JPS5855504A - Manufacture for pig and steel - Google Patents
Manufacture for pig and steelInfo
- Publication number
- JPS5855504A JPS5855504A JP15263881A JP15263881A JPS5855504A JP S5855504 A JPS5855504 A JP S5855504A JP 15263881 A JP15263881 A JP 15263881A JP 15263881 A JP15263881 A JP 15263881A JP S5855504 A JPS5855504 A JP S5855504A
- Authority
- JP
- Japan
- Prior art keywords
- converter
- pig
- slag
- phosphorus
- charged
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B5/00—Making pig-iron in the blast furnace
- C21B5/02—Making special pig-iron, e.g. by applying additives, e.g. oxides of other metals
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
Abstract
Description
【発明の詳細な説明】
本発明t’h転炉滓を使用する製銑製鋼法に関し、更に
詳述すれば転炉滓の循環使用に伴う溶銑中の燐の富化を
抑制し、転炉滓を使用する製銑製鋼法に関する。Detailed Description of the Invention The present invention relates to a method for making iron and steel using t'h converter slag, and more specifically, it suppresses the enrichment of phosphorus in hot metal due to the circulating use of converter slag, and Concerning ironmaking and steelmaking methods that use slag.
従来高炉から出銑された溶銑中の燐の大部分は高炉内に
装入された鉄鉱石が還元されたものであり、その成分濃
度(以下[P]と記す)は0.080〜0.110%で
あり、この溶銑中の燐は転炉精錬において大量の生石灰
媒溶剤を用いて高塩基度のスラグを溶製する方法又はス
ラグ中の鉄分全量〔以下(T、Fe)と記す〕を多くす
る方法により脱燐されていた。これらの方法によると鋼
1トン当たり100〜130即の転炉滓が発生し、また
(T、Fe)が20〜25%と多いため、鉄分歩留りの
低下は避は得なかった。Most of the phosphorus in the hot metal tapped from conventional blast furnaces is the reduced iron ore charged in the blast furnace, and its component concentration (hereinafter referred to as [P]) is between 0.080 and 0.08. 110%, and the phosphorus in this hot metal can be removed by melting high basicity slag using a large amount of quicklime solvent in converter refining, or by reducing the total amount of iron in the slag [hereinafter referred to as (T, Fe)]. It was dephosphorized by a method that increases the amount of phosphorus. According to these methods, 100 to 130 converter slags are generated per ton of steel, and since the (T, Fe) content is as high as 20 to 25%, a decrease in iron yield is unavoidable.
そこで発生する転炉滓を製銑原料として使用して鉄分回
収をはかることが考えられているが、使用する転炉滓量
に応じて[P]が上昇し、転炉精錬における媒溶剤使用
量が増すことになり、鋼種によっては安定精錬ができな
い等の不具合が多いために、転炉滓を製銑原料として使
用することには製銑製鋼法全体でみた場合に便益性がな
かった。It is considered to recover iron by using the converter slag generated there as a raw material for ironmaking, but [P] increases depending on the amount of converter slag used, and the amount of solvent used in converter refining increases. Since there are many problems such as the inability to stably refine some steel types, the use of converter slag as a raw material for ironmaking has not been beneficial in terms of the overall ironmaking and steelmaking process.
更に転炉滓の性質として問題となるのは未滓化の石灰が
存在し、崩壊性を有することであり、このため転炉滓は
極く一部アスコン用骨材等への活用がはかられているも
のの、その殆どは、埋立用として廃棄されている。Furthermore, a problem with the properties of converter slag is the presence of unsludged lime, which is collapsible, and for this reason, only a small portion of converter slag can be used as aggregate for assemblers, etc. However, most of it is discarded as landfill.
しかし転炉滓には生石灰、鉄分妙;多量に含まれており
、これを製銑工程に使用することにより大幅な原価低減
がはかれる。例えば転炉滓を高炉に使用する場合は
(1) スラグの塩基度の調整
(2)鉄分の回収
(3) 溶銑中のマンガン濃度の上昇等の利点があり
、また転炉滓を焼結に使用する場合は
(1)鉄分の回収
(2)溶銑中のマンガン濃度の上昇
(3)石灰粉使用量の低減
(4) 粉コークス使用量の低減
等の利点がある。However, converter slag contains large amounts of quicklime and iron, and by using this in the ironmaking process, costs can be significantly reduced. For example, when converter slag is used in a blast furnace, there are advantages such as (1) adjusting the basicity of slag, (2) recovering iron content, and (3) increasing the manganese concentration in hot metal. When used, there are advantages such as (1) recovery of iron content, (2) increase in manganese concentration in hot metal, (3) reduction in the amount of lime powder used, and (4) reduction in the amount of coke powder used.
従って転炉滓を製銑工程で使用することによって富化し
た[P]を転炉装入前の〆銑段階で除去すれば転炉精錬
において大量の生石灰媒溶剤を要する脱燐処理を施すと
いう不具合を解消でき、上述した利点が活かせることと
なる。Therefore, if [P] enriched by using converter slag in the pig iron making process is removed in the final pig iron stage before charging into the converter, dephosphorization treatment that requires a large amount of quicklime solvent can be performed in converter refining. The problem can be resolved and the above-mentioned advantages can be utilized.
零発’3Aは所かる知見に基いてなされたものであり、
従来殆ど廃棄されていた転炉滓を製銑原料として使用し
、鉄鉱石、副原料等の使用量を削減し、製銑製鋼工程に
おける原価低減をはかることを目的とする。Zero Hatsu '3A was made based on certain knowledge,
The purpose of this project is to use converter slag, which was previously almost discarded, as a raw material for ironmaking, reduce the amount of iron ore and auxiliary materials used, and reduce costs in the ironmaking and steelmaking process.
本発明忙係る製銑製鋼法は転炉滓を製銑原料として使用
する製銑製鋼法において、転炉滓の循環使用に伴う溶銑
中の燐の1積を防止すべく、高炉から出銑された溶銑の
一部又は全部に対して、該溶銑が転炉へ装入される迄の
間に脱燐処理を施すことを特徴とする。そして溶銑の一
部に対して脱燐処理を施したものは、これと脱燐処理を
施していない溶銑とを合せ湯した後、転炉へ装入する。The ironmaking and steelmaking method according to the present invention uses converter slag as a raw material for ironmaking, and in order to prevent phosphorus from accumulating in the hot metal due to the circulation of converter slag, the iron is tapped from the blast furnace. The method is characterized in that a part or all of the hot metal is subjected to dephosphorization treatment before the hot metal is charged into the converter. Then, a portion of the hot metal that has been subjected to dephosphorization treatment is combined with hot metal that has not been subjected to dephosphorization treatment, and then charged into a converter.
以下本発明を図面に基いて詳しく説明する。図面は転炉
滓を製銑原料として使用する場合においてCF3が富化
する原理を示した説明図である。高炉lに装入される鉱
石原料、コークス等に含まれる燐の量をP、とし、高炉
l内での燐の還元効率ηl(一般に高炉内で燐は殆ど還
元されるのでη1は1)とすれば高炉から出銑される溶
銑中に含まれる燐の量は(P1×η1)となる。また転
炉2に装入されるスクラップに含まれる燐の量をP、と
すると全燐量#i(Pt + P+v+)となり、転炉
2内における脱燐効率をη2とすると成品中燐量はη、
x (Pt + P1×ηI)で、また転炉陸生燐量
は(1−ηt ) X (Pt十P□×η1)で大々表
わされる。そしてこの転炉滓を高炉1へ戻すリターン率
をRとすると高炉1へ戻される燐の轍はR×(1−η2
)X(P2+ p、Xη、)となり、投棄される燐の量
は(1−R)X(1−ηt) x (p2+p、 xη
1)となる。The present invention will be explained in detail below based on the drawings. The drawing is an explanatory diagram showing the principle of enrichment of CF3 when converter slag is used as a raw material for iron making. Let P be the amount of phosphorus contained in the ore raw materials, coke, etc. charged to the blast furnace L, and let the reduction efficiency of phosphorus in the blast furnace L be ηl (generally, most of the phosphorus is reduced in the blast furnace, so η1 is 1). Then, the amount of phosphorus contained in the hot metal tapped from the blast furnace becomes (P1×η1). Also, if the amount of phosphorus contained in the scrap charged to the converter 2 is P, then the total phosphorus amount #i (Pt + P + v+), and if the dephosphorization efficiency in the converter 2 is η2, the amount of phosphorus in the product is η,
x (Pt + P1×ηI), and the amount of terrestrial phosphorus in the converter is roughly expressed as (1−ηt) X (Pt×P□×η1). If the return rate for returning this converter slag to the blast furnace 1 is R, then the track of phosphorus returned to the blast furnace 1 is R×(1-η2
)X(P2+ p, Xη,), and the amount of phosphorus dumped is (1-R)
1).
従って転炉滓をリターン率Rで高炉1へ戻す場合は、高
炉1に装入される燐の量は鉱石原料等から装入される量
と合せてP、+RX(1−ηt)x(pt+P、Xη1
−)となり、また転炉2゛に装入される燐の蓋Vip2
+ηr (PI+RX (1−む) ×(P、+P、
xη1))即ち、(P、十P1xηI) 十RXη1×
(1−ηt ) X (p、+P1xη1)となり、′
転炉滓を製銑原料として使用することによりR×η1×
(1−η2) X (PH+ P、xη1)だけ富化す
ることになる。Therefore, when the converter slag is returned to the blast furnace 1 at a return rate R, the amount of phosphorus charged into the blast furnace 1 is P, +RX(1-ηt)x(pt+P ,Xη1
), and the phosphor lid Vip 2 charged into the converter 2
+ηr (PI+RX (1-mu) ×(P, +P,
xη1)) That is, (P, 10P1xηI) 10RXη1×
(1-ηt) X (p, +P1xη1),'
By using converter slag as raw material for ironmaking, R×η1×
It will be enriched by (1-η2)X (PH+P, xη1).
このように転炉滓を製銑原料として使用することにより
富化した[P]を転炉装入前で除去することなく転炉へ
装入した場合は、通常吹錬のままでは転炉での脱燐能は
限定されているので溶鋼中の燐濃度レベルが上昇する二
従ってそれを防止するためにはダブルスラグ法等の吹錬
を行う必要が生じ、精錬コストの大幅な上昇につながる
。If [P] enriched by using converter slag as a raw material for ironmaking is charged into the converter without being removed before charging, it will not be able to be used in the converter if it is normally blown. Since the dephosphorization ability of steel is limited, the phosphorus concentration level in the molten steel increases. Therefore, in order to prevent this, it becomes necessary to perform blowing such as the double slag method, which leads to a significant increase in refining costs.
本発明は所かる不合理を避け、高炉から出銑された溶銑
に対して、該溶銑が転炉内へ装入される迄の間に脱燐処
理を施すことによりCF3の富化を抑制し、前述した転
炉滓を製銑工程へ戻すこととする。次に上述の脱燐の方
法について説明する。The present invention avoids certain unreasonableness and suppresses enrichment of CF3 by dephosphorizing the hot metal tapped from the blast furnace before it is charged into the converter. , the above-mentioned converter slag will be returned to the ironmaking process. Next, the above-mentioned dephosphorization method will be explained.
高炉から出銑された溶銑に対して先ず脱燐処理に先立ち
脱珪処理を施す。この脱珪処理は脱m処理の効率を良く
するためには不可欠であり、特に溶銑中の珪素濃度が0
.10%以下の範囲が脱燐処理には好都合である。この
脱珪処理を施す場所は脱燐処理の場所に応じて適宜に選
択される。例えば高炉鋳床、混銑車、取鍋のいずれでも
よい。またこのとき発生するスラグの組成は第1表に示
すようになるが、このスラグはスラグドラツガやV、S
、クリーナで除去され、シリカ、源として焼結原料に使
用できる性状のものである。Hot metal tapped from a blast furnace is first subjected to desiliconization treatment prior to dephosphorization treatment. This desiliconization treatment is essential to improve the efficiency of the desiliconization treatment, especially when the silicon concentration in the hot metal is 0.
.. A range of 10% or less is convenient for dephosphorization treatment. The location where this desiliconization treatment is performed is appropriately selected depending on the location of the dephosphorization treatment. For example, it may be a blast furnace casthouse, a pig iron mixer, or a ladle. The composition of the slag generated at this time is shown in Table 1. This slag is made of slag hemlock, V, S
The silica is removed by a cleaner and can be used as a sintering raw material as a silica source.
このようにして脱珪された溶銑に対して脱燐処理を施す
が、その処理方法としては生石灰系による方法とソーダ
灰による方法のいずれもが可能であるが、以下に述べる
理由でソーダ灰による方がより好ましい。The hot metal that has been desiliconized in this way is subjected to dephosphorization treatment, which can be done either by quicklime or by soda ash, but for the reasons described below, soda ash is preferred. is more preferable.
生石灰系での脱燐処理の特徴としては
(1) 高酸化ポテンシャルでの処理であるために(
T、Fe)が高く、鉄分損失が多いこと。The characteristics of quicklime-based dephosphorization treatment are (1) because it is treated at a high oxidation potential (
T, Fe) and high iron loss.
(2) マンガン損失を伴うこと。(2) Accompanied by manganese loss.
(3)脱硫の進行が約50%程度と低く脱燐処理の前後
のいずれかで再度脱硫処理が必要なこと。(3) Desulfurization progress is as low as about 50%, requiring desulfurization treatment again either before or after dephosphorization treatment.
等が考えられるのに対してソーダ灰での処理の特徴とし
ては
(1) t、酸化ポテンシャルでの処理であるために
(T、Fe、)が低く、鉄分損失が少ないこと。On the other hand, the characteristics of treatment with soda ash are: (1) Because it is treated at t, oxidation potential, (T, Fe,) is low, and iron loss is small.
(2) マンガン損失を伴わないこと。(2) No loss of manganese.
(3) 脱燐時における脱硫現象は極めて迅速に進行
し、脱硫率も90%以上億保できること。(3) The desulfurization phenomenon during dephosphorization proceeds extremely quickly, and the desulfurization rate can be maintained at over 90%.
等が考えられ、脱燐処理に関してはソーダ灰の処理の方
が発生スラグ量も少なくて鉄分損失、マンガン損失も少
なく、また脱燐、脱硫も効率よく行える。更に脱燐スラ
ブの組成は第2表に示すようになり、この脱燐スラグか
らは有価金属の回収等も実施できて優れている。Regarding dephosphorization treatment, soda ash treatment generates less slag, less iron loss and manganese loss, and can perform dephosphorization and desulfurization more efficiently. Furthermore, the composition of the dephosphorization slab is shown in Table 2, and this dephosphorization slag is excellent in that valuable metals can also be recovered.
而して脱燐された溶銑は次に転炉に装入されるが、転炉
においては脱燐溶銑を直接スラグレスによって脱炭吹錬
する方法と更に熱補償をするために未処理の溶銑と合せ
湯を行って溶銑中の珪素濃度を高める方法とがある。合
せ湯の方法によれば鋼種によって要求される燐濃度レベ
ルに応じて合せ湯量の比率を変化させて溶銑中の燐濃度
を調整することも可能である。The dephosphorized hot metal is then charged into a converter. In the converter, the dephosphorized hot metal is directly decarburized by slagless blowing, and untreated hot metal is used for further heat compensation. There is a method of increasing the silicon concentration in hot metal by combining it. According to the method of combining hot metal, it is also possible to adjust the phosphorus concentration in the hot metal by changing the ratio of the amount of combined metal depending on the phosphorus concentration level required by the steel type.
以上の即く転炉滓を製銑工程へ戻して得られた溶競の中
に富化したfAをソーダ灰、生石灰等で除去することに
よって転炉滓の活用をはかり、製銑工程で多大の便益を
上げ、また脱燐、スラグがらの回収便益を上げ、しかも
製鋼では装入燐が上昇しないトータルシステムが実現さ
れる。By immediately returning the converter slag to the ironmaking process and removing the fA enriched in the resulting melt with soda ash, quicklime, etc., the converter slag is utilized, and a large amount of waste is generated in the ironmaking process. This will realize a total system that increases the benefits of dephosphorization and slag recovery, and does not increase the amount of charged phosphorus in steelmaking.
次て本発明方法の実施例について説明する。第3表は転
炉滓を製銑工程に使用して本発明方法の幼果を従来法と
比較して示したものであり、その味炉滓の組成を示して
いる。従来法例より転炉滓早3表
()−−イ立−γ1l)
(単a=4)
L1
を使用した場合i [P]が0.200%まで富化する
のく対し、本発明方法により転炉滓を使用した場合は[
P]が0.087%と低く抑えられ(転炉滓を使用しな
い場合の0.105%より低濃度に抑えられ)、本発明
方法の効果が十分確認できた。Next, examples of the method of the present invention will be described. Table 3 shows a comparison of young fruit produced by the method of the present invention using the converter slag in the ironmaking process with that of the conventional method, and shows the composition of the taste slag. Compared to the conventional method, when using L1, i [P] is enriched to 0.200%, whereas with the method of the present invention, i [P] is enriched to 0.200%. If converter slag is used, [
P] was suppressed to a low concentration of 0.087% (lower than 0.105% when converter slag was not used), and the effect of the method of the present invention was sufficiently confirmed.
第4表には使用した転炉滓の成分を示す。Table 4 shows the components of the converter slag used.
以上詳述した如く本発明による場合は、転炉滓を製銑工
程で使用することKより富化した[P]を転炉装入前の
だ銑段階で脱燐処理を施して除去し、[P]の累積を防
止するので従来殆ど廃棄されていた転炉滓の活用が可能
となり、製銑製鋼工程における大幅な原′価低減がはか
れる。As detailed above, in the case of the present invention, converter slag is used in the pig iron making process, [P] enriched from K is removed by dephosphorization treatment at the pig iron stage before charging into the converter, Since the accumulation of [P] is prevented, converter slag, which was conventionally almost discarded, can be utilized, leading to a significant cost reduction in the iron and steel manufacturing process.
図面は転炉滓を製銑原料として使用する場合のCF3が
富化する原理を示した説明図である。
1・・・高炉 2・・・転炉
特 許 出 願 人 住友金属工業株式会社代理人
弁、埋土 河 野 登 夫The drawing is an explanatory diagram showing the principle of enrichment of CF3 when converter slag is used as a raw material for iron making. 1... Blast furnace 2... Converter patent Applicant: Sumitomo Metal Industries, Ltd. Agent: Valent, Buried soil: Noboru Kono
Claims (1)
いて、転炉滓の循環使用に伴う溶銑中の燐の累積を防止
すべく、高炉から出銃された溶銑の一部又は全部に対し
て、該溶銑が転炉へ装入される迄の闇に脱燐処理を施す
ことを特徴きする製銑製鋼法。1. In the ironmaking and steelmaking process that uses converter slag as a raw material for ironmaking, in order to prevent the accumulation of phosphorus in the hot metal due to the circulation of converter slag, some or all of the hot metal discharged from the blast furnace is On the other hand, a method for making iron and steel is characterized in that a dephosphorization treatment is carried out in the dark before the hot metal is charged into a converter.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15263881A JPS5855504A (en) | 1981-09-26 | 1981-09-26 | Manufacture for pig and steel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15263881A JPS5855504A (en) | 1981-09-26 | 1981-09-26 | Manufacture for pig and steel |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5855504A true JPS5855504A (en) | 1983-04-01 |
Family
ID=15544768
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15263881A Pending JPS5855504A (en) | 1981-09-26 | 1981-09-26 | Manufacture for pig and steel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5855504A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5350900A (en) * | 1991-07-25 | 1994-09-27 | Ricoh Company, Ltd. | Temperature control having improved reliability as a result of having plurality of control means and disabling means |
US5386272A (en) * | 1990-09-28 | 1995-01-31 | Ricoh Company, Ltd. | Apparatus and method for protecting fixing unit in image forming system against damage |
-
1981
- 1981-09-26 JP JP15263881A patent/JPS5855504A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5386272A (en) * | 1990-09-28 | 1995-01-31 | Ricoh Company, Ltd. | Apparatus and method for protecting fixing unit in image forming system against damage |
US5350900A (en) * | 1991-07-25 | 1994-09-27 | Ricoh Company, Ltd. | Temperature control having improved reliability as a result of having plurality of control means and disabling means |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102264919A (en) | Method for reclaiming iron and phosphorus from steelmaking slag | |
JP2947063B2 (en) | Stainless steel manufacturing method | |
JPS5855504A (en) | Manufacture for pig and steel | |
JPH0853705A (en) | Steelmaking method | |
JP3220233B2 (en) | Refining method of ultra-low carbon / ultra low sulfur chromium-containing molten steel | |
JP3158912B2 (en) | Stainless steel refining method | |
JPH02232312A (en) | Method for producing stainless steel | |
JP3194212B2 (en) | Converter steelmaking method | |
JP3776778B2 (en) | Method of removing vanadium from molten iron | |
JP2587286B2 (en) | Steelmaking method | |
JP3233304B2 (en) | Production of low Si, low S, and high Mn hot metal with smelting reduction of Mn ore | |
JPH01147011A (en) | Steelmaking method | |
JPH10265827A (en) | Regenerating/utilizing method of refined slag in chromium-containing steel and regenerating/utilizing method of metallic component contained in the slag | |
JP3218629B2 (en) | Hot metal dephosphorization method | |
JP2802799B2 (en) | Dephosphorization and desulfurization method for crude molten stainless steel and flux used for it | |
JPS5847450B2 (en) | Method for promoting dephosphorization in oxygen top-blown steelmaking process | |
JPS6250543B2 (en) | ||
JPS63195211A (en) | Production of low phosphorus and low carbon steel with little mn loss | |
JP2755027B2 (en) | Steelmaking method | |
JP3994988B2 (en) | Method of recovering and using metal components contained in slag slag containing chromium | |
KR950013281B1 (en) | Deposphorization of ingot steel | |
JPS63176403A (en) | Low si operation method for blast furnace | |
JP2000328121A (en) | Dephosphorization method of molten iron | |
JPS63223112A (en) | Smelting and reduction method for iron ore | |
JPH01147012A (en) | Steelmaking method |