JPH0472007A - Production of molten steel - Google Patents

Production of molten steel

Info

Publication number
JPH0472007A
JPH0472007A JP18198990A JP18198990A JPH0472007A JP H0472007 A JPH0472007 A JP H0472007A JP 18198990 A JP18198990 A JP 18198990A JP 18198990 A JP18198990 A JP 18198990A JP H0472007 A JPH0472007 A JP H0472007A
Authority
JP
Japan
Prior art keywords
stage
blowing
slag
converter
molten steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18198990A
Other languages
Japanese (ja)
Inventor
Masataka Yano
矢野 正孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP18198990A priority Critical patent/JPH0472007A/en
Publication of JPH0472007A publication Critical patent/JPH0472007A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To attain energy saving as well as remarkable reduction in fixed costs and equipment costs by successively repeating a stage of charging molten pig iron into a converter, a stage of flux addition to exert dephosphorization and desulfurizing refining, a stage of slag removal, a stage of decarburization, and a stage of tapping, leaving slag. CONSTITUTION:At the time of producing a molten steel by refining blast furnace molten pig iron, first the molten pig iron is charged into a converter as a first stage, and then, as a second stage, the addition of flux by means of any of throwing, spraying, and blowing or a combination of more than two among the above and the top blowing of oxygen are carried out to perform dephosphorization and desulfurizing refining and reduce P content and S content to the prescribed values, respectively. Subsequently, as a third stage, the converter is tilted and the formed slag is slagged off, and, as a fourth stage, decarburization is exerted until the prescribed C content is reached by means of flux addition and O2 blowing. Finally, tapping is performed while leaving the slag formed in the fourth stage as a fifth stage. Then, the first stage is restored again, and the above-mentioned five stages are repeatedly carried out.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は高炉溶銑を使用し、転炉において効率よく脱P
、脱S、脱炭精錬を行なわせる方法に関するものである
[Detailed Description of the Invention] [Industrial Field of Application] The present invention uses blast furnace hot metal to efficiently remove P in a converter.
, relates to a method for de-S and decarburization refining.

[従来の技術] 従来は、高炉溶銑を転炉に装入し、生石灰を主体とする
フラックス投入と、02吹錬により鋼を溶製する方法が
一般的であった。その後、脱P、脱Sの反応効率を増す
ため転炉装入前の溶銑に脱S、脱Si、脱P処理を施し
く以下これを溶銑予備処理と記述)、転炉では主に脱炭
反応を施す方法が一般にとられるようになった。
[Prior Art] Conventionally, the common method was to charge blast furnace hot metal into a converter, add a flux mainly composed of quicklime, and melt steel by 02 blowing. After that, in order to increase the reaction efficiency of deP and S removal, the hot metal before charging into the converter is subjected to deS, deSi, and deP treatment (hereinafter referred to as hot metal pretreatment). A method of conducting a reaction has become commonly used.

また、近年の極低炭素鋼の需要増大に対し、転炉では5
00ppm 〜200ppm[C] まで脱炭し、出鋼
後、RH,DHなどの2次精錬炉において50ppm以
下の[C]領領域て脱炭する方法が一般的となった。
In addition, in response to the increasing demand for ultra-low carbon steel in recent years, converter
It has become common to decarburize to 00 ppm to 200 ppm [C], and after tapping the steel, decarburize in the [C] region of 50 ppm or less in a secondary refining furnace such as RH or DH.

本発明はこれら多工程にわたる精錬機能を転炉に集約し
、溶銑のもつエネルギーロスを大巾に低減すると共に、
転炉前後工程の固定費(設備費、労務費)の大巾な軽減
を可能とする方法である。
The present invention consolidates these multi-step refining functions into a converter, greatly reducing the energy loss of hot metal, and
This method makes it possible to significantly reduce the fixed costs (equipment costs, labor costs) of the processes before and after the converter.

[発明が解決しようとする課題] 前述した従来の多段精錬法によれば、各精錬工程毎に多
額の設備投資と運転要員を必要とし、固定費の負荷が多
大であった。
[Problems to be Solved by the Invention] According to the conventional multi-stage refining method described above, a large amount of equipment investment and operating personnel were required for each refining process, resulting in a large fixed cost burden.

また、反応容器の異なる各工程を順次経過するため、各
工程での話資材(耐火物等)か多くなり、さらに、高炉
出銑から最終ifi溶鋼となるまでに長時間を要するた
め、放散エネルギーロスも過大で、合計の精錬コストも
多額となっていた。
In addition, since each process in the reaction vessel is sequentially passed through, the amount of materials (refractories, etc.) used in each process increases.Furthermore, it takes a long time from tapping the blast furnace to the final molten steel, which dissipates energy. The loss was also excessive, and the total refining cost was also large.

本発明はこれらの問題点を解決するため、現在の精錬工
程すなわち、■溶銑予備処理工程、■転炉工程、02次
精錬工程のうち、■ないし、■と■の精錬機能を転炉工
程に集約する技術である。
In order to solve these problems, the present invention aims to incorporate the refining functions of (1) or (2) and (3) into the converter process among the current refining processes, namely (1) hot metal pretreatment process, (2) converter process, and (0) secondary refining process. It is a technology of aggregation.

[課題を解決するための手段] 本発明は上述の課題を解決したものであり、その要旨は 1、高炉溶銑を精錬して溶鋼を製造する際に、第1工程
として、溶銑を転炉に装入し、第2工程として、投入、
吹付け、吹込みのいずれか1つの方法または2つ以上を
組合わせた方法によるフラックス添加と、酸素上吹きと
を行なって脱P・脱S精錬を施し、所定のP含有量並び
にS含有量まで低減させ、第3工程として、前記転炉を
横転させて、第2工程で生成したスラグを排滓し、第4
工程として、フラックス添加と02吹錬により所定のC
含有量まで脱炭し、第5工程として、第4工程で生成し
たスラグを該転炉内に残したまま出鋼して、再び第1工
程へ戻り、前記第5工程を繰り返し実施することを特徴
とする溶鋼製造法。
[Means for Solving the Problems] The present invention has solved the above-mentioned problems, and the gist thereof is 1. When refining hot metal in a blast furnace to produce molten steel, as a first step, the hot metal is transferred to a converter. As the second step, charging,
Flux is added by one method or a combination of two or more methods, such as spraying or blowing, and oxygen top blowing is performed to remove P and S, thereby achieving a predetermined P content and S content. In the third step, the converter is turned over to remove the slag produced in the second step, and in the fourth
The process involves flux addition and 02 blowing to achieve a specified C.
decarburization to the content, and as a fifth step, tap the steel while leaving the slag produced in the fourth step in the converter, return to the first step again, and repeat the fifth step. Characteristic molten steel manufacturing method.

2、第3工程において、炉腹に設けた複数個の羽口から
不活性ガスを吹込み、スラグをフォーミングさせて排滓
することを特徴とする前項1記載の溶鋼製造法。
2. The method for manufacturing molten steel according to item 1 above, wherein in the third step, inert gas is blown into the furnace through a plurality of tuyeres provided in the furnace belly to form and discharge the slag.

3、複数個の羽口各々をスパイラル羽口として、気泡を
微細化することを特徴とする前項2記載の溶鋼製造法。
3. The method for producing molten steel according to item 2 above, characterized in that each of the plurality of tuyeres is a spiral tuyere to make the bubbles finer.

4、第4工程において、0.03〜0.20%[C]の
範囲で酸素吹錬を中止し、底吹ぎ羽口より02を0〜3
0%含むArガスを吹付けて、50ppm [C]以下
に脱炭し、極低炭素鋼を溶製することを特徴とする前項
1記載の溶鋼製造法である。
4. In the fourth step, stop oxygen blowing in the range of 0.03 to 0.20% [C], and add 0 to 3% of 02 from the bottom blowing tuyere.
The method for producing molten steel according to item 1 above, characterized in that ultra-low carbon steel is produced by blowing Ar gas containing 0% to decarburize to 50 ppm [C] or less.

以下溶銑予備処理工程と脱炭工程を集約する本発明の具
体的方法を第1図を参照しながら以下に示す。
A specific method of the present invention that combines the hot metal pretreatment process and the decarburization process will be described below with reference to FIG.

炉底に脱P、脱S用フラックスを吹込むための1個ない
し複数個の底吹き羽口と、出鋼孔の対面炉腹にスラグフ
ォーミング用ガス吹込みのための複数個の羽口を備えた
上底吹転炉に溶銑を装入し、前述の底吹き羽口より生石
灰粉をベースとしたフラックスをN2を搬送ガスとして
吹込む。この時、酸化鉄粉を生石灰粉に混合するか、あ
るいは羽口を3重管構造とし、o2ガスを同一羽口を通
して吹込むことにより、脱P反応速度を高めることがで
きる。一方、上吹きランスから02ガスを吹き付け、上
方よりフラックスを投入、吹込み、吹付は等の方法で添
加して、生成スラグの[FeO%]を3〜8%にコント
ロールすることにより、脱Pを促進する。
Equipped with one or more bottom blowing tuyeres for injecting flux for removing P and S into the furnace bottom, and multiple tuyeres for injecting gas for slag forming into the furnace belly facing the tapping hole. Hot metal is charged into a top-bottom blowing converter, and a flux based on quicklime powder is blown into the bottom-blowing tuyeres using N2 as a carrier gas. At this time, the dephosphorization reaction rate can be increased by mixing iron oxide powder with quicklime powder, or by making the tuyeres have a triple tube structure and blowing O2 gas through the same tuyeres. On the other hand, by blowing 02 gas from the top blowing lance, adding flux from above, blowing, spraying, etc., and controlling the [FeO%] of the generated slag to 3 to 8%, P removal is possible. promote.

所定のp、S含有量まで低下した時点で炉を反出鎖側(
排滓側)に傾動しスラグのみ流動排滓させる。この時、
例えば第3図のように、排滓側の炉腹に設けた複数個の
羽口からN2ガスやA「ガス等の不活性ガスを吹き込み
、スラグフォーミングを助長させることにより、より効
率的な排滓を行なわせることができる。
When the p and S contents have decreased to a predetermined level, the furnace is moved to the opposite side (
Tilt to the slag discharge side) to allow only the slag to flow and be discharged. At this time,
For example, as shown in Figure 3, inert gas such as N2 gas or A gas is injected through multiple tuyeres installed in the furnace belly on the slag side to promote slag forming, resulting in more efficient exhaust. You can make the slag work.

その際、第4図のように、この炉腹吹込み羽口内部に、
らせん状の導帯を施工して、吐出ガス流をらせん状とす
ると、吐出ガスは溶鉄による横方向のせん断力を受は直
管羽口吹込みの場合の気泡よりも、微細分散するように
なって好ましい。この微細気泡は溶銑上面の波立ちを小
さくし、かつスラグ層の均一なフォーミングの実現に寄
与するため、溶銑の流出ロスは最小限に抑えられ、短時
間で効果的な排滓を行なうことができるようになる。
At that time, as shown in Figure 4, inside this furnace injection tuyere,
By constructing a spiral conductor belt to make the discharge gas flow spiral, the discharge gas receives the lateral shear force from the molten iron and becomes more finely dispersed than the bubbles that occur when blowing through a straight tuyere. That's good. These microbubbles reduce ripples on the top surface of the hot metal and contribute to the uniform formation of the slag layer, so the loss of hot metal flowing out is minimized and effective slag removal can be carried out in a short time. It becomes like this.

次に、排滓終了と共に直ちに炉を正立させ、若干量の副
原料(耐大物保護、復P防止用の生石灰、ドロマイト、
鉄鉱石など)を投入して通常の上底吹き脱炭精錬を行う
。吹上後、溶鋼は出鋼するが、スラグはそのまま炉内に
残し、次のチャージの溶銑予備処理済として活用する。
Next, as soon as the sludge has been removed, the furnace is erected, and a small amount of auxiliary materials (quicklime for protecting large objects and preventing back-up, dolomite,
(iron ore, etc.) and performs normal top-bottom blowing decarburization refining. After blowing up, the molten steel is tapped, but the slag remains in the furnace and is used as pre-treated hot metal for the next charge.

なお、このスラグは脱炭精錬時の相対的に高温・低P溶
鋼を対象に生成したスラグであるため、低温・高P溶銑
を対象に再利用しても十分な精錬能を有している。
Furthermore, since this slag is generated for relatively high temperature, low P molten steel during decarburization refining, it has sufficient refining ability even if it is reused for low temperature, high P molten metal. .

こうして、次のチャージの溶銑を装入後、再び上記と同
様の溶銑予備処理−排滓−説炭を繰り返すことにより、
従来2工程で行なっていた精錬を転炉1工程に集約する
ことかできる。
In this way, after charging the next charge of hot metal, the same steps of hot metal pretreatment, slag removal, and coal brining as described above are repeated.
Refining, which was conventionally done in two steps, can be consolidated into one converter step.

更に、近年自動車用外板の需要増大に伴い、極低炭素鋼
(≦soppm [C] )の生産量が増大し、その対
応としてRH,DHなどの真空処理工程において極低炭
酸(300〜10ppm[C] )の脱炭を行なってい
る。
Furthermore, with the increase in demand for automobile outer panels in recent years, the production of ultra-low carbon steel (≦soppm [C]) has increased, and in response to this, ultra-low carbon steel (300 to 10 ppm [C] ) is being decarburized.

第2図に示したように、この工程の大部分を転炉へ負荷
分担することにより、真空処理工程の省略又は軽処理で
、あるいは炉外筒易脱炭法にて処理することが可能とな
り、真空処理に要する設備、操業費の大巾削減が可能と
なる。
As shown in Figure 2, by sharing most of the load with the converter, it becomes possible to omit the vacuum treatment step, use light treatment, or use the easy decarburization method using the furnace outer tube. , it is possible to significantly reduce equipment and operating costs required for vacuum processing.

この極低成域脱炭を転炉で行なうためには、前記上底吹
脱炭を2000〜300ppm [C] で終了し、直
ちに底吹きガスをAr−02ガスに切替え、底吹きリン
シングにより脱炭を継続する。この時^「−02ガスは
0〜30%02の混合ガスか望ましく、[C]低下と共
に混合比率を下げると更に効果的である。
In order to perform this ultra-low composition decarburization in a converter, the top and bottom blowing decarburization must be completed at 2000 to 300 ppm [C], the bottom blowing gas should be immediately switched to Ar-02 gas, and the decarburization should be carried out by bottom blowing rinsing. Continue charcoal. At this time, the -02 gas is preferably a mixed gas of 0 to 30% 02, and it is more effective to lower the mixing ratio as the [C] decreases.

また、このリンシングの間に上吹き酸素ランスを用いて
Arを吹付けることにより、脱炭をより促進することも
出来る。
Moreover, decarburization can be further promoted by spraying Ar using a top-blown oxygen lance during this rinsing.

極低炭素鋼溶製時は、上記精錬を終了後出鋼し、スラグ
は炉内に残したまま再び溶銑を装入し、溶銑予備処理、
排滓、脱炭と次のチャージの精錬を行なう。
When producing ultra-low carbon steel, the steel is tapped after the above refining is completed, and hot metal is charged again with the slag left in the furnace, and the hot metal is pretreated.
Exhaust, decarburize, and refine the next charge.

[作   用] 本発明における各工程の技術ポイントを列記すると以下
の通っである。
[Function] The technical points of each step in the present invention are listed below.

ます溶銑芸人工程及び溶銑予備処理工程については、次
の2点がポイントとなっている。
Regarding the hot metal entertainer process and the hot metal pretreatment process, the following two points are important.

すなわち、第一に、前のチャージの脱P絹錬能を有する
脱炭スラグを再利用することにより、■滓化促進、■フ
ラックス原単位の削減、並びに、■スラグ顕熱の有効回
収の3つの作用効果か得られることである。
That is, firstly, by reusing the decarburized slag from the previous charge that has the ability to dephosphorize and silken, it is possible to: 1) promote slag formation, 2) reduce the flux consumption rate, and 2) effectively recover the sensible heat of the slag. This means that two effects can be obtained.

また、第二に、底吹き羽口を利用してフラックスをイン
ジェクションする(吹込む)ことにより、同時に脱P・
脱S処理を行なうことかてぎる。もしも熔銑脱Sを事前
に行なうならば、フラックス・インジェクションは特に
必要とせず、フラックスの上方投入と02上吹きにて脱
P可能である。
Secondly, by injecting (blowing) flux using the bottom blowing tuyere, we can simultaneously remove P and
All you need to do is remove S. If hot metal removal S is performed in advance, flux injection is not particularly necessary, and P can be removed by upward injection of flux and 02 top blowing.

次に、排滓工程におけるポイントは、炉腹に複数個設け
た羽口から不活性ガスを吹込んで、気泡を微細に分散さ
せることにより、鉄浴湯面に大幹な揺動を与えることな
くスラグをフォーミングさせ、鉄ロスを最小限に抑えつ
つ円滑な流動排滓を行なうことがてぎる点にある。
Next, the key point in the slag removal process is to blow inert gas through multiple tuyeres installed in the furnace belly to disperse air bubbles finely, without causing large fluctuations to the surface of the iron bath. The key point is that it is possible to form the slag and perform smooth fluid drainage while minimizing iron loss.

脱炭工程ては、耐火物を保護する程度のフラックスを投
入して、高速脱炭を行なう点にある。
In the decarburization process, high-speed decarburization is performed by adding enough flux to protect the refractories.

また、低炭酸での脱炭工程においては、以下の2点にポ
イントかある。
In addition, in the decarburization process with low carbon dioxide, there are two points below.

すなわち、第1に、洛中にAr気泡を生成させることに
よりケミカル・ヴアキューム状態を造り出し、気・液海
面での[C] + [ol −co反応を促進させる点
である。この場合は、02供給源として計中に02を混
入させるが、過剰に[0] が生成すると、前記反応サ
イトに[0] が過剰となってCO生成が阻害される。
That is, firstly, by generating Ar bubbles in the air, a chemical vacuum state is created to promote the [C] + [ol-co reaction at the gas/liquid sea surface. In this case, 02 is mixed into the reactor as an 02 supply source, but if an excess of [0] is produced, an excess of [0] will be present at the reaction site and CO production will be inhibited.

従って、02の混合率を0〜30%として底吹きを行な
う。
Therefore, bottom blowing is performed with the mixing ratio of 02 being 0 to 30%.

第2に、生成したCOの気相中への拡散を促進するため
に、上吹きランスからArを吹付けて、脱炭反応速度を
速めることができる点である。
Second, in order to promote the diffusion of the generated CO into the gas phase, Ar can be blown from the top blowing lance to accelerate the decarburization reaction rate.

最後の出鋼工程では、従来の転炉操業と同様の出鋼法を
採用しており、スラグは再利用のために排滓しないこと
に特徴がある。
The final steel tapping process uses the same tapping method as in conventional converter operation, and is unique in that the slag is not disposed of for reuse.

[実  施  例コ まず、第1図のように、溶銑予備処理工程及び脱炭工程
を集約するタイプの精錬を行なった場合が実施例1及び
実施例2である。
[Example 1] First, as shown in FIG. 1, Examples 1 and 2 are cases in which a type of refining that combines a hot metal pretreatment process and a decarburization process is performed.

これらのうち、実施例1は、320 Tonの転炉を用
い、溶銑製人前にスクラップを417on投入し、溶銑
予備処理工程におけるフラックス添加を上方投入及び底
吹きの両方で行なった場合である。操業条件及びその結
果を第1表に示した。このときのCaF2は底吹きで添
加し、合計処理時間は37分であった。
Among these, Example 1 is a case where a 320 ton converter was used, 417 tons of scrap was charged before the hot metal making process, and flux addition in the hot metal pretreatment process was performed both by top charging and bottom blowing. The operating conditions and results are shown in Table 1. At this time, CaF2 was added by bottom blowing, and the total processing time was 37 minutes.

又実施例2は、事前に軽脱S処理をトピードカーにて実
施し、300 Tonの転炉を用いて、溶銑製人前にス
クラップを307on投入し、溶銑予備処理工程におけ
るフラックスの添加を上方投入のみで行なった簡易法の
例である。操業条件及びその結果は第2表に示した。こ
の場合の合計処理時間は39分であった。
In addition, in Example 2, light S removal treatment was carried out in advance using a torpedo car, 307 tons of scrap was introduced in front of the hot metal maker using a 300 ton converter, and flux was only added upward in the hot metal pretreatment process. This is an example of the simplified method performed in . The operating conditions and results are shown in Table 2. The total processing time in this case was 39 minutes.

次に、第2図のように、溶銑予備処理工程、脱炭工程、
及び極低成域脱炭工程の3工程を集約するタイプの精錬
を行なった場合が実施例3である。
Next, as shown in Figure 2, the hot metal pretreatment process, the decarburization process,
Example 3 is a case in which a type of refining is performed in which the three steps of the decarburization step and the extremely low-density zone decarburization step are integrated.

ここでは、320 Tonの転炉を用い、スクラップは
用いずに高炉からの溶銑のみを使用して、溶銑予備処理
工程におけるフラックスの添加を上方投入及び底吹きの
両方で行なっている・操業条件及びその結果は第3表に
示した。この場合の合計処理時間は41分であって、出
鋼時の[C] は0.0031%すなわち31 ppm
となった。
Here, a 320 ton converter is used, only hot metal from the blast furnace is used without using scrap, and flux is added in both top injection and bottom blowing in the hot metal pretreatment process.Operating conditions and The results are shown in Table 3. The total processing time in this case is 41 minutes, and [C] during tapping is 0.0031%, or 31 ppm.
It became.

以上実施例3ケースとも1サイクルの処理時間か37〜
41分てあり、連続鋳造工程において連々鋳を行なうた
めの必要サイクル時間内にあるので、後工程への影響は
皆無であった。また、成分面でも問題がなく、本発明は
有効であることがわかった。
The processing time for one cycle is 37~ for each of the three cases above.
The total time was 41 minutes, which was within the required cycle time for continuous casting in the continuous casting process, so there was no influence on subsequent processes. Moreover, there were no problems in terms of ingredients, and the present invention was found to be effective.

[発明の効果コ 実施例1.2のように、溶銑予備処理工程を集約した場
合のメリットは、次の3点である。
[Effects of the Invention] There are the following three advantages when the hot metal pretreatment process is consolidated as in Example 1.2.

まず第一が、溶銑予備処理に用いる諸資材の使用量すな
わち原単位の低減を図ることかできる。例えば、従来の
方法と比べて、耐火物の原単位が0.4 kg/T下が
り、CaOの原単位が4kg/T下がる。
First of all, it is possible to reduce the amount of materials used for hot metal pretreatment, that is, the basic unit. For example, compared to the conventional method, the basic unit of refractories is reduced by 0.4 kg/T, and the basic unit of CaO is reduced by 4 kg/T.

第二に、溶銑予備処理に対する固定費、すなわち設備費
及び人件費の大幅削減か図れることである。人件費につ
いては、例えば、従来に比して12名の削減か見込まれ
る。
Second, fixed costs for hot metal pretreatment, that is, equipment costs and personnel costs, can be significantly reduced. Regarding personnel costs, for example, it is expected that there will be a reduction of 12 people compared to the past.

第三に、放散による熱エネルギー・ロスを少なくするこ
とができ、m t141 Ton当たり約16000 
kcalのエネルギーか放散せずに済む。これに伴って
、生産融度がアップして、スクラップ配合比を約5%増
やすことかでき、あるいは、鉄鉱石投入量を溶鋼I T
on当り約20kg増やすことが可能となって、歩留を
約15%向上させることかてきる。
Thirdly, thermal energy loss due to dissipation can be reduced, approximately 16,000 per m t141 Ton.
There is no need to dissipate kcal energy. Along with this, the production melting rate will increase, making it possible to increase the scrap blending ratio by approximately 5%, or reduce the amount of iron ore input to molten steel IT.
It becomes possible to increase the weight by about 20 kg per turn, and it is possible to improve the yield by about 15%.

次に、実施例3のように、溶銑予備処理工程及び脱炭工
程に加えて二次精錬工程も集約した場合のメリットは、
上記実施例1.2の場合の集約によるメリットのほかに
、次の2点のメリットが追加される。
Next, as in Example 3, the advantages of integrating the secondary refining process in addition to the hot metal pretreatment process and decarburization process are as follows:
In addition to the advantages of aggregation in the case of Example 1.2 above, the following two advantages are added.

まず、R)l処理等の二次精錬に対する変動費、例えば
、蒸気、耐火物、諸資材等の削減を図ることができる。
First, variable costs for secondary refining such as R)l treatment, such as steam, refractories, and various materials, can be reduced.

また、放散による熱エネルギー・ロスをさらに低減し、
溶鋼I Tonに対して約70(10kcaMの省エネ
ルギーが見込まれる。これにより歩留をさらに約0.7
%向上させることが可能となる。
In addition, thermal energy loss due to dissipation is further reduced,
Energy saving of approximately 70 (10 kcaM) is expected for I Ton of molten steel.This will further increase the yield by approximately 0.7
%.

以上述へてぎたように、本発明の実施により、固定費及
び変動費の大幅な削減、並びに多大の省エネルギーを達
成できる。
As described above, by implementing the present invention, significant reductions in fixed and variable costs and significant energy savings can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は溶銑予備処理工程及び脱炭工程を転炉に集約し
、脱P、脱S、脱炭を同一転炉で行なう精錬法を示すプ
ロセス概念図、第2図は溶銑予備処理工程、脱炭工程、
およびRHでの極低炭酸脱炭工程を転炉に集約し、脱P
、脱S、脱炭、極低炭脱炭を全て同一転炉で行なう精錬
法を示すプロセス概念図、第3図は溶銑予測処理スラグ
を排滓するときに使用する炉腹に設けたスラグフォーミ
ングコントロール用羽口の配置の一例を示す図、第4図
は炉腹羽口に設置し、微細気泡を生成させるためのスパ
イラル羽口の形状を示す図である。 他4名 溶鉄装入 溶鉄予備処理 0゜ 脱炭スラグ (又はトドX上方投入) 第3図 第4図 溶鉄装入 溶鉄予備処理 脱炭スラグ (又はFlux上方投入) 第2図 を非滓 脱炭 辱低炭域脱炭 出鋼
Figure 1 is a process conceptual diagram showing a refining method in which the hot metal pretreatment process and the decarburization process are integrated into a converter, and deP, S, and decarburization are performed in the same converter; Figure 2 is the hot metal pretreatment process; decarburization process,
The ultra-low carbonation decarburization process in RH and RH is integrated into a converter, and
, a process conceptual diagram showing a refining method that performs S decarburization, decarburization, and ultra-low carbon decarburization all in the same converter. Figure 3 shows the slag forming installed in the furnace belly used when slag from hot metal prediction treatment is discharged. FIG. 4 is a diagram illustrating an example of the arrangement of control tuyeres, and FIG. 4 is a diagram illustrating the shape of a spiral tuyere installed in the belly tuyere to generate fine bubbles. Other 4 people Molten iron charging Molten iron pretreatment 0° Decarburized slag (or Todo Decarburized steel in low-coal area

Claims (1)

【特許請求の範囲】 1 高炉溶銑を精錬して溶鋼を製造する際に、第1工程
として、溶銑を転炉に装入し、 第2工程として、投入、吹付け、吹込みのいずれか1つ
の方法または2つ以上を組合わせた方法によるフラック
ス添加と、酸素上吹きとを行なって脱P・脱S精錬を施
し、所定のP含有量並びにS含有量まで低減させ、 第3工程として、前記転炉を横転させて、 第2工程で生成したスラグを排滓し、 第4工程として、フラックス添加とO_2吹錬により所
定のC含有量まで脱炭し、 第5工程として、第4工程で生成したスラグを該転炉内
に残したまま出鋼して、 再び第1工程へ戻り、前記第5工程を繰り返し実施する
ことを特徴とする溶鋼製造法。 2 第3工程において、炉腹に設けた複数個の羽口から
不活性ガスを吹込み、スラグを フォーミングさせて排滓することを特徴とする請求項1
記載の溶鋼製造法。 3 複数個の羽口各々をスパイラル羽口として、気泡を
微細化することを特徴とする請求項2記載の溶鋼製造法
。 4 第4工程において、0.03〜0.20%[C]の
範囲で酸素吹錬を中止し、底吹き羽口よりO_2を0〜
30%含むArガスを吹付けて、50ppm[C]以下
に脱炭し、極低炭素鋼を溶製することを特徴とする請求
項1記載の溶鋼製造法。
[Claims] 1. When refining hot metal in a blast furnace to produce molten steel, the first step is to charge the hot metal into a converter, and the second step is any one of charging, blowing, and blowing. Flux addition by one method or a combination of two or more methods and oxygen top blowing are performed to perform deP and deS refining to reduce the P content and S content to predetermined values, and as a third step, The converter is turned over, the slag generated in the second step is slaged out, the fourth step is decarburization to a predetermined C content by adding flux and O_2 blowing, and the fifth step is the fourth step. A method for manufacturing molten steel, characterized in that the slag produced in step 1 is tapped while remaining in the converter, the process returns to the first step, and the fifth step is repeated. 2. Claim 1, characterized in that in the third step, inert gas is blown into the furnace through a plurality of tuyeres provided in the furnace belly to form and discharge the slag.
The molten steel manufacturing method described. 3. The molten steel manufacturing method according to claim 2, wherein each of the plurality of tuyere is a spiral tuyere to make the bubbles fine. 4 In the fourth step, oxygen blowing is stopped in the range of 0.03 to 0.20% [C], and O_2 is introduced from the bottom blowing tuyere to 0 to 0.
2. The method for producing molten steel according to claim 1, wherein the molten steel is decarburized to 50 ppm [C] or less by spraying Ar gas containing 30% to produce ultra-low carbon steel.
JP18198990A 1990-07-10 1990-07-10 Production of molten steel Pending JPH0472007A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18198990A JPH0472007A (en) 1990-07-10 1990-07-10 Production of molten steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18198990A JPH0472007A (en) 1990-07-10 1990-07-10 Production of molten steel

Publications (1)

Publication Number Publication Date
JPH0472007A true JPH0472007A (en) 1992-03-06

Family

ID=16110378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18198990A Pending JPH0472007A (en) 1990-07-10 1990-07-10 Production of molten steel

Country Status (1)

Country Link
JP (1) JPH0472007A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995001458A1 (en) * 1993-06-30 1995-01-12 Nippon Steel Corporation Steel manufacturing method using converter
KR20180119664A (en) 2016-04-13 2018-11-02 제이에프이 스틸 가부시키가이샤 Method of analysis of slag and refining method of molten iron
JPWO2022163200A1 (en) * 2021-01-26 2022-08-04

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6393813A (en) * 1986-10-09 1988-04-25 Sumitomo Metal Ind Ltd Steel making method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6393813A (en) * 1986-10-09 1988-04-25 Sumitomo Metal Ind Ltd Steel making method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995001458A1 (en) * 1993-06-30 1995-01-12 Nippon Steel Corporation Steel manufacturing method using converter
EP0714989A1 (en) * 1993-06-30 1996-06-05 Nippon Steel Corporation Steel manufacturing method using converter
EP0714989A4 (en) * 1993-06-30 1997-06-25 Nippon Steel Corp Steel manufacturing method using converter
AU680268B2 (en) * 1993-06-30 1997-07-24 IKEMIZU, Keiko Steel manufacturing method using converter
KR20180119664A (en) 2016-04-13 2018-11-02 제이에프이 스틸 가부시키가이샤 Method of analysis of slag and refining method of molten iron
JPWO2022163200A1 (en) * 2021-01-26 2022-08-04
WO2022163200A1 (en) * 2021-01-26 2022-08-04 Jfeスチール株式会社 Method for refining molten iron

Similar Documents

Publication Publication Date Title
CN113493868B (en) High scrap ratio converter smelting method based on molten reduced molten iron
CN109207672A (en) A kind of production method of Slagoff method and ultra-low phosphoretic steel in ultra-low phosphoretic steel production process
CN108842027B (en) Gasification dephosphorization method and smelting method for final slag of dephosphorization converter
JP2958848B2 (en) Hot metal dephosphorization method
JPH0472007A (en) Production of molten steel
JP3333339B2 (en) Converter steelmaking method for recycling decarburized slag
JP2900011B2 (en) Converter refining method
JPH08311519A (en) Steelmaking method using converter
JP2958842B2 (en) Converter refining method
JP2607328B2 (en) Hot metal dephosphorization method
JP2607329B2 (en) Hot metal dephosphorization method
JP3339982B2 (en) Converter steelmaking method
JPH1150122A (en) Dephosphorize-refining of molten iron in converter type refining vessel
JPH083612A (en) Method for refining clean steel
JPH0557327B2 (en)
JPS61104014A (en) Method for reducing mn ore with high efficiency in oxidation refining furnace
JPH02166256A (en) Method for refining medium-or low-carbon ferromanganese
JP3738741B2 (en) Pretreatment dephosphorization of hot metal
JPH0551616A (en) Production of low-s, low-p molten iron
JPS6059961B2 (en) Hot metal pretreatment method
JPH04246114A (en) Method for tapping iron and slag in smelting reduction furnace
JPS6250543B2 (en)
JPS61272346A (en) Melting-reducing refining method for high manganese ferrous alloy
JPH06200311A (en) Method for dephosphorizing molten iron
JPS62230908A (en) Melt reducing method for iron ore