JPS6250543B2 - - Google Patents

Info

Publication number
JPS6250543B2
JPS6250543B2 JP58088992A JP8899283A JPS6250543B2 JP S6250543 B2 JPS6250543 B2 JP S6250543B2 JP 58088992 A JP58088992 A JP 58088992A JP 8899283 A JP8899283 A JP 8899283A JP S6250543 B2 JPS6250543 B2 JP S6250543B2
Authority
JP
Japan
Prior art keywords
slag
chromium
stainless steel
generated
blowing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58088992A
Other languages
Japanese (ja)
Other versions
JPS59215414A (en
Inventor
Hiroyuki Katayama
Masatoshi Kuwabara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP8899283A priority Critical patent/JPS59215414A/en
Publication of JPS59215414A publication Critical patent/JPS59215414A/en
Publication of JPS6250543B2 publication Critical patent/JPS6250543B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/005Manufacture of stainless steel

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はステンレス鋼製造時の酸化クロムを含
有する発生物、すなわち、スラグ、ダスト、スラ
ジなどを、安価かつ効率的に還元処理してクロム
分を回収し、系外に排出される発生物のクロム含
有量を著しく低いレベルまで低下するための方法
に関する。 ステンレス鋼溶製工程ではクロム分の一部がス
ラグやダストに移行し酸化物となる。例えば転炉
にフエロクロムを投入してステスレス粗溶鋼(仕
上げ脱炭前の高クロム溶鋼のこと)を作り、これ
を取鍋に移して真空下で吹酸してCを所定の値ま
で低下してステンレス鋼を得る工程では、転炉で
発生するスラグ及び仕上げ脱炭工程で発生するス
ラグ及びダストに用いたクロム分のうちの5〜7
%が移行する。スラグ中のクロム含有量を低下す
るためには、Fe−Siなどの合金を投入して酸化
クロムを還元回収することも行われているが、例
えば仕上げ脱炭前で高価な還元剤を用いて溶湯を
還元することは、スラグのクロム分回収以外の効
果がなく(溶湯を脱酸しても、仕上げ脱炭時に再
び酸化されるので効果はあとには残らない)、合
理的とは言えない。もし、含クロム発生物を安価
に処理してクロムを還元回収する方法があれば、
このような非効率的な中間工程での脱酸は省略で
きる。また、ステンレス製鋼の生産性を高めよう
とすると、必然的に酸素供給速度を大にすること
になり、その結果として吹酸後のスラグ中のクロ
ム含有量やダスト生成量も増加することになる。 このような製鋼工程で発生するスラグ、ダスト
のほかに、鋳造以降の工程でスケール、研削屑、
ガス切断時の発生物、酸洗スラジなど、うずれも
クロムの存在形態としては酸化物を主体とする物
が発生するが、それらの効率的な処理方法はこれ
まで見出されていなかつた。すなわち、 (i) スラグのようにクロム含有量が10%あるいは
それ以下のような比較的低いものを、単独で処
理してクロム分を還元回収しようとしても、生
成するスラグ/メタル重量比が極端すぎてプロ
セスとして成りたたない。 (ii) ダストやスケール、研削屑などのようにクロ
ム含有量が比較的高いものについては、これを
成型して特殊な電気炉に装入して炭材で還元回
収された例はある。しかし、この場合、高価な
電力を用いて、小規模で処理をするために設備
費、変動費とも高価であるという問題がある。 したがつて望ましくはどのような発生物も、そ
の発生物のもつ特質を有効利用し、既存のステン
レス鋼など高クロム合金製造設備を利用し安価な
還元剤およびエネルギーを用いてクロム分を還元
回収し、結果として、系外に出る発生物のクロム
含有量のレベルを著しく低いレベルまで低下でき
る処理方法が開発されることが待たれていた。 本発明は以上のような観点から種々検討の結果
得られたもので、その要旨とするところは、上底
吹転炉型溶融還元炉を用い、クロム原料と炭材を
供給しつつ底吹吹酸おび浴の強撹拌を行うととも
にスラグに炭材を浮遊、、懸濁せしめた状態下
で、該炭材を上吹ランスからの酸化性ガス噴流の
吹き付けによつて燃焼せしめて熱を発生させて前
記クロム原料を溶融還元する製錬第1期と、次い
で、クロム原料の供給を止めて吹酸および浴の撹
拌を行う製錬第2期とからなるプロセスにおい
て、ステンレス鋼製造時の酸化クロムを含有する
発生物を炭材とともに溶融還元炉に装入し、前記
ステンレス鋼製造時の酸化クロムを含有する発生
物をスラグ生成要素として利用し、炉内における
スラグ/メタル重量比を0.2以上に維持しつつ吹
酸し、前記ステンレス鋼製造時の酸化クロムを含
有する発生物のクロム分を還元、回収することを
特徴とするステンレス鋼製造時の酸化クロムを含
有する発生物の処理方法にある。 以下、具体的な実施例にそつて本発明を詳細に
説明する。 まず、ステンレス製鋼工程で用いる場合につい
て述べる。 上底吹転炉でステンレス製鋼を行う場合、生成
するスラグ量はスラグ/メタル重量比が通常0.15
以下である。従来の製鋼条件ではスラグが多くな
るほどスラグへのクロムロスが増加するので、ス
ラグ量は発生物(例えばフエロクロム中のSi分の
酸化によつて生成するSiO2)に、精錬及び耐火物
保護の点から必要とされる石灰などのフラツクス
を加えてなる必要最少量にとどめるのが常識であ
る。 これに対して、本発明は実験的に見出された第
1図の結果にもとづき、適正な周辺条件下で意図
的にスラグ生成量をふやして下限値以上にするこ
とによつて、酸化物クロムの炭素による還元回収
効率が増加する現象を利用することを着眼点とし
ている。 第1図において、適正な周辺条件とは次の通り
である。 (i) 底吹ガスにより強力な撹拌が行われているこ
と。 撹拌が不十分であると、クロム酸化物(クロ
ム酸化物として炉内に添加したもの、および吹
酸による溶湯の再酸化により生成したもの)の
還元反応がおくれるので、特にスラグ/メタル
重量比が大になると第1図の曲線よりもスラグ
中のクロム含有量が高くなる。 (ii) スラグ中に遊離の炭材が共存していること。 遊離の炭材、例えばコークス塊は部分酸化に
よる発熱とともに、スラグ中クロム酸化物の還
元の活性な反応サイトである。 なお、スラグ/メタル重量比が0.3以下では遊
離炭材が共存することは、溶湯は必然的に炭素飽
和であることを意味するが、それ以上にスラグ量
が増加すると強撹拌下でも遊離炭材と溶湯の直接
接触が阻止できるので、溶湯の炭素を不飽和にす
ることも可能である。スラグ/メタル重量比が
0.15以下では遊離炭材の共存下でもスラグ中のク
ロム含有量が高いのは、上吹酸素ジエツトが溶湯
面にあたりクロムの再酸化が併行しておこるから
である。スラグ量が増加し、スラグ/メタル重量
比が0.2を超えると上吹酸素ジエツトによる溶湯
再酸化が防止されるので、スラグ中のクロム含有
量は低位に安定する。 第1図に示したスラグ中クロム含有量低下のた
めの条件を利用する操業方法の1例を以下に示
す。 上底吹転炉でステンレス製鋼を行う場合、(特
に後続の仕上げ脱炭工程用の溶湯を得るために、
原料の溶解と一次脱炭を行う場合)、通常操業2
ヒートあるいはそれ以上のヒートの生成スラグを
1ヒートの特殊条件下での操業で処理する。通常
ヒートでの生成スラグは炉内に残留させても、1
旦、排滓してからリターンする方法でもよい。ダ
スト、スラジ、研削屑などは適当な発生量をまと
めて、ペレツトあるいはブリケツトに成型し乾燥
しておく。成型時にコークス粉などの炭材を混合
して成型しておくと還元反応時間を短縮する上で
有利である。前述の特殊条件下でのステンレス製
鋼とは、通常のステンレス鋼原料(溶銑、フエロ
クロム、スクラツプ、石灰など)に、スラグおよ
び、ダスト、研削屑、スラジなどの発生物の成型
物、コークスなどの炭材を、スラグ/メタル重量
比が0.2以上となるような配合、装入することを
いう。コークスなどの炭材の量は、溶湯に溶けこ
む炭素量、装入原料中のクロムや鉄の酸化物を還
元するに必要な量、及びCOあるいはCO2までの
燃焼によつてその還元反応熱を供給するための量
および通常操業に比して冷材装入量がふえること
による必要顕熱をCOあるいはCO2への燃焼によ
つて供給するための量の和としてきまる。しか
し、実際には、使用する反応炉の操業条件によつ
て、排ガスのCO、CO2の比率が異なることか
ら、コークスなどの炭材必要量もそれに応じて変
化する。 上底吹吹酸を行つて強撹拌を行いつつ発熱させ
てクロム酸化物の還元を所定の値(その値は系外
に排出されたスラグの利用方法によつて定められ
る)例えばスラグのクロムが0.5%以下になるま
で進める。スラグのクロム含有量の制御は吹酸時
間、温度などによつて行われ得る。スラグ中の
T・Crが所定の値まで低下すると炉を傾動して
排滓する。大部分のスラグを排出した後、さらに
吹酸を行つて溶湯の炭素含有量を後工程から必要
とされるレベルまで低下させる。 このように、スラグ中のクロム酸化物を吹酸と
コークスという安価な手段で効率的に還元するた
めに必要な、従来法を超える多量のスラグを、2
ヒートあるいはそれ以上のヒートで発生したスラ
グや、ダストなどをまとめて使用することにした
のが、この方法の特長である。 以上は、ステンレス製鋼工程で、クロム酸化物
を含有する発生物を処理して、クロム分を還元回
収する方法について述べたが、フエロクロムの製
造工程に応用することができる。すなわち、上底
吹転炉型溶融還元炉にクロム鉱石あるいは粉状ク
ロム鉱石から製造した含炭半還元クロムペレツト
と炭材、フラツクスを投入して吹酸し、 C+O→COあるいは C+O2+CO2 による発熱反応を利用して酸化クロムを還元する
場合に、本発明の対象であるステンレス鋼製造工
程の酸化クロムを含有する発生物は、原料として
次のような長所を有している。 (i) 還元回収すべき酸化クロム分を含有してい
る。 (ii) 随伴物としてのCaO分、SiO2分は、フエロ
クロム溶融還元工程で造滓剤として添加する石
灰分、シリカ分を置換できる。フエロクロム溶
融還元工程で加える造滓剤の役割は、クロム鉱
石中のMgO−Al2O3−SiO2系脈石の成分組成を
変えて生成スラグの粘性、融点などを溶融還元
に適したようにすることであり、悪影響を及ぼ
すAl2O3などの比率を許容限内に下げるために
CaO、SiO2などが添加される。これに対し
て、ステンレス製鋼工程で発生するスラグは
CaO、SiO2を多量に伴つており、かつ悪影響
を及ぼすAl2O3などの含有量が少ないことから
フラツクスとして適しており、かつ、生石灰な
どを加えるよりも速度的に造滓効果が大きいと
いう効果もある。 (iii) ダスト、研削屑、スラジなどの粉状あるいは
それが水分を伴つたスラジ状のものである場合
には、クロム鉱石粉から含炭クロムペレツトを
製造する場合に容易に配合することができる。 このように、ステンレス鋼製造工程で発生する
酸化クロムを含有する発生物はそれぞれフエロク
ロム溶融還元工程での副原料として、よくなじむ
ものである。上底吹転炉型溶融還元炉でのフエロ
クロム溶融還元工程では、クロム鉱石に伴われる
MgO、Al2O3C、SiO2分に起因してスラグ/メタ
ル重量比が0.3以上の多量のスラグを生成する。
ここで、底吹による強撹拌、炭材の添加、上吹に
よる効率的な発熱を利用すると、酸化クロムの還
元、回収を進めて排出するスラグ中のクロム含有
量を1%以下の、低いレベルまで容易に低下する
ことができる。 実施例 (1) ステンレス製鋼工程に用いる場合: 定格150t上底吹転炉に、次のような原料を装
入する。
The present invention recovers the chromium content by inexpensively and efficiently reducing chromium oxide-containing products such as slag, dust, and sludge during stainless steel manufacturing, and reduces the amount of products that are discharged outside the system. The present invention relates to a method for reducing chromium content to significantly lower levels. In the stainless steel melting process, some of the chromium content migrates to slag and dust and becomes oxides. For example, ferrochrome is charged into a converter to produce stainless steel crude molten steel (high chromium molten steel before final decarburization), which is transferred to a ladle and blown with acid under vacuum to reduce the C to a predetermined value. In the process of obtaining stainless steel, 5 to 7 of the chromium content used in the slag generated in the converter and the slag and dust generated in the final decarburization process is
% will be transferred. In order to reduce the chromium content in slag, alloys such as Fe-Si are added to reduce and recover chromium oxide, but for example, expensive reducing agents are used before finishing decarburization. Reducing the molten metal has no effect other than recovering the chromium content from the slag (even if the molten metal is deoxidized, it will be oxidized again during final decarburization, so no effect will remain), so it cannot be said to be rational. . If there was a way to reduce and recover chromium by processing chromium-containing generated products at low cost,
Such an inefficient intermediate step of deoxidation can be omitted. In addition, if we try to increase the productivity of stainless steel manufacturing, we will inevitably increase the oxygen supply rate, and as a result, the chromium content in the slag after acid blowing and the amount of dust generated will also increase. . In addition to slag and dust generated during the steelmaking process, scale, grinding debris, and
Chromium is generated in the form of oxides, such as gas-cutting products and pickling sludge, but no efficient treatment method has been found so far. In other words, (i) Even if an attempt is made to reduce and recover the chromium content by treating slag, which has a relatively low chromium content of 10% or less, by itself, the slag/metal weight ratio produced is extremely high. It's too much to work as a process. (ii) There are examples of materials with a relatively high chromium content, such as dust, scale, and grinding chips, being molded and charged into a special electric furnace, and then reduced and recovered using carbon materials. However, in this case, there is a problem that both equipment costs and variable costs are high because expensive electric power is used and processing is performed on a small scale. Therefore, it is desirable to reduce and recover the chromium content of any generated material by effectively utilizing the characteristics of the generated material, using existing high chromium alloy manufacturing equipment such as stainless steel, and using inexpensive reducing agents and energy. As a result, it has been desired to develop a treatment method that can reduce the level of chromium content of the generated product to a significantly low level. The present invention was obtained as a result of various studies from the above-mentioned viewpoints, and the gist of the invention is to use a top-bottom blowing converter type melting reduction furnace, and to supply chromium raw material and carbonaceous material while bottom-blowing. While strongly stirring the acid bath, the carbonaceous material is suspended in the slag, and the carbonaceous material is combusted by blowing an oxidizing gas jet from an upper blowing lance to generate heat. In the process, which consists of the first smelting stage in which the chromium raw material is melted and reduced, and the second smelting stage in which the supply of the chromium raw material is stopped and the blowing acid and the bath are stirred, chromium oxide is removed during the production of stainless steel. The generated material containing chromium oxide is charged into a smelting reduction furnace together with the carbonaceous material, and the generated material containing chromium oxide during stainless steel manufacturing is used as a slag generation element, and the slag/metal weight ratio in the furnace is adjusted to 0.2 or more. A method for treating chromium oxide-containing waste produced during stainless steel production, characterized by reducing and recovering the chromium content of the chromium oxide-containing waste produced during stainless steel production. . Hereinafter, the present invention will be explained in detail with reference to specific examples. First, the case where it is used in the stainless steel manufacturing process will be described. When producing stainless steel in a top-bottom blowing converter, the amount of slag produced is usually at a slag/metal weight ratio of 0.15.
It is as follows. Under conventional steelmaking conditions, the more slag there is, the more chromium loss to the slag. It is common sense to keep the amount to the minimum necessary by adding the necessary flux such as lime. In contrast, the present invention is based on the experimentally found results shown in FIG. The focus is on utilizing the phenomenon of increasing the reduction and recovery efficiency of chromium with carbon. In FIG. 1, the appropriate surrounding conditions are as follows. (i) Strong stirring is performed by bottom blowing gas. If stirring is insufficient, the reduction reaction of chromium oxide (chromium oxide added to the furnace and produced by reoxidation of molten metal with blowing acid) will be delayed, especially when the slag/metal weight ratio is As the value increases, the chromium content in the slag becomes higher than the curve shown in FIG. (ii) Free carbonaceous material coexists in the slag. Free carbonaceous materials, such as coke lumps, are active reaction sites for the reduction of chromium oxides in the slag, as well as the heat generated by partial oxidation. Note that when the slag/metal weight ratio is less than 0.3, the coexistence of free carbonaceous material means that the molten metal is inevitably carbon saturated, but when the amount of slag increases beyond that, free carbonaceous material coexists even under strong stirring. Since direct contact between the molten metal and the molten metal can be prevented, it is also possible to make the carbon in the molten metal unsaturated. Slag/metal weight ratio
Below 0.15, the chromium content in the slag is high even in the coexistence of free carbonaceous material, because the top-blown oxygen jet hits the molten metal surface and chromium reoxidation occurs simultaneously. When the amount of slag increases and the slag/metal weight ratio exceeds 0.2, reoxidation of the molten metal by the top-blown oxygen jet is prevented, so the chromium content in the slag stabilizes at a low level. An example of an operating method using the conditions for reducing the chromium content in slag shown in FIG. 1 is shown below. When producing stainless steel in a top-bottom blowing converter (especially in order to obtain molten metal for the subsequent finishing decarburization process),
(When performing raw material melting and primary decarburization), normal operation 2
The slag produced in one heat or more heats is treated in one heat operation under special conditions. Even if the slag produced by normal heat remains in the furnace, 1
It is also possible to remove the slag first and then return it. Dust, sludge, grinding chips, etc. are collected in appropriate amounts, formed into pellets or briquettes, and dried. It is advantageous to mix a carbonaceous material such as coke powder during molding in order to shorten the reduction reaction time. Stainless steel manufacturing under the above-mentioned special conditions means that ordinary stainless steel raw materials (hot metal, ferrochrome, scrap, lime, etc.) are combined with slag, molded products of generated products such as dust, grinding waste, and sludge, and charcoal such as coke. This refers to mixing and charging materials such that the slag/metal weight ratio is 0.2 or more. The amount of carbonaceous material such as coke is determined by the amount of carbon dissolved in the molten metal, the amount required to reduce chromium and iron oxides in the charged raw material, and the reduction reaction heat generated by combustion to CO or CO 2 . The amount of sensible heat required due to the increase in the amount of refrigerant charged compared to normal operation is determined as the sum of the amount to be supplied by combustion to CO or CO 2 . However, in reality, the ratio of CO and CO 2 in the exhaust gas varies depending on the operating conditions of the reactor used, and the required amount of carbon materials such as coke changes accordingly. Blow acid from the top and bottom is used to generate heat while stirring strongly to reduce the chromium oxide to a predetermined value (the value is determined depending on how the slag discharged outside the system is used). Proceed until it becomes 0.5% or less. The chromium content of the slag can be controlled by the acid blowing time, temperature, etc. When T/Cr in the slag drops to a predetermined value, the furnace is tilted to discharge the slag. After most of the slag has been discharged, further acid blowing is carried out to reduce the carbon content of the molten metal to the level required from subsequent steps. In this way, in order to efficiently reduce chromium oxide in slag using the inexpensive means of blowing acid and coke, a larger amount of slag than conventional methods can be reduced.
The feature of this method is that it uses all the slag, dust, etc. generated during heat or higher heat. The above has described a method for reducing and recovering the chromium content by treating generated materials containing chromium oxide in the stainless steel manufacturing process, but this method can be applied to the ferrochrome manufacturing process. That is, carbon-containing semi-reduced chromium pellets produced from chromium ore or powdered chromium ore, carbonaceous material, and flux are charged into a top-bottom blowing converter type smelting reduction furnace, and blown acid is generated to generate heat due to C+O→CO or C+O 2 +CO 2 . When reducing chromium oxide using a reaction, the chromium oxide-containing generated product from the stainless steel manufacturing process, which is the object of the present invention, has the following advantages as a raw material. (i) Contains chromium oxide that should be reduced and recovered. (ii) CaO and SiO 2 as accompanying substances can replace lime and silica added as slag forming agents in the ferrochrome melting and reduction process. The role of the slag agent added in the ferrochrome smelting reduction process is to change the composition of the MgO−Al 2 O 3 −SiO 2 gangue in the chromium ore to make the viscosity and melting point of the produced slag suitable for smelting reduction. In order to reduce the ratio of harmful substances such as Al 2 O 3 to an acceptable level.
CaO, SiO2 , etc. are added. On the other hand, the slag generated in the stainless steel manufacturing process
It is suitable as a flux because it contains large amounts of CaO and SiO 2 and has a low content of harmful substances such as Al 2 O 3 , and it is said that it has a faster slag-forming effect than adding quicklime etc. It's also effective. (iii) When it is in the form of powder such as dust, grinding chips, sludge, etc. or in the form of sludge with moisture, it can be easily blended when producing carbon-containing chromium pellets from chromium ore powder. In this way, the products containing chromium oxide generated in the stainless steel manufacturing process are well suited as auxiliary raw materials in the ferrochrome melting and reduction process. In the ferrochrome smelting reduction process in a top-bottom blowing converter type smelting reduction furnace, chromium ore is
A large amount of slag with a slag/metal weight ratio of 0.3 or more is produced due to the presence of MgO, Al 2 O 3 C, and SiO.
By utilizing strong stirring by bottom blowing, addition of carbonaceous material, and efficient heat generation by top blowing, chromium oxide can be reduced and recovered to reduce the chromium content in the discharged slag to a low level of 1% or less. can be easily lowered to Example (1) When used in the stainless steel manufacturing process: The following raw materials are charged into a top-bottom blowing converter with a rating of 150 tons.

【表】 上吹吹酸速度3900Nm3/hr、底吹吹酸速度
4000Nm3/hrで60分吹酸して、メタル成分Cr:
17%、Fe:77%、C:5%、P:0.040%、
S:0.025%、メタル温度1520℃(メタル量
140t)のメタルと、T・Cr:0.5%、T・Fe:
0.3%のスラグ42t(スラグ/メタル=0.34)を
得た時点で、炉を傾動してスラグ90%を排滓し
た。ついで、上底吹酸を行つてC:0.5%、温
度:1650℃までにした後に取鍋に出鋼し、真空
下で吹酸してC:0.04%まで仕上げ脱炭を行つ
た。 (2) フエロクロム製造工程に用いる場合: 定格溶融金属量100tの上底吹転炉(底吹羽口
数6本)を用いて、1回あたり60tのフエロク
ロム(Cr:55%、Si:0.1%、C:8%)を約
3時間ごとに出湯した。前ヒートの残留メタル
20tに、次の原料を投入する。 (i) 半還元ペレツト: クロム鉱石粉重量100に対して、ステンレ
ス製造工程で発生するダスト(T・Cr:25
%)を2、スラジ(T・Cr:18%)を2、
研削屑(T・Cr:9%)を2の割合で配合
したものにコークス粉を加えペレツトに成型
後、上底吹転炉から発生するガスで予熱予備
還元されたペレツト(成分:T・Cr:32
%、T・Fe:19%、MgO:11%、Al2O3:12
%、CaO:2%、SiO2:9%、クロム分予
備還元率55%)を2t/minの割合で約60分に
わたつて分割投入する。 (ii) 炭材: コークス(C分:88%、粒度:20〜50
mm)、 上記半還元クロムペレツとほぼ併行して
45tを投入する。 (iii) ステンレス鋼製造工程の発生スラグ: CaO:58%、SiO2:20%、MgO:9%、
Al2O3:1%、T・Cr:6%、T・Fe:3%
からなる発生スラグ50mm以下に割つたものを
炉上方から上記半還元クロムペレツトと併行
して13.5t分割投入する。 (iv) 石灰:CaO分97%(粒径20〜50mm): この石灰7.5tを(iii)と併行して分割投入す
る。 吹酸は約60分間は上吹23000Nm3/hr、底吹
4500Nm3/hrで行う。クロムを含有する諸原
料の投入が終つた後、30分間、上吹15000N
m3/hr、底吹4500Nm3/hrで、コークスを4t分
割追加装入して仕上げ還元を行い、炉内に
CaO:26%、MgO:24%、Al2O3:23%、
SiO2:25%、T・Cr:0.7%、T・Fe:0.5
%のスラグ61tとフエロクロム60tが存在して
いる状態(スラグ/メタル重量比=1.02)に
して排滓し、ついで2/3の浴湯排出を行う。 以上のように本発明はステンレス製造工程での
含クロム発生物の特長(クロム含有量のレベルが
比較的低く、造滓効果がある)を生かし、ステン
レス鋼、フエロクロムなどの製造に用いられる上
底吹転炉型反応器で、安価な炭材を用いてクロム
分を高効率下に還元回収し、系外に排出される発
生物のクロム含有量を著しく低いレベルまで低下
することを可能にしたもので、ステンレス製鋼工
程の合理化、クロム資源有効利用率の向上、環境
保全などの面で経済的、工業的な効果が大きい。
[Table] Top blown acid rate 3900Nm 3 /hr, bottom blown acid rate
Blow acid at 4000Nm 3 /hr for 60 minutes, metal component Cr:
17%, Fe: 77%, C: 5%, P: 0.040%,
S: 0.025%, metal temperature 1520℃ (metal amount
140t) metal, T・Cr: 0.5%, T・Fe:
When 42 tons of 0.3% slag (slag/metal = 0.34) was obtained, the furnace was tilted to remove 90% of the slag. Next, the steel was subjected to top and bottom acid blowing to bring the C content to 0.5% and the temperature to 1650°C, and then tapped into a ladle, and was subjected to acid blowing under vacuum to perform final decarburization to a C content of 0.04%. (2) When used in the ferrochrome manufacturing process: Using a top-bottom blowing converter (six bottom blowing tuyeres) with a rated molten metal amount of 100 tons, 60 tons of ferrochrome (Cr: 55%, Si: 0.1%, C: 8%) was dispensed approximately every 3 hours. Residual metal from previous heat
Add the following raw materials to 20t. (i) Semi-reduced pellets: Dust generated in the stainless steel manufacturing process (T・Cr: 25
%) 2, sludge (T・Cr: 18%) 2,
Coke powder is added to a mixture of grinding waste (T/Cr: 9%) in a ratio of 2 parts, formed into pellets, and the pellets (component: T/Cr :32
%, T・Fe: 19%, MgO: 11%, Al 2 O 3 : 12
%, CaO: 2%, SiO 2 : 9%, chromium content preliminary reduction rate of 55%) was added in portions at a rate of 2 t/min over about 60 minutes. (ii) Carbon material: Coke (C content: 88%, particle size: 20-50
mm), almost in parallel with the semi-reduced chromium pellets mentioned above.
Inject 45 tons. (iii) Slag generated in the stainless steel manufacturing process: CaO: 58%, SiO 2 : 20%, MgO: 9%,
Al 2 O 3 : 1%, T・Cr: 6%, T・Fe: 3%
The generated slag, which is divided into pieces of 50 mm or less, is charged in 13.5 tons from above the furnace in parallel with the semi-reduced chromium pellets. (iv) Lime: CaO content 97% (particle size 20-50 mm): 7.5 tons of this lime is added in portions in parallel with (iii). Blowing acid is top blowing 23000Nm 3 /hr for about 60 minutes, bottom blowing
Perform at 4500Nm 3 /hr. After adding the raw materials containing chromium, top blow 15000N for 30 minutes.
m 3 /hr, bottom blowing 4500Nm 3 /hr, additional 4t of coke is charged in installments for finish reduction, and the coke is returned to the furnace.
CaO: 26%, MgO: 24%, Al 2 O 3 : 23%,
SiO 2 : 25%, T・Cr: 0.7%, T・Fe: 0.5
% of slag and 60 tons of ferrochrome are present (slag/metal weight ratio = 1.02), and then 2/3 of the bath water is discharged. As described above, the present invention takes advantage of the features of chromium-containing products generated in the stainless steel manufacturing process (relatively low chromium content and has a slag-making effect), and utilizes the features of the chromium-containing products generated in the stainless steel manufacturing process to create a top bottom used in the manufacturing of stainless steel, ferrochrome, etc. Using a blowing converter type reactor, the chromium content is reduced and recovered with high efficiency using inexpensive carbonaceous material, making it possible to reduce the chromium content of the generated product discharged outside the system to a significantly low level. It has great economic and industrial effects in terms of streamlining the stainless steel manufacturing process, improving the effective utilization rate of chromium resources, and protecting the environment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は上底吹転炉でのクロム分の還元回収に
及ぼすスラグ/メタル重量比の影響を示す図であ
る。
FIG. 1 is a diagram showing the influence of the slag/metal weight ratio on the reduction and recovery of chromium in a top-bottom blowing converter.

Claims (1)

【特許請求の範囲】[Claims] 1 上底吹転炉型溶融還元炉を用い、クロム原料
と炭材を供給しつつ底吹吹酸および浴の強撹拌を
行うとともにスラグに炭材を浮遊、懸濁せしめた
状態下で、該炭材を上吹ランスからの酸化性ガス
噴流の吹き付けによつて燃焼せしめて熱を発生さ
せて前記クロム原料を溶融還元する製錬第1期
と、次いで、クロム原料の供給を止めて吹酸およ
び浴の撹拌を行なう製錬第2期とからなるプロセ
スにおいて、ステンレス鋼製造時の酸化クロムを
含有する発生物を炭材とともに溶融還元炉に装入
し、前記ステンレス鋼製造時の酸化クロムを含有
する発生物をスラグ生成要素として利用し、炉内
におけるスラグ/メタル重量比を0.2以上に維持
しつつ吹酸し、前記ステンレス鋼製造時の酸化ク
ロムを含有する発生物のクロム分を還元、回収す
ることを特徴とするステンレス鋼製造時の酸化ク
ロムを含有する発生物の処理方法。
1 Using a top-bottom blown converter type smelting reduction furnace, while supplying the chromium raw material and carbonaceous material, the bottom-blown acid and the bath were strongly stirred, and the carbonaceous material was suspended in the slag. The first stage of smelting involves burning the carbonaceous material by blowing an oxidizing gas jet from the top blowing lance to generate heat and melting and reducing the chromium raw material.Then, the supply of the chromium raw material is stopped and the blowing acid is removed. In the second smelting process, which involves stirring the bath, the generated material containing chromium oxide during stainless steel production is charged into a smelting reduction furnace together with carbonaceous material, and the chromium oxide produced during stainless steel production is charged into a smelting reduction furnace. Using the contained generated material as a slag generation element, blowing acid while maintaining the slag/metal weight ratio in the furnace at 0.2 or more, reducing the chromium content of the generated material containing chromium oxide during the production of stainless steel, A method for treating chromium oxide-containing materials generated during stainless steel manufacturing, the method comprising recovering chromium oxide-containing materials.
JP8899283A 1983-05-20 1983-05-20 Treatment of product containing chromium oxide generated during production of stainless steel Granted JPS59215414A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8899283A JPS59215414A (en) 1983-05-20 1983-05-20 Treatment of product containing chromium oxide generated during production of stainless steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8899283A JPS59215414A (en) 1983-05-20 1983-05-20 Treatment of product containing chromium oxide generated during production of stainless steel

Publications (2)

Publication Number Publication Date
JPS59215414A JPS59215414A (en) 1984-12-05
JPS6250543B2 true JPS6250543B2 (en) 1987-10-26

Family

ID=13958301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8899283A Granted JPS59215414A (en) 1983-05-20 1983-05-20 Treatment of product containing chromium oxide generated during production of stainless steel

Country Status (1)

Country Link
JP (1) JPS59215414A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61183406A (en) * 1985-02-07 1986-08-16 Daiichi Nenryo Kogyo Kk Non-ferrous metallic component additive material for iron and steel making
JPS62167810A (en) * 1986-01-20 1987-07-24 Kobe Steel Ltd Method for adding chromium to molten iron
US5342589A (en) * 1992-09-22 1994-08-30 Minnesota Mining And Manufacturing Company Process for converting chromium dioxide magnetic pigment particles into nonmagnetic chromium (III) oxide

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53119210A (en) * 1977-03-28 1978-10-18 Kawasaki Steel Co Method of recovering and utilizing chrome from chromeecontaining steel slag

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53119210A (en) * 1977-03-28 1978-10-18 Kawasaki Steel Co Method of recovering and utilizing chrome from chromeecontaining steel slag

Also Published As

Publication number Publication date
JPS59215414A (en) 1984-12-05

Similar Documents

Publication Publication Date Title
CN102264919B (en) Method for reclaiming iron and phosphorus from steelmaking slag
JPS6123245B2 (en)
JP2947063B2 (en) Stainless steel manufacturing method
JP2020180322A (en) Production method of molten steel using converter
JPS6250543B2 (en)
JP3158912B2 (en) Stainless steel refining method
JP3063537B2 (en) Stainless steel manufacturing method
JP3233304B2 (en) Production of low Si, low S, and high Mn hot metal with smelting reduction of Mn ore
KR100411288B1 (en) Method for recovering chromium from electric furnace slag
JP2002256325A (en) Method for pretreating molten iron having little amount of slag by using converter type vessel
JPS6247417A (en) Melt refining method for scrap
JP3297997B2 (en) Hot metal removal method
JP2802799B2 (en) Dephosphorization and desulfurization method for crude molten stainless steel and flux used for it
JPS5855504A (en) Manufacture for pig and steel
JPS6213406B2 (en)
JPH0762413A (en) Production of stainless steel
JPH06940B2 (en) Method for smelting reduction refining of high manganese iron alloy
JPS61139614A (en) Manufacture of steel
JPH01168806A (en) Production of chromium-contained molten iron
JPS62290818A (en) Manufacture of low-phosphorus steel in electric furnace
JPS63190134A (en) Manufacture of high-chromium alloy from chromitite
JPS59150060A (en) Method and device for producing stainless steel by melt reduction of chromium ore
JPH05239510A (en) Production of low si, low s and low p molten iron
JPS6244533A (en) Melting-reducing refining method for metallic oxide
JPH0526841B2 (en)