねられている。 ところで、製鋼トータルコストのミニマム化や
低燐鋼の安定溶製に関しては、従来、次のような
溶銑の予備脱燐法が提案され、一部実用化もなさ
れている。即ち、 () トーピードカー内の溶銑に生石灰系の脱燐
剤又はソーダ灰をインジエクシヨンすることで
予備脱燐を行う方法、 () 取鍋内の溶銑に生石灰系のクラツクスをイ
ンジエクシヨンしたりブラステイング(吹き付
け)することで予備脱燐を行う方法、 () 高炉鋳床樋中で溶銑に生石灰系のクラツク
スをブラステイングして予備脱燐を行う方法。 しかしながら、前記()及び()の方法に
よると比較的低い到達P含有量レベルを達成する
ことはできるが、脱燐を“脱燐剤の浮上過程で進
行する反応(トランジトリー・リアクター・リア
クシヨン)”に頼るため脱燐フラツクスの利用効
率が必ずしも良くなく、また処理時間が長くかか
る分だけ処理時の抜熱が大きくなつて溶銑温度が
低下すると言う問題があり、一方、前記()の
方法では処理後の溶銑温度を先の2つの方法より
高く保つことができるが、脱燐処理が高炉から出
銑された直後の溶銑に施される関係上脱燐処理温
度が高くて到達P含有量レベルそのものが前記
()或いは()の方法よりも悪くなるとの不
都合があり、いずれも決して満足できるものでは
なかつた。 その上、溶銑脱燐フラツクスとして生石灰その
もの等を用いる場合には、その後の転炉吹錬(脱
炭精錬)で使用される生石灰等の量をも合わせて
考えると、前記いずれの方法によつても“該予備
脱燐工程を省いて転炉のみでの脱燐を行う方法”
に比べて必要造滓剤量(生石灰等の量)はそれほ
ど大きく低減されないことも指摘されていたので
ある。 このような技術的事項を背景に、製鋼コストに
大きく影響する造滓剤使用量を極力抑えることが
可能で、しかも格別に新規な設備を必要とするこ
とのない高品質鋼の量産方法を目指しなされた本
発明者等の「燐含有量の低い高品質鋼の溶製に重
要な役割を果たす生石灰等の造滓剤の必要量」に
ついての基礎的な検討結果は、 「全製鋼工程を通じての造滓剤の必要量はスラ
グとメタルとを向流的に接触させる“スラグ−メ
タル向流精錬”によるときが最も少なくて良い
が、実際上は該向流精錬の完全な実現は殆ど不可
能であり、現状において最も労少なく造滓剤の使
用量を抑え得る可能性を秘めた製鋼手段として挙
げ得るものは、脱燐工程を2段階に分割してその
下工程で発生するスラグを上工程の脱燐剤として
使用する方法(即ち、溶銑脱燐用フラツクスの主
成分として転炉滓を用いる方法であつて、例えば
本出願人が先に特公昭55−30042号として提案し
たところの“転炉滓を炉外精錬での溶銑脱燐フラ
ツクスとして再利用する方法”に代表されるも
の)である」 ことを強く認識させるに至らしめたのである。 しかしながら、これまでに提案された転炉滓再
利用による製鋼法は、炉外精錬を併用することも
あつて効率の良い作業条件を安定して確保するの
が非常に困難である上、脱燐効率も期待されるほ
どには高くなく、また量産のためには格別の排ガ
ス集塵機や脱燐スラグの排滓設備を必要とするな
ど、高品質鋼の量産手段としては今一歩躊躇され
るものでしかなかつた。 そこで本発明者等は、転炉滓再利用による製鋼
法の利点を十分にわきまえた上で、該利点を損な
わずに、また格別に新規な処理設備の使用を伴な
うこともなく、トータルの造滓剤使用量が少ない
前記「2段階脱燐工程を含む製鋼方法」を能率良
くしかも安定に実施し得る手段を模索した際の知
見事項たる (a) 溶銑の脱燐処理においては脱燐効率からみて
処理温度を出来るだけ低くする方が良いが、該
温度が余りに低くなり過ぎると次工程での不都
合を引き起こす上、処理後スラグへの粒鉄ロス
が多くなると言う問題が生じるので、該温度は
1300〜1350℃程度に最も良好である。しかし、
実際作業では脱燐剤の添加そのものが処理温度
を低下する大きな要因となるので多少低目の上
記温度を保持するのは極めて困難であるが、脱
燐処理時に少量の酸素ガスを吹き込むことによ
つて前記処理温度が安定かつ容易に維持される
こと。 (b) フラツクスの脱燐能を十分に発揮せしめて脱
燐能率を上げるには、上述のような処理温度の
調整もさることながら、脱燐平衡状態を達成す
るための十分な撹拌を欠くことができないが、
高温の溶銑を高能率脱燐するに十分満足できる
効率の良い撹拌を短時間に実現するためには、
処理容器底部から吹き込まれるガスによるガス
撹拌が最も好ましいこと。 (c) 加えて、効率の良い脱燐処理を行うためには
処理容器にスラグフオーミングのための十分な
フリーボード(湯面から容器上端までの距離)
が必要であること。 (d) スラグによる処理容器耐火物の溶損を軽減し
て脱燐作業能率を上げるためには、塩基性ライ
ニングの使用が好ましいこと。 (e) 2段階脱燐工程を含む製鋼法において脱燐作
業能率を上げるためには処理容器からの排滓能
率を無視することができず、排滓が容易な処理
容器の使用を欠かせないこと。 (f) 高品質鋼を作業性良く量産するためには十分
は排ガス処理設備(集塵機)が必要であるこ
と。 (g) これらの条件を考慮すると、溶銑脱燐処理容
器としては転炉形式の炉、それも炉底から撹拌
ガスを導入できる上下両吹き機能を有した複合
吹錬転炉が理想的であり、これを使用して前述
した「2段階脱燐工程を含む製鋼法」を実施す
ると、金製鋼工程を通じての造滓剤の使用量が
極く少なくても十分に効率の良い脱燐がなさ
れ、高品質鋼を作業能率良く量産できること。 なる事実に基づいて、 『上下両吹き機能を有した2基の転炉形式の炉
を使用するとともに、そのうちの一方を脱燐炉、
他方を脱炭炉とし、前記脱燐炉内へ注入した溶銑
に前記脱炭炉で発生した転炉滓を主成分とする精
錬剤の添加を行い、撹拌ガス吹き込みノズルによ
る底吹きガス撹拌を実施しつつランスより酸素ガ
スを上吹きして脱燐炉の溶銑の温度を1400℃以下
に保ちながら溶銑脱燐を行つた後、得られた脱燐
溶銑を脱炭炉にて脱炭並びに仕上脱燐することに
より、極めて少ない量の造滓剤でもつて通常燐レ
ベルの鋼或いは低燐鋼を作業性良く低コストで製
造し得るようにした製鋼方法』を先に提案した
(特願昭61−132517号)。 本発明者等が先に提案した上記方法は、全体で
使用する生石灰等のフラツクス量を極力少なくす
ることに重点を置いたものであり、その点では確
かに極めて優れた効果を発揮するものではあつ
た。 しかしながら、実操業を通じて様々な条件を想
定してその後も続けられた本発明者等の検討によ
り、 「先に提案した前記方法ではフラツクス消費量
の節減効果は著しいものの、この方法は脱炭炉で
仕上げ脱燐することを前提としている関係上脱炭
炉終点でP外れが出る可能性があり、P量を確認
するまで出鋼できないと言う、高能率製鋼を阻害
する因子を完全に避け得ない」 ことが明らかとなつた。 <問題点を解決するための手段> 本発明者等は、上述のような観点から、先に提
案したところの「2基の転炉を使用して転炉滓の
再利用を図りながら脱炭・脱燐を行う製鋼方法」
に必要な“脱炭終点でのP量確認作業”を省略
し、品質の良好な鋼をコスト安くしかも一層生産
性良く製造し得る手段を目指して、「脱炭炉での
[P]を未確認のまま出鋼できるようにするため
には、脱燐炉において溶銑[P]を製品[P]レ
ベル近くにまで落しておくことが重要である」と
の確信の下に更に研究を重ねたところ、新たに以
下に示す如き知見が得られたのである。即ち、 (a) 脱燐炉において溶銑[P]を製品[P]レベ
ル近くにまで落すと言うことは脱炭炉での実質
的な脱Pが不要であることを意味し、脱炭炉で
はスラグレス精錬で良いと言うことになるが、
ヒユームロスやスピツテイングロスの問題から
これらを軽減するに足る量のスラグは脱炭炉に
おいて必要であること。 (b) しかしながら、ヒユームロスやスピツテイン
グロスを防ぐことを目的とする程度の少量で
は、脱炭炉から出る連炉滓(実質的にはPを極
く少量しか含まない)を脱燐炉へ返して脱燐フ
ラツクスの主成分として用いても連炉滓だけで
はCaO源としての量が足りず、脱燐炉での
[P]が製品[P]レベル近くまで到底低下し
ないこと。 (c) そこで、脱燐炉において転炉滓の代りに生石
灰そのものを用いる手段も浮かんでくるが、一
般の連炉作業で通常に用いられる生石灰(融点
が2600℃と高く、粒径が30〜50mm程度)を脱燐
剤主成分として用いたとしても、高い滓化率を
安定して得ることができないこと。 (d) 勿論、粉状にした生石灰系脱燐剤をインジエ
クシヨンする手段も考えられるが、この場合に
は吹き込みに必要な特殊ランスが必要であつた
り、複雑な制御手段を要したりするので得策と
は言えないこと。 (e) ところが、少量ではあれ脱炭炉で発生した融
点が約1400℃と言う低融点の転炉滓をやはり脱
燐炉に返すと共に、これに不足するCaOの分だ
け生石灰を加えると、添加する生石灰量の調整
さえ行えば混入した生石灰も上記低融点の転炉
スラグの滓化と共に十分に滓化してしまい、格
別な不都合を生じることがないこと(この場
合、転炉滓は生石灰の滓化促進剤として作用す
るものと推測される)。 この発明は、上記知見事項等に基づいてなされ
たものであり、 第1図に示される如く、上下両吹き機能を有し
た2基の転炉形式の炉のうちの一方を脱燐炉1、
他方を脱炭炉2として溶銑の精錬を行う製鋼方法
であつて、前記脱燐炉1内へ注入した溶銑3に前
記脱炭炉2で発生した転炉滓4と生石灰とを精錬
剤4′主成分として添加し、撹拌ガス吹き込みノ
ズル5による底吹きガス撹拌を実施しつつランス
6より酸素ガスを上吹きして脱燐炉1の溶銑3の
温度を1450℃以下に保ちながら溶銑脱燐を行う第
1工程と、得られた脱燐溶銑を脱炭炉2に注銑し
通常の造滓剤を添加して脱炭する第2工程とを実
施することにより、極めて少ない量の造滓剤でも
つて、しかも脱炭終点での[P]量確認作業を要
することなく通常燐レベルの鋼或いは低燐鋼を作
業性良くコストで製造し得るようにした点、に特
徴を有するものである。 ここで、脱燐炉での処理温度を1450℃以下に調
整する理由は、溶銑処理温度がこれより高くなる
と脱炭ばかりが進行してスラグ中の全Fe量が低
くなり、脱燐率が悪化するからである。ただ、余
りに低温になるとスラグへの粒鉄ロスが増加する
ため、該処理温度は1200〜1450℃、好ましくは
1250〜1370℃に調整するのが良い。そして、この
ような処理温度の維持は上吹きランスからの酸素
ガス吹き込み或いは炉底羽口からの酸素ガス吹き
込みの併用によつて行われる。つまり、上記脱燐
炉での酸素ガス吹き込みは、脱燐処理温度を保証
するために行われるのである。従つて、ここでの
上吹き酸素ランスは通常の転炉ランスでも良い
が、脱燐用に新作した小流量ランスであつても良
い。そして、使用酸素ガス量は処理前の溶銑温度
や珪素含有量、転炉滓の温度、脱燐炉の温もり具
合、目的とする処理溶銑温度等によつて決定され
るが、概ね20Nm3/t以下で良く、通常は5〜
10Nm3/tが効果的である。因に、このときの脱
炭量は1%以下であり、0.5%程度である。 前記「上下両吹き機能を有した転炉形式の炉」
としては現在使われている“上下吹き複合吹錬転
炉”が最も好ましいが、特に脱燐炉については、
精錬条件が脱炭炉よりもマイルドであるため炉自
体を更に小さくしても良いので、脱燐専用に新設
してもコスト的にそれほどの影響はない。 脱燐炉で使用される精錬剤(脱燐フラツクス)
は脱炭炉で発生した転炉滓と生石灰とを主成分と
したものであるが、より良好な結果を得るために
は転炉滓に投入する生石灰の割合を調整するのが
良い。なぜなら、転炉滓と共に添加すれば生石灰
の滓化性が改善されるとは言え、生石灰の割合が
多過ぎるとやはり比較的低温では十分な滓化がな
されない懸念が拭えないからである。そこで、こ
の場合、 F=転炉滓量/転炉滓量+生石灰量×100 の値が40%以上を保つように生石灰の添加割合を
調整すれば、言い換えると、脱燐炉に添加する転
炉滓量を[転炉滓量+生石灰量]の40%以上とす
れば、混入した生石灰も上記低融点の転炉スラグ
の滓化と共に十分に滓化することとなり、格別な
不都合を生じる恐れが完全に無くなるので好まし
い。 なお、第2図は[使用する転炉滓と生石灰との
総量に占める転炉滓の割合]と[滓化率]との関
係を示すグラフであるが、このグラフからも転炉
滓量が40%以上であれば十分な滓化率を確保し得
ることは明らかである。 ところで、脱燐炉で使用される精錬剤として
は、上記転炉滓と生石灰以外に酸化鉄及び螢石を
基本の副成分として配合するのが良い。例えば、 転炉滓+生石灰:40〜60重量% 酸化鉄:10〜60重量% 螢石:5〜25重量% 程度の配合割合としたものが推奨される。もちろ
んこれに限定されるわけではないが、転炉滓や生
石灰を滓化して低融点の脱燐スラグとしたり脱燐
が進行し易いようにスラグの酸化力を高めるため
には、酸化鉄の併用は極めて重量である。また、
媒溶剤としては螢石が一般的であるが、CaCl、
NaO・SiO2、Na2CO3等をそれぞれ単独に用いて
も良いし、或いは螢石と併用しても良い。そし
て、転炉滓以外のこれら脱燐フラツクス原料は滓
化性の面から小さい粒径程好ましいが、一般に使
われている程度のものであれば何ら差し支えな
い。 脱燐炉で使用される精錬剤(脱燐フラツクス)
の量は溶製する鋼の[P]レベルにより決定され
るが、通常は50Kg/t程度で良い。ただ、低燐鋼
溶製の場合には、脱燐炉での溶銑[P]も例え
ば、0.010%以下程度にまで低下させる必要があ
り、CaO分として15Kg/t以上(好ましくは20
Kg/t以上)の添加を要する。ただ、この場合で
も、後述するように、脱炭炉では必要以上の造滓
剤を投入し、前記式のF値が40%以上となるよう
に心掛けねばならない。 さて、脱燐炉で使用される精錬剤の主成分たる
転炉滓としては、脱炭炉で発生した溶融状態のも
のが熱経済的にも脱燐フラツクスの滓化性の面か
らも好ましいが(このように溶融状態のものを用
いる場合には耐火物を内張りした鍋を介して脱燐
炉に注滓される)、取り扱いの容易さ等を考慮し
て脱炭炉で得られたものを一旦冷却凝固させ、粒
状又は塊状に破砕してから用いても良い(なお、
この時も、熱的な面からスラグの温度は高い程良
い)。ただ、この場合、脱燐炉での滓化性向上の
ために粒径は小さい程良好であるが、転炉滓は本
来滓化性に富んでいることもあつて粒径が50mmを
下回る程度でも格別な滓化遅れを生じることはな
く、これより大きくても使用可能である。 なお、使用される転炉滓は、タイミングとして
は前回チヤージのものが良いが、それ以前に脱炭
炉から出たものや他の工場の脱炭炉で発生したも
のでも良いことは言うまでもない。 炉底から吹き込む撹拌ガスとしてはAr、CO2
CO、N2、O2、空気等の何れであつても良い。そ
して、脱燐炉の炉底ガス撹拌の程度は通常の上下
両吹き複合吹錬におけると同程度(0.03〜0.2N
m3/t)で良いが、脱燐速度の向上を狙つてこれ
よりも更に多くして良いことは勿論である。 以上のような条件で脱燐処理を行うと、通常、
20分以内で所望の脱燐を完了することができる
が、10分程度でも可能である。 さて、脱燐炉で製品[P]レベル程度にまで脱
燐するためには、CaO分としては溶銑トン当り10
Kg、好ましくは15Kg必要である。しかし、この場
合には脱炭炉ではもはや脱燐は殆ど必要がないの
で、脱燐を目的に生石灰或いはドロマイト等を添
加することは実質的には不要となり、この点から
すれば脱炭炉での転炉滓の発生量は無くなつてし
まう。そのため、このような操業下では脱燐炉に
おいて生石灰系脱燐フラツクスのみを使用しなけ
ればならなくなるが、粒径が通常30〜50mmである
生石灰は炉底撹拌と少量の酸素上吹きだけでは10
〜15分と言つた短かい処理時間内に安定して滓化
されることがなく、従つで製鋼システムとしては
成り立たなくなつてしまうことになる。 ただ、脱炭炉ではヒユームロスやスピツテイン
グ発生を軽減させるために生石灰或いはドロマイ
トと言つた造滓剤を脱燐とは実質的に関係無く添
加することが必要である(ただ、これらが存在す
れば脱燐が進行することは勿論である)。しかし、
このような目的で使用される造滓剤は、例えば生
石灰やドロマイトの添加量が溶銑トン当り3Kgと
すれば転炉滓の発生量が約6Kgとなるので(転炉
滓中のCaOは通常約50%である)、これを脱燐炉
に返して生石灰を例えば12Kg/tと酸化熱及び螢
石とを合わせて脱燐剤としても F=転炉滓量/転炉滓量+生石灰量×100 の値が33%となつてしまい、滓化が十分に進行し
なくなる。 従つて、脱炭炉では、必要以上に生石灰やドロ
マイトと言つた造滓剤を添加し、転炉滓を多く造
ることがこの発明では重要である。例えば、脱炭
炉での転炉滓の発生量が8Kg/t以上となるよう
に造滓剤量を4Kg/t以上にすると、脱燐炉での
添加生石灰量は例えば11Kg以下で良いことにな
り、前記F値が42%以上となつて脱燐剤の滓化は
十分に良好となるのである。 このように、この発明の方法では脱炭炉におい
て必要以上に造滓剤を投入することが必要な場合
もあるが、このときの転炉滓は再び脱燐炉の脱燐
剤として有効に利用されるので全体で見れば無駄
になるものではない。 脱炭炉の吹錬は、基本的には通常の“炉外で脱
燐された溶銑”を吹錬する場合と同じであり、こ
のとき終点での溶鋼のMn含有量向上を目的とし
て生石灰やドロマイト及び螢石を中心とする造滓
剤の他にマンガン鉱石や鉄マンガン鉱石を添加す
ることもできる。(必要に応じてコークスのよう
な炭素含有物質を添加するのも良い)。このよう
にすれば、MnO或いはMnO2が[C]又は炭材
で還元されて[Mn]が上昇し、マンガン合金鉄
を節減することができる。この場合、未還元の
(MnO)が多く含まれる転炉滓は再び脱燐炉の脱
燐剤として使用されるので、脱燐時の[Mn]ロ
スを少なくできると言う長所もある。なお、脱炭
炉で発生した転炉滓を脱燐炉に返すことによつ
て、転炉滓中のFeOや粒鉄と言つた有価成分を有
効に利用できるとの利点であることも言うまでも
ないことである。 ところで、この発明に係る製鋼法を実施する場
合には、出来れば適用される溶銑の事前脱硫処理
を行うのが良い。その理由として、該製鋼法では
スラグ塩基度(CaO/SiO2)が2.5以上では良好
な脱硫が進行するが、塩基度がこれより低い場合
いは脱硫の進行が極めて鈍いと言うことが挙げら
れる。また、他方では、事前脱硫していない溶銑
を用いた場合で、脱燐炉で脱硫が進行しない場合
には転炉スラグ中のS含有量が上昇し、次のチヤ
ージにおける溶綱S含有量を高めることも懸念さ
れるからである。なお、前記事前脱硫は通常行わ
れている溶銑脱硫方法のいずれによつても良い。
しかしながら、溶銑の脱硫設備が無い場合には脱
燐炉で脱燐処理を行つた後、炉内に脱燐処理後ス
ラグを残したままNa2CO3を3〜10Kg/t添加す
ることにより脱硫が可能である。このときの
Na2CO3添加方法としては単なる上置投入法でも
良いが、炉底撹拌ガスノズルを介して脱燐処理後
の溶銑にNa2CO3粉をArガスやN2ガスキヤリア
ーに乗せて吹き込む方法が望ましい。 更に、この方法に適用される原料溶銑のSi含有
量も低い程好ましい。なぜなら、溶銑中のSi含有
量が多くなるほど前記脱燐炉でのスラグ塩基度が
低下して脱燐能が落ち、全体での生石灰等の使用
量が増加するためである。溶銑のSi含有量はでき
れば0.3以下、好ましくは0.2%以下に調整してお
くのが良策である。しかし、[Si]が高かつたと
しても、系全体の生石灰等の使用量さえ増やせば
基本的には差し支えがない。 続いて、この発明によつて得られる効果の主な
ものを、説明の関係上、個々に切り離して列挙す
る。 <発明の効果> 転炉滓を再び溶銑脱燐フラツクスとして用い
るため、転炉滓を捨てていた従来法よりも脱炭
炉での造滓剤使用分に近い分だけ少ない造滓剤
量で製鋼が行える。 転炉滓中のFeOの有効利用がなされ、粒鉄や
地金の回収率が向上する。 一般に、脱炭炉でマンガン鉱石や鉄マンガン
鉱石を使用した場合にはこれらの約半分はMn
にまで還元されずに酸化物としてスラグ中に残
るが、この発明の方法においては、該スラグを
溶銑脱燐フラツクスとして再使用するので上記
残留鉱石の有効利用がなされ、溶銑における
“[Mn]ロスの軽減”或いは“[Mn]上昇”に
役立つ。 使用する炉が転炉形式の炉であるので、例え
ば脱燐炉の場合でも、出鋼口から脱燐銑のみを
鍋中へ出銑してから炉内のスラグをノロツボに
排出でき、他の脱燐法におけるよりも除滓が簡
単である。 使用する炉が上下両吹き機能を有した転炉形
式の炉であるので溶銑の強撹拌が出来て短時間
処理が可能となるので抜熱量が少なく、他の脱
燐処理法に比して熱経済上極めて有利である。
特に溶融転炉滓を用いる場合にはその顕熱分だ
げ更に熱経済的に有利となる。 この発明の方法で使用される脱燐炉で発生す
るスラグは、P2O5含有量が4〜10%にもなつ
ているので肥料としての用途が開ける上、遊離
石灰が無いため路盤材としての有効利用も可能
である。 使用する炉が2つであるので、炉体に付着す
るP2O5に起因した脱燐不良の懸念は全くない。
つまり、脱燐炉では高P2O5のスラグが、そし
て脱炭炉では低P2O5スラグしか付着しないの
で脱炭炉での脱燐不良或いは復Pが起こらな
い。しかも、溶融転炉滓を使用する場合には、
脱燐炉では溶銑を装入した後に溶融転炉滓が入
れられるので、急激な爆発的反応が起きる心配
がない。 底吹きガス撹拌を行いつつ脱燐を行うので、
従来の溶銑脱燐法の場合のように脱燐剤を粉状
近くにまで細かく粉砕しておく必要がなく、そ
の分のコスト低減が可能となる。 遊休転炉がある場合には、これを直ちに脱燐
炉として使うことが出来、格別な設備を準備す
る必要がない。 また、例えば転炉1/2基操業を行つている工
場の場には、一方の炉を脱燐炉とし、転炉2/2
基操業のような形で設備投資なくこの発明の実
施が可能である。そして、レンガ寿命のために
何れか一方を築炉する必要が生じた場合には、
この間だけ転炉1基のみで従来の転炉吹錬を行
つて遊休炉を出さない方策も講じられ、非常に
柔軟性に富んだ精錬が可能である。 ところで、工場によつてはクレーン能力から
2杯注銑を行う場合があるが、この場合、処理
を簡単にするために脱燐炉では大半の溶銑を処
理し、追銑は脱炭炉で行うのが得策である。 次に、この発明の実施例により具体的に説明す
る。 <実施例> 実施例 1 まず、高炉鋳床で脱珪し、トーピード内で脱硫
処理した第1表の上段に示される如き成分組成の
溶銑160トンを脱燐炉として使用する上下両吹き
複合吹錬転炉に注銑し、これに、同様形式の脱炭
炉で発生した転炉滓を冷却・凝固して10mm以下の
粒径に破砕したもの15Kg/t、粒径:30〜50mmの
生石灰8Kg/t、転炉滓と同様粒径を持つ鉄鉱石
25Kg/t、並びに螢石5Kg/tとを混合状態で添
加して13分間の脱燐処理を行つた。 なお、使用した脱燐炉並びに脱炭炉は、上述の
ように何れも炉底よりガス吹き込み撹拌が可能な
160トン上下両吹き複合吹錬転炉であり、以下の
何れの実施例においても第2表に示すような操業
条件が採用された。 このようにして得られた脱燐銑(成分組成は第
1表の中段に示す)を一旦鍋中に出銑してから脱
炭炉に注銑し、通常の転炉操業で用いる生石灰4
Kg/t、ドロマイト3Kg/t及び螢石2Kg/tと
を造滓剤として脱炭吹錬を実施した。なお、この
際、終点温度(吹錬終了温度)が1635℃となるよ
うに冷却材としての鉄鉱石を適時添加した。 このとき発生した転炉滓は15Kg/tであり、こ
<Industrial Application Field> The present invention relates to a method of highly efficient dephosphorization while minimizing the amount of quicklime used throughout the entire steelmaking process, and producing high-quality steel at a low cost. <Prior art and its problems> In recent years, quality requirements for various steel materials have become more sophisticated day by day, and with this, various innovations have been attempted in steel manufacturing methods and various new methods have been introduced. Under these circumstances, there have recently been great expectations for the development of a means to stably melt low-phosphorus steel at even lower costs, and much research is being carried out toward its realization. By the way, regarding the minimization of the total cost of steel manufacturing and the stable production of low phosphorous steel, the following preliminary dephosphorization method of hot metal has been proposed, and some of it has been put into practical use. Namely, () a method of performing preliminary dephosphorization by injecting a quicklime-based dephosphorizing agent or soda ash into hot metal in a torpedo car; () a method of injecting quicklime-based cracks into hot metal in a ladle or blasting (blasting); () A method of performing preliminary dephosphorization by blasting hot metal with quicklime-based cracks in a blast furnace casthouse trough. However, although relatively low P content levels can be achieved by the methods () and () above, dephosphorization is a "reaction that proceeds during the floating process of the dephosphorizing agent (transitary reactor reaction)". However, in the method (2) above, there is a problem that the utilization efficiency of the dephosphorizing flux is not necessarily good, and the longer the treatment time, the more heat is removed during the treatment, which lowers the hot metal temperature. The hot metal temperature after treatment can be kept higher than the previous two methods, but since the dephosphorization treatment is applied to the hot metal immediately after being tapped from the blast furnace, the dephosphorization treatment temperature is high and the P content level reached is low. There is a disadvantage that the method itself is worse than the above-mentioned method () or (2), and neither method is satisfactory. Furthermore, when using quicklime itself as flux for hot metal dephosphorization, considering the amount of quicklime used in the subsequent converter blowing (decarburization refining), it is difficult to use either of the above methods. Also “a method of omitting the preliminary dephosphorization step and performing dephosphorization only in a converter”
It was also pointed out that the required amount of slag forming agent (amount of quicklime, etc.) was not significantly reduced compared to the above. With these technical considerations in mind, we aim to create a method for mass-producing high-quality steel that can minimize the amount of slag-forming agent used, which greatly affects steelmaking costs, and does not require any new equipment. The results of the basic study conducted by the present inventors regarding the "required amount of slag-forming agents such as quicklime, which play an important role in the melting of high-quality steel with low phosphorus content," are based on the following: The amount of slag-forming agent required can be minimized when using "slag-metal countercurrent refining," which brings slag and metal into countercurrent contact, but in reality, it is almost impossible to fully realize countercurrent refining. Currently, the most labor-intensive steelmaking method that has the potential to reduce the amount of slag used is to divide the dephosphorization process into two stages and transfer the slag generated in the lower process to the upper process. A method of using converter slag as a dephosphorizing agent for hot metal dephosphorization (that is, a method of using converter slag as the main component of flux for hot metal dephosphorization, for example, a method of using converter slag as a dephosphorizing agent for hot metal dephosphorization; This led to a strong recognition that this is a method of reusing furnace slag as hot metal dephosphorization flux in ex-furnace refining. However, the steelmaking methods that have been proposed so far by reusing converter slag sometimes involve out-of-furnace refining, which makes it extremely difficult to stably maintain efficient working conditions. Efficiency is not as high as expected, and mass production requires a special exhaust gas dust collector and dephosphorization slag removal equipment, making it difficult to use as a method for mass production of high-quality steel. It was all I could do. Therefore, the inventors of the present invention fully understood the advantages of the steel manufacturing method by reusing converter slag, and decided to develop a total This is what we found when searching for a means to efficiently and stably implement the above-mentioned "steel manufacturing method including a two-stage dephosphorization process" that uses a small amount of slag-forming agent.(a) In the dephosphorization process of hot metal, From the viewpoint of efficiency, it is better to keep the processing temperature as low as possible, but if the temperature is too low, it will cause problems in the next process, and there will be problems such as increased loss of granulated iron to the slag after processing. The temperature is
The best temperature is around 1300-1350℃. but,
In actual work, the addition of the dephosphorizing agent itself is a major factor in lowering the processing temperature, so it is extremely difficult to maintain the above-mentioned somewhat low temperature. Therefore, the processing temperature can be maintained stably and easily. (b) In order to fully utilize the dephosphorizing ability of the flux and increase the dephosphorization efficiency, it is necessary to adjust the treatment temperature as described above, as well as to lack sufficient stirring to achieve a dephosphorization equilibrium state. I can't do it, but
In order to achieve sufficient and efficient stirring in a short time for highly efficient dephosphorization of high-temperature hot metal,
Gas agitation using gas blown from the bottom of the processing container is most preferred. (c) In addition, in order to perform efficient dephosphorization, the processing vessel must have sufficient free board (distance from the hot water surface to the top of the vessel) for slag forming.
is necessary. (d) In order to reduce erosion of the refractories of the processing vessel due to slag and increase the efficiency of dephosphorization work, it is preferable to use a basic lining. (e) In order to increase the efficiency of dephosphorization in a steel manufacturing process that includes a two-stage dephosphorization process, the efficiency of removing slag from the processing container cannot be ignored, and it is essential to use a processing container that allows easy removal of slag. thing. (f) In order to mass-produce high-quality steel with good workability, sufficient exhaust gas treatment equipment (dust collector) is necessary. (g) Considering these conditions, a converter-type furnace is ideal as a hot metal dephosphorization treatment vessel, especially a combined blowing converter with a top and bottom blowing function that allows stirring gas to be introduced from the bottom of the furnace. When this is used to carry out the above-mentioned "steel manufacturing method including two-stage dephosphorization process", sufficiently efficient dephosphorization can be achieved even if the amount of slag forming agent used throughout the gold steel manufacturing process is extremely small. Being able to mass-produce high-quality steel with high efficiency. Based on the fact that
The other side is used as a decarburization furnace, and a refining agent mainly composed of converter slag generated in the decarburization furnace is added to the hot metal injected into the dephosphorization furnace, and bottom-blown gas is stirred by a stirring gas injection nozzle. After dephosphorizing the hot metal while keeping the temperature of the hot metal in the dephosphorization furnace below 1400℃ by blowing oxygen gas upward from a lance, the obtained dephosphorized hot metal is decarburized and finish dephosphorized in a decarburization furnace. He previously proposed a steelmaking method that allows the production of steel at a normal phosphorus level or low-phosphorus steel with good workability and at low cost even with an extremely small amount of slag-forming agent (patent application 1983- No. 132517). The method previously proposed by the present inventors focuses on reducing the amount of flux such as quicklime used as much as possible, and it is certainly not an extremely effective method in that respect. It was hot. However, as a result of continued studies by the present inventors assuming various conditions through actual operation, it was found that ``Although the previously proposed method has a remarkable effect of reducing flux consumption, this method does not work well in decarburization furnaces. As it is assumed that final dephosphorization will be performed, there is a possibility that P will be off at the end of the decarburization furnace, and steel cannot be tapped until the amount of P is confirmed.It is impossible to completely avoid factors that inhibit high-efficiency steelmaking. ” It became clear. <Means for Solving the Problems> From the above-mentioned viewpoint, the present inventors proposed the method of decarburizing while reusing converter slag using two converters.・Steel manufacturing method that involves dephosphorization
We aim to omit the "confirmation of P amount at the end point of decarburization" required for decarburization, and to produce high-quality steel at a lower cost and with higher productivity. We conducted further research with the conviction that in order to be able to tap steel as it is, it is important to reduce the molten metal [P] in the dephosphorization furnace to a level close to the product [P] level.'' The following new knowledge was obtained. In other words, (a) Reducing the hot metal [P] to near the product [P] level in the dephosphorization furnace means that there is no need for substantial deP in the decarburization furnace; I would say that slagless refining is fine,
A sufficient amount of slag is necessary in the decarburization furnace to reduce the problems of humour loss and spitting loss. (b) However, in small quantities for the purpose of preventing humus loss and spitting loss, the continuous furnace slag (which essentially contains only a very small amount of P) from the decarburization furnace is returned to the dephosphorization furnace. Even if it is used as the main component of the dephosphorization flux, continuous furnace slag alone will not be sufficient as a CaO source, and [P] in the dephosphorization furnace will never drop to near the product [P] level. (c) Therefore, a method of using quicklime itself instead of the converter slag in the dephosphorization furnace comes to mind. 50 mm) as the main component of the dephosphorizing agent, it is not possible to stably obtain a high slag formation rate. (d) Of course, it is possible to inject a powdered quicklime-based dephosphorizing agent, but in this case, a special lance is required for blowing, and complicated control means are required, so this is not a good idea. That cannot be said. (e) However, if a small amount of the converter slag, which has a low melting point of approximately 1400°C, generated in the decarburization furnace is returned to the dephosphorization furnace, and quicklime is added to compensate for the insufficient CaO, As long as the amount of quicklime is adjusted, the mixed quicklime will be sufficiently turned into slag along with the converter slag with a low melting point, and no particular inconvenience will occur (in this case, the converter slag will be converted into slag of quicklime). It is assumed that it acts as an accelerator. This invention has been made based on the above-mentioned findings, and as shown in FIG.
This is a steelmaking method in which hot metal is refined using the other side as a decarburization furnace 2, in which converter slag 4 generated in the decarburization furnace 2 and quicklime are added to the hot metal 3 injected into the dephosphorization furnace 1 as a refining agent 4'. The hot metal is dephosphorized while maintaining the temperature of the hot metal 3 in the dephosphorization furnace 1 at 1450°C or less by blowing oxygen gas upward from the lance 6 while performing bottom-blown gas agitation using the stirring gas blowing nozzle 5. By carrying out the first step of decarburizing the dephosphorized hot metal, and the second step of pouring the obtained dephosphorized hot metal into the decarburization furnace 2 and decarburizing it by adding a normal slag-forming agent, an extremely small amount of slag-forming agent can be produced. Moreover, the present invention is characterized in that steel with a normal phosphorus level or low phosphorus steel can be produced with good workability and at a low cost without requiring the work of confirming the amount of [P] at the end point of decarburization. Here, the reason why the treatment temperature in the dephosphorization furnace is adjusted to 1450℃ or less is that if the hot metal treatment temperature is higher than this, decarburization will proceed and the total amount of Fe in the slag will decrease, resulting in a worsening of the dephosphorization rate. Because it does. However, if the temperature is too low, the loss of granulated iron to the slag will increase, so the treatment temperature is preferably 1200-1450℃.
It is best to adjust the temperature to 1250-1370℃. The treatment temperature is maintained by a combination of blowing oxygen gas from the top blowing lance or blowing oxygen gas from the bottom tuyere. In other words, the oxygen gas injection in the dephosphorization furnace is performed to ensure the dephosphorization treatment temperature. Therefore, the top blowing oxygen lance here may be a normal converter lance, but it may also be a new small flow rate lance for dephosphorization. The amount of oxygen gas used is determined by the temperature and silicon content of the hot metal before treatment, the temperature of the converter slag, the warmth of the dephosphorization furnace, the target temperature of the hot metal to be treated, etc., but is approximately 20Nm 3 /t. Below is fine, usually 5~
10Nm 3 /t is effective. Incidentally, the amount of decarburization at this time is 1% or less, about 0.5%. ``Converter type furnace with both upper and lower blowing functions''
The currently used "top-bottom blowing combined blowing converter" is the most preferable, but especially for dephosphorization furnaces,
Since the refining conditions are milder than in a decarburization furnace, the furnace itself can be made even smaller, so even if a new one is built specifically for dephosphorization, there will not be much of an impact on the cost. Refining agent used in dephosphorization furnace (dephosphorization flux)
The main components are converter slag and quicklime generated in a decarburizing furnace, but in order to obtain better results, it is better to adjust the ratio of quicklime added to the converter slag. This is because, although the slag-forming properties of quicklime can be improved if it is added together with the converter slag, if the proportion of quicklime is too high, there is still a concern that sufficient slag-formation will not be achieved at relatively low temperatures. Therefore, in this case, if the ratio of quicklime added is adjusted so that the value of F = converter slag amount / converter slag amount + quicklime amount x 100 is kept at 40% or more, in other words, the converter added to the dephosphorization furnace is If the amount of furnace slag is 40% or more of [the amount of converter slag + the amount of quicklime], the mixed quicklime will also become slag as well as the converter slag with a low melting point, which may cause special inconvenience. is preferable because it completely eliminates In addition, Figure 2 is a graph showing the relationship between [the ratio of converter slag to the total amount of converter slag and quicklime used] and [slag conversion rate], and this graph also shows that the amount of converter slag is It is clear that a sufficient slag formation rate can be ensured if it is 40% or more. By the way, as a refining agent used in a dephosphorization furnace, it is preferable to mix iron oxide and fluorite as basic subcomponents in addition to the above-mentioned converter slag and quicklime. For example, a recommended blending ratio is converter slag + quicklime: 40 to 60% by weight, iron oxide: 10 to 60% by weight, and fluorite: 5 to 25% by weight. Of course, it is not limited to this, but in order to turn converter slag and quicklime into slag to make dephosphorization slag with a low melting point, and to increase the oxidizing power of slag so that dephosphorization can proceed easily, it is possible to use iron oxide in combination. is extremely heavy. Also,
Fluorite is commonly used as a solvent, but CaCl,
NaO.SiO 2 , Na 2 CO 3 and the like may be used alone or in combination with fluorite. The smaller the particle size of these dephosphorization flux raw materials other than the converter slag is, the more preferable it is from the viewpoint of slag formation, but there is no problem as long as it is of a generally used size. Refining agent used in dephosphorization furnace (dephosphorization flux)
The amount of P is determined by the [P] level of the steel to be melted, but it is usually around 50 kg/t. However, in the case of making low-phosphorus steel, the hot metal [P] in the dephosphorization furnace must also be reduced to, for example, 0.010% or less, and the CaO content is 15Kg/t or more (preferably 20Kg/t or less).
Kg/t or more) is required. However, even in this case, as will be described later, it is necessary to add more slag forming agent than necessary to the decarburization furnace so that the F value in the above formula becomes 40% or more. Now, as the converter slag, which is the main component of the refining agent used in the dephosphorization furnace, the molten slag generated in the decarburization furnace is preferable from the viewpoint of thermoeconomics and the ability of the dephosphorization flux to form slag. (If the molten material is used in this way, it is poured into the dephosphorization furnace through a pot lined with refractory material.) Considering ease of handling, etc., the material obtained in the decarburization furnace is used. It may be used after being cooled and solidified and crushed into granules or chunks (in addition,
Also at this time, from a thermal standpoint, the higher the slag temperature, the better.) However, in this case, the smaller the particle size is, the better in order to improve the ability to form slag in the dephosphorization furnace, but converter slag is inherently highly slag-forming, so the particle size is less than 50 mm. However, it does not cause any particular delay in slag formation, and it can be used even if it is larger than this. It should be noted that the timing of the converter slag to be used is preferably that of the previous charge, but it goes without saying that it may also be that which came out of the decarburizing furnace before that or that which was generated in the decarburizing furnace of another factory. Stirring gases blown in from the bottom of the furnace include Ar, CO 2 ,
It may be any of CO, N 2 , O 2 , air, etc. The degree of agitation of the bottom gas in the dephosphorization furnace is the same as in normal double blowing combined blowing (0.03 to 0.2N
m 3 /t), but it is of course possible to increase the amount even more with the aim of improving the dephosphorization rate. When dephosphorization is performed under the above conditions, usually
The desired dephosphorization can be completed within 20 minutes, but it is also possible to complete the desired dephosphorization in about 10 minutes. Now, in order to dephosphorize to the product [P] level in a dephosphorization furnace, the CaO content must be 10 per ton of hot metal.
Kg, preferably 15 Kg. However, in this case, there is almost no need for dephosphorization in the decarburization furnace, so it is virtually unnecessary to add quicklime or dolomite for the purpose of dephosphorization. The amount of converter slag generated will disappear. Therefore, under such operations, it is necessary to use only quicklime-based dephosphorization flux in the dephosphorization furnace, but quicklime, which has a particle size of usually 30 to 50 mm, can be heated up to 10% by stirring at the bottom of the furnace and by blowing a small amount of oxygen over the top.
It is not possible to stably turn it into slag within a short processing time of ~15 minutes, making it unviable as a steelmaking system. However, in a decarburizing furnace, it is necessary to add sludge-forming agents such as quicklime or dolomite, which have virtually no relation to dephosphorization, in order to reduce the occurrence of humus loss and spitting. Of course, phosphorus progresses). but,
For slag forming agents used for this purpose, for example, if the amount of added quicklime or dolomite is 3 kg per ton of hot metal, the amount of converter slag generated will be approximately 6 kg (CaO in converter slag is usually approximately 50%), return this to the dephosphorization furnace and use the quicklime as a dephosphorizing agent by combining 12 kg/t of oxidation heat and fluorite. F = Converter slag amount / converter slag amount + quicklime amount x The value of 100 becomes 33%, and slag formation does not progress sufficiently. Therefore, in the present invention, it is important to add more slag-forming agents such as quicklime and dolomite than necessary in the decarburization furnace to produce more converter slag. For example, if the amount of slag forming agent is set to 4 kg/t or more so that the amount of converter slag generated in the decarburization furnace is 8 kg/t or more, the amount of added quicklime in the dephosphorization furnace can be, for example, 11 kg or less. Therefore, when the F value is 42% or more, the slag formation of the dephosphorizing agent is sufficiently improved. As described above, in the method of this invention, it may be necessary to add more slag forming agent than necessary to the decarburization furnace, but the converter slag at this time can be effectively used again as a dephosphorizing agent in the dephosphorizing furnace. Therefore, if you look at it as a whole, it is not wasted. Blowing in a decarburizing furnace is basically the same as blowing ordinary hot metal that has been dephosphorized outside the furnace. In addition to the slag-forming agent mainly composed of dolomite and fluorite, manganese ore and ferromanganese ore can also be added. (It is also good to add carbon-containing substances such as coke if necessary). In this way, MnO or MnO 2 is reduced with [C] or carbonaceous material, [Mn] increases, and manganese alloy iron can be saved. In this case, since the converter slag containing a large amount of unreduced (MnO) is used again as a dephosphorizing agent in the dephosphorization furnace, there is also the advantage that [Mn] loss during dephosphorization can be reduced. It goes without saying that by returning the converter slag generated in the decarburization furnace to the dephosphorization furnace, valuable components such as FeO and granulated iron in the converter slag can be effectively utilized. That's true. By the way, when implementing the steel manufacturing method according to the present invention, it is preferable to perform a preliminary desulfurization treatment on the applied hot metal if possible. The reason for this is that in this steelmaking method, desulfurization progresses well when the slag basicity (CaO/SiO 2 ) is 2.5 or higher, but when the basicity is lower than this, desulfurization progresses extremely slowly. . On the other hand, when hot metal that has not been desulfurized in advance is used and desulfurization does not proceed in the dephosphorization furnace, the S content in the converter slag increases, and the S content of the molten iron in the next charge increases. This is because there is also concern that it may increase. Note that the preliminary desulfurization may be performed by any of the commonly used hot metal desulfurization methods.
However, if hot metal desulfurization equipment is not available, after dephosphorization is performed in a dephosphorization furnace, 3 to 10 kg/t of Na 2 CO 3 is added to the furnace while leaving the dephosphorized slag in the furnace. is possible. At this time
As a method of adding Na 2 CO 3 , a simple overhead injection method may be used, but it is preferable to inject Na 2 CO 3 powder into the hot metal after dephosphorization through a bottom stirring gas nozzle on an Ar gas or N 2 gas carrier. . Furthermore, the lower the Si content of the raw material hot metal used in this method, the better. This is because as the Si content in the hot metal increases, the basicity of the slag in the dephosphorization furnace decreases, the dephosphorization ability decreases, and the total amount of quicklime etc. used increases. It is a good idea to adjust the Si content of the hot metal to 0.3% or less, preferably 0.2% or less. However, even if [Si] is high, there is basically no problem as long as the amount of quicklime etc. used in the entire system is increased. Next, for the sake of explanation, the main effects obtained by this invention will be listed separately. <Effects of the invention> Since the converter slag is reused as a hot metal dephosphorization flux, steel can be manufactured using a smaller amount of slag forming agent, which is close to the amount used in the decarburization furnace, compared to the conventional method in which the converter slag is discarded. can be done. FeO in the converter slag is effectively used, improving the recovery rate of granulated iron and metal. Generally, when manganese ore or ferromanganese ore is used in a decarburization furnace, about half of these ores are Mn.
However, in the method of this invention, the slag is reused as hot metal dephosphorization flux, so the residual ore is effectively utilized, and the "[Mn] loss" in the hot metal is reduced. It is useful for “reducing ” or “increasing [Mn]”. Since the furnace used is a converter-type furnace, for example, even in the case of a dephosphorization furnace, only the dephosphorized pig iron can be tapped from the tapping port into the ladle, and then the slag in the furnace can be discharged to the boiling pot. Slag removal is easier than in the dephosphorization method. Since the furnace used is a converter-type furnace with both upper and lower blowing functions, the hot metal can be strongly stirred and the treatment can be carried out in a short period of time, resulting in less heat loss and less heat compared to other dephosphorization treatment methods. It is extremely advantageous economically.
In particular, when melting converter slag is used, its sensible heat content makes it more thermoeconomically advantageous. The slag generated in the dephosphorization furnace used in the method of this invention has a P 2 O 5 content of 4 to 10%, so it can be used as fertilizer, and since there is no free lime, it can be used as a roadbed material. It is also possible to make effective use of Since two furnaces are used, there is no concern about poor dephosphorization due to P 2 O 5 adhering to the furnace body.
In other words, high P 2 O 5 slag is deposited in the dephosphorization furnace, and only low P 2 O 5 slag is deposited in the decarburization furnace, so that dephosphorization failure or P recovery in the decarburization furnace does not occur. Moreover, when using melted converter slag,
Since the molten converter slag is added to the dephosphorization furnace after charging the hot metal, there is no need to worry about sudden explosive reactions. Since dephosphorization is performed while stirring the bottom-blown gas,
Unlike the conventional hot metal dephosphorization method, there is no need to finely grind the dephosphorizing agent to near powder form, making it possible to reduce costs accordingly. If there is an idle converter, it can be used immediately as a dephosphorization furnace, and there is no need to prepare special equipment. For example, in a factory that operates 1/2 converter units, one furnace can be used as a dephosphorization furnace, and 2/2 converter units can be operated.
This invention can be implemented without any capital investment in the form of a base operation. If it becomes necessary to construct one of the bricks to extend its lifespan,
During this period, conventional converter blowing can be carried out using only one converter to avoid idle furnaces, allowing for highly flexible refining. By the way, depending on the factory, two cups of iron may be poured due to crane capacity, but in this case, in order to simplify processing, most of the hot metal is processed in the dephosphorization furnace, and additional iron is poured in the decarburization furnace. It is a good idea to Next, the present invention will be specifically explained using examples. <Examples> Example 1 First, 160 tons of hot metal having the composition shown in the upper row of Table 1, which had been desiliconized in a blast furnace cast bed and desulfurized in a torpedo, was used as a dephosphorization furnace in a double blowing combined blowing furnace. The iron is poured into a converter, and the converter slag generated in a similar type of decarburization furnace is cooled and solidified and crushed to a particle size of 10 mm or less, 15 kg/t, quicklime with a particle size of 30 to 50 mm. 8Kg/t, iron ore with particle size similar to converter slag
Dephosphorization was carried out for 13 minutes by adding 25 kg/t of fluorite and 5 kg/t of fluorite in a mixed state. The dephosphorization furnace and decarburization furnace used are both capable of stirring by blowing gas from the bottom of the furnace, as mentioned above.
This was a 160 ton upper and lower double blowing combined blowing converter, and the operating conditions shown in Table 2 were adopted in all of the following examples. The dephosphorized pig iron thus obtained (component composition is shown in the middle row of Table 1) is tapped into a ladle and then poured into a decarburizing furnace.
Decarburization blowing was carried out using dolomite 3 kg/t and fluorite 2 kg/t as slag forming agents. At this time, iron ore was added as a coolant at appropriate times so that the end point temperature (blowing end temperature) was 1635°C. The converter slag generated at this time was 15 kg/t.

【表】【table】

【表】 れを鉄鋼石及び螢石と共に再び次のチヤージの脱
燐炉に生石灰、鉄鉱石、螢石と共に脱燐剤として
添加し脱燐を行うと言う一連の操作を繰り返し
た。 この場合、前述の式で算出されるF値は65%で
あつて脱燐剤の滓化剤は92%と高く、この結果脱
燐処理後の[P]も0.015%と製品[P]レベル
以下にまで低減することができた。そしてこのと
き全製鋼工程での使用〔生石灰量+ドロマイト
量〕は15Kg/tであり、従来の通常転炉一発吹錬
時の1/3〜1/2であつた。 なお、第1表の下段に示す値は、脱炭処理後の
溶綱成分組成を示すものである。 実施例 2 高炉鋳床で脱珪処理した第3表の上段に示され
る如き成分組成の溶銑160トンを脱燐炉として使
用する上下両吹き複合吹錬転炉に注銑し、この上
に、同様形式の脱炭炉で発生した溶融状態の転炉
滓であつて、一旦耐火物を内張りした鍋に出滓し
たもの16Kg/tを注滓した後、更に粒径30〜50mm
の生石灰9Kg/t、鉄鉱石26Kg/t及び螢石5
Kg/tを添加して実施例1と同様、第2表に示す
条件で13分間脱燐処理した。その後、炉底撹拌ガ
ス用ノズルを介してNa2CO35Kg/tを脱燐溶銑
にインジエクシヨンし、脱硫処理した。 次いで、得られた脱燐銑(成分組成は第3表の
中段に示す)を一旦鍋中に出銑してから脱炭炉に
注銑し、通常の転炉操業で用られる生石灰を4
Kg/t、軽焼ドロマイトを3Kg/t、螢石を2
Kg/t、及び硅石を2Kg/t造滓剤として投入
し、脱炭吹錬を実施した。そして、このとき鉄−
マンガン鉱石(全Fe:22%、全Mn:42%)を8
Kg/t添加すると共に、終点温度(吹錬終了温
度)が1630℃となるように冷却材としての鉄鉱石
を適時添加した。 このとき発生した溶融転炉滓は16Kg/tであ
り、これを生石灰、鉄鉱石及び螢石と共に再び次
のチヤージの脱燐剤として脱燐炉に添加して脱燐
を行うと言う一連の操作を繰り返した。 このときのF値は64%であつて脱燐剤の滓化率
は97%と高く、脱燐処理後の[P]も0.011
[Table] This was added as a dephosphorizing agent together with iron ore and fluorite to the next charge dephosphorizing furnace together with quicklime, iron ore, and fluorite, and a series of operations were repeated to perform dephosphorization. In this case, the F value calculated by the above formula is 65%, and the slag agent of the dephosphorization agent is as high as 92%, and as a result, the [P] after dephosphorization is also 0.015%, which is the product [P] level. We were able to reduce it to below. At this time, the amount used in the entire steelmaking process [quicklime amount + dolomite amount] was 15 kg/t, which was 1/3 to 1/2 of the conventional one-shot blowing in a converter furnace. The values shown in the lower row of Table 1 indicate the composition of the molten steel after decarburization. Example 2 160 tons of hot metal having the composition shown in the upper row of Table 3, which had been desiliconized in a blast furnace casthouse, was poured into an upper and lower double blowing combined blowing converter used as a dephosphorization furnace, and on top of this, After pouring 16 kg/t of molten converter slag generated in a similar type of decarburization furnace into a pot lined with refractories, the particle size is further increased to 30 to 50 mm.
of quicklime 9Kg/t, iron ore 26Kg/t and fluorite 5
Kg/t was added and dephosphorization was carried out for 13 minutes under the conditions shown in Table 2 in the same manner as in Example 1. Thereafter, 5 kg/t of Na 2 CO 3 was injected into the dephosphorized hot metal through a furnace bottom stirring gas nozzle for desulfurization treatment. Next, the obtained dephosphorized pig iron (component composition is shown in the middle row of Table 3) is tapped into a ladle and then poured into a decarburizing furnace.
Kg/t, light calcined dolomite 3Kg/t, fluorite 2
kg/t and 2 kg/t of silica as a slag forming agent, and decarburization blowing was carried out. And at this time, iron-
Manganese ore (total Fe: 22%, total Mn: 42%) 8
Kg/t was added, and iron ore as a coolant was added at appropriate times so that the end point temperature (blowing end temperature) was 1630°C. The molten converter slag generated at this time was 16 kg/t, and this was added to the dephosphorization furnace together with quicklime, iron ore, and fluorite as a dephosphorizing agent for the next charge to perform dephosphorization. repeated. The F value at this time was 64%, the dephosphorization agent slag formation rate was as high as 97%, and the [P] after dephosphorization was also 0.011.

【表】 %と製品[P]レベル以下にまで低減することが
できた。勿論、脱炭炉出鋼時には[P]の確認作
業を実施することがなかつた。なお、全製鋼工程
で実質的に使用した〔生石灰量+ドロマイト量〕
は16Kg/tと少ないことが確認され、かつ
[Mn]を0.20%上昇することもできた。 更に、第3表から分かるように、脱燐炉では溶
融転炉滓を用いたので溶銑脱燐処理後の温度も実
施例1の場合に比べて若干熱的に有利となつた。 なお、第3表の下段に示す値は、脱炭処理後の
溶鋼成分組成を示すものである。 実施例 3 高炉鋳床樋内で脱珪した後、トーピード内で脱
硫したところの第4表の上段に示される成分組成
の溶銑160トンを脱燐炉として使用する上下両吹
き複合吹錬転炉に注銑し、これに、同様形式の脱
炭炉で発生した転炉滓を冷却・凝固して10mm以下
の粒径に破砕したものを17Kg/t、粒径30〜50mm
の生石灰を12Kg/t、転炉滓と同様の粒径を持つ
鉄鉱石を30Kg/t、螢石を10Kg/t混合状態で添
加して、実施例1と同様、第2表に示す条件で16
分間脱燐処理した。 次いで、得られた脱燐銑(成分組成は第4表の
中段に示す)を脱炭炉に注銑し、通常の転炉操業
で用いられる生石灰7.5Kg/t、軽焼ドロマイト
1Kg/t、螢石2Kg/t及び硅石2Kg/tを造滓
剤として脱炭精錬を実施した。この際、終点温度
(吹錬終了温度)が1670℃となるように冷却材と
してのスケールを適時添加した。 このとき発生した転炉滓は17Kg/tであり、こ
れを生石灰、鉄鉱石及び螢石と共に再び次のチヤ
ージの脱燐剤として脱燐炉に添加し脱燐を行うと
言う一連の操作を繰り返した。 このときのF値は58%であつて脱燐剤の滓化率
は93%と高く、脱燐処理後の[P]も0.005%と
低燐化できた。 なお、第4表の下段に示す値は、脱炭処理後の
溶鋼成分組成を示すものである。 以上に説明した如く、この発明によれば、製鋼
工程の全体を通じて必要な造滓剤量を比較的低く
抑えながら、しかも“脱炭終点でのP量確認作
業”を要することなく、品質の良好な鋼を生産性
良く低コストで製造することが可能となり、高品
質鋼の利用分野を一層拡大し得る道が開かれるな
ど、産業上極めて有用な効果がもたらされるので
ある。
[Table] % and Product [P] It was possible to reduce the amount to below the level. Of course, the confirmation work for [P] was not carried out at the time of steel extraction in the decarburization furnace. In addition, [amount of quicklime + amount of dolomite] was substantially used in the entire steelmaking process.
[Mn] was confirmed to be as low as 16 kg/t, and it was also possible to increase [Mn] by 0.20%. Furthermore, as can be seen from Table 3, since the molten converter slag was used in the dephosphorization furnace, the temperature after the hot metal dephosphorization treatment was also slightly more thermally advantageous than in Example 1. Note that the values shown in the lower row of Table 3 indicate the composition of molten steel after decarburization treatment. Example 3 A top and bottom double blowing combined blowing converter using 160 tons of hot metal having the composition shown in the upper row of Table 4, which was desiliconized in the blast furnace casthouse trough and then desulfurized in the torpedo, as a dephosphorization furnace. In addition to this, converter slag generated in a similar type of decarburization furnace was cooled and solidified and crushed into particles with a particle size of 10 mm or less at 17 kg/t, a particle size of 30 to 50 mm.
12 kg/t of quicklime, 30 kg/t of iron ore having the same particle size as the converter slag, and 10 kg/t of fluorite were added in a mixed state under the conditions shown in Table 2 in the same manner as in Example 1. 16
Dephosphorization was performed for a minute. Next, the obtained dephosphorized pig iron (component composition is shown in the middle row of Table 4) was poured into a decarburizing furnace, and 7.5 kg/t of quicklime, 1 kg/t of light calcined dolomite, and Decarburization was carried out using 2 kg/t of fluorite and 2 kg/t of silica as slag forming agents. At this time, scale as a coolant was added at appropriate times so that the end point temperature (blowing end temperature) was 1670°C. The converter slag generated at this time was 17 kg/t, and this was added to the dephosphorization furnace as a dephosphorizing agent for the next charge, along with quicklime, iron ore, and fluorite, and a series of operations were repeated to perform dephosphorization. Ta. The F value at this time was 58%, the dephosphorizing agent had a high slag formation rate of 93%, and the [P] after the dephosphorization treatment was also low at 0.005%. Note that the values shown in the lower row of Table 4 indicate the composition of molten steel after decarburization treatment. As explained above, according to the present invention, the amount of slag forming agent required throughout the entire steelmaking process can be kept relatively low, and furthermore, there is no need for "confirmation of the amount of P at the end point of decarburization", and good quality can be achieved. This makes it possible to manufacture high-quality steel with high productivity and at low cost, paving the way to further expand the fields of use of high-quality steel, and bringing about extremely useful effects industrially.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明に係る製鋼法の概要を示し
た概略模式図、第2図は、[使用する転炉滓と生
石灰との総量に占める転炉滓の割合]と[滓化
率]との関係を示すグラフである。 図面において、1……脱燐炉、2……脱炭炉、
3……溶銑、4……転炉滓、4′……転炉滓と生
石灰とを主成分とする脱燐スラグ、5……撹拌ガ
ス吹き込みノズル、6……ランス。
Fig. 1 is a schematic diagram showing an overview of the steel manufacturing method according to the present invention, and Fig. 2 shows [ratio of converter slag to the total amount of converter slag and quicklime used] and [slag conversion rate] It is a graph showing the relationship between In the drawings, 1... dephosphorization furnace, 2... decarburization furnace,
3... Hot metal, 4... Converter slag, 4'... Dephosphorization slag whose main components are converter slag and quicklime, 5... Stirring gas blowing nozzle, 6... Lance.

Claims (1)

【特許請求の範囲】 1 上下両吹き機能を有した2基の転炉形式の炉
のうちの一方を脱燐炉、他方を脱炭炉として溶銑
の精錬を行う製鋼方法であつて、前記脱燐炉内へ
注入した溶銑に前記脱炭炉で発生した転炉滓と生
石灰とを精錬剤主成分として添加し、底吹きガス
撹拌を行いつつ酸素ガスを上吹きして溶銑温度を
1450℃以下に保ちながら溶銑脱燐を行う第1工程
と、得られた脱燐溶銑を脱炭炉に注銑し通常の造
滓剤を添加して脱炭する第2工程とを含んで成る
ことを特徴とする製鋼方法。 2 脱燐炉に添加する転炉滓量を転炉滓と生石灰
との総量の40%以上とした、特許請求の範囲第1
項記載の製鋼方法。 3 脱炭炉で発生した転炉滓を溶融状態で脱燐炉
内の溶銑に添加する、特許請求の範囲第1項又は
第2項記載の製鋼方法。 4 脱炭炉で発生した転炉滓を一旦冷却凝固させ
た後脱燐炉内の溶銑に添加する、特許請求の範囲
第1項又は第2項記載の製鋼方法。 5 被処理溶銑がSi:0.30重量%以下まで予備脱
珪処理されたものである、特許請求の範囲第1乃
至4項の何れかに記載の製鋼方法。
[Scope of Claims] 1. A steelmaking method in which hot metal is refined by using one of two converter-type furnaces having upper and lower blowing functions as a dephosphorization furnace and the other as a decarburization furnace, the method comprising: Converter slag and quicklime generated in the decarburization furnace are added to the hot metal injected into the phosphor furnace as main components of the refining agent, and oxygen gas is blown upward while stirring the bottom blowing gas to lower the temperature of the hot metal.
It consists of a first step of dephosphorizing hot metal while keeping it at 1450℃ or less, and a second step of pouring the obtained dephosphorized hot metal into a decarburization furnace and adding a normal slag-forming agent to decarburize it. A steel manufacturing method characterized by the following. 2. Claim 1, in which the amount of converter slag added to the dephosphorization furnace is 40% or more of the total amount of converter slag and quicklime.
Steel manufacturing method described in section. 3. The steelmaking method according to claim 1 or 2, wherein the converter slag generated in the decarburization furnace is added in a molten state to the hot metal in the dephosphorization furnace. 4. The steelmaking method according to claim 1 or 2, wherein the converter slag generated in the decarburization furnace is once cooled and solidified and then added to the hot metal in the dephosphorization furnace. 5. The steelmaking method according to any one of claims 1 to 4, wherein the hot metal to be treated is subjected to a preliminary desiliconization treatment to reduce Si to 0.30% by weight or less.
JP23924586A 1986-10-09 1986-10-09 Steel making method Granted JPS6393813A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23924586A JPS6393813A (en) 1986-10-09 1986-10-09 Steel making method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23924586A JPS6393813A (en) 1986-10-09 1986-10-09 Steel making method

Publications (2)

Publication Number Publication Date
JPS6393813A JPS6393813A (en) 1988-04-25
JPH0377246B2 true JPH0377246B2 (en) 1991-12-10

Family

ID=17041894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23924586A Granted JPS6393813A (en) 1986-10-09 1986-10-09 Steel making method

Country Status (1)

Country Link
JP (1) JPS6393813A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0472007A (en) * 1990-07-10 1992-03-06 Nippon Steel Corp Production of molten steel
JP2000185987A (en) * 1998-10-15 2000-07-04 Nkk Corp Production of slow-release potassium fertilizer
JP4598220B2 (en) * 2000-03-02 2010-12-15 新日本製鐵株式会社 Hot metal processing method using decarburized iron
JP2011099148A (en) * 2009-11-06 2011-05-19 Nippon Steel Corp Steel-making method for producing stable slag as by-product

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57145916A (en) * 1981-03-06 1982-09-09 Nippon Steel Corp Divided refining method by reusing slag

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57145916A (en) * 1981-03-06 1982-09-09 Nippon Steel Corp Divided refining method by reusing slag

Also Published As

Publication number Publication date
JPS6393813A (en) 1988-04-25

Similar Documents

Publication Publication Date Title
JP5418733B2 (en) Hot metal refining method
JP3557910B2 (en) Hot metal dephosphorization method and low sulfur and low phosphorus steel smelting method
JPH0437132B2 (en)
JPH0377246B2 (en)
CN101389771A (en) Method of dephosphorization of molten iron
JPH0557327B2 (en)
JP2001049320A (en) Production of iron and steel using high phosphorus ore as raw material
WO2003029498A1 (en) Method for pretreatment of molten iron and method for refining
JPH0214404B2 (en)
JPH01147011A (en) Steelmaking method
JPH11323419A (en) Refining of molten iron
JP2000212623A (en) Dephosphorization of molten iron low in lime
CN111635975B (en) Method for recycling converter slag
JPH0437134B2 (en)
JPH03122210A (en) Two step counterflow refined steelmaking method using duplex converters
JPS6247417A (en) Melt refining method for scrap
JPH0433844B2 (en)
JPH032312A (en) Production of low-phosphorus pig iron
JPS59159963A (en) Production of high chromium molten metal
JPH0437133B2 (en)
JPH01312020A (en) Method for dephosphorizing molten iron by heating
JPH0841519A (en) Steelmaking method
JPS58181815A (en) Preliminary desiliconizing method of molten pig iron in converter
JPH03122209A (en) Two step counterflow refined steelmaking method using duplex converters
JP2004156146A (en) Method for refining molten iron

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term