JP2003105421A - Method for removing vanadium in molten iron - Google Patents

Method for removing vanadium in molten iron

Info

Publication number
JP2003105421A
JP2003105421A JP2001294220A JP2001294220A JP2003105421A JP 2003105421 A JP2003105421 A JP 2003105421A JP 2001294220 A JP2001294220 A JP 2001294220A JP 2001294220 A JP2001294220 A JP 2001294220A JP 2003105421 A JP2003105421 A JP 2003105421A
Authority
JP
Japan
Prior art keywords
molten iron
formula
vanadium
slag
cao
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001294220A
Other languages
Japanese (ja)
Other versions
JP3776778B2 (en
Inventor
Masanobu Nakamura
正信 中村
Atsuhiko Yoshida
敦彦 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2001294220A priority Critical patent/JP3776778B2/en
Publication of JP2003105421A publication Critical patent/JP2003105421A/en
Application granted granted Critical
Publication of JP3776778B2 publication Critical patent/JP3776778B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Carbon Steel Or Casting Steel Manufacturing (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for removing vanadium in molten iron by which the vanadium concentration in the molten iron can sufficiently be reduced by effectively promoting the removal of the vanadium from the molten iron when a refining is performed in a pretreating process to the molten iron, or when blowing in a converter is performed. SOLUTION: (1) This method for removing the vanadium in the molten iron is peculiarly controlled to <=35 of CVO value=(WOR)<2> /(WCa O×WV) in the pretreating process to the molten iron, wherein, WCa O: CaO adding quantity (kg) when the refining is performed, WOR: oxygen amount (kg) except the oxygen consumed n an oxidized reaction with Si in the oxygen added amount when the refining is performed, and WV: V quantity (kg) at an initial stage in the molten iron. (2) The method for removing the vanadium in the molten iron is peculiarly performed by blowing in the converter under the condition satisfying 3.0<slag basicity (CaO/SiO2 ) in the furnace<5.0, 10%<(T.Fe) in the slag in the furnace <25%, 15 kg<slag quantity in the furnace (per 1 ton of the molten iron)<80 kg and 1600 deg.C<blowing-out temperature<1680 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、溶鉄の脱バナジウ
ム方法に関する技術分野に属し、特には、溶銑予備処理
工程における精錬の際、または、転炉における吹錬の際
に、溶鉄からの脱バナジウムを促進させ、溶鉄のバナジ
ウム濃度を低減させる方法に関する技術分野に属する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technical field relating to a method for removing vanadium from molten iron, and more particularly, to devanadium from molten iron during refining in a hot metal pretreatment step or during blowing in a converter. , And belongs to the technical field of a method for reducing the vanadium concentration of molten iron.

【0002】[0002]

【従来の技術】製鋼工程における脱りん処理や脱硫処理
等を施す溶銑予備処理工程は、溶銑のS濃度やP濃度等
を低減させ、転炉でのC濃度や温度調整を容易にするた
めのものである。高炉より出銑される溶銑に含まれるバ
ナジウム等の有価元素は、溶銑予備処理工程においてス
ラグ中へ移行し、更に転炉においても脱りん処理ととも
にスラグ中へ移行する。
2. Description of the Related Art A hot metal pretreatment process for performing a dephosphorization process, a desulfurization process, etc. in a steelmaking process reduces the S concentration and P concentration of the hot metal and facilitates the C concentration and temperature adjustment in a converter. It is a thing. Valuable elements such as vanadium contained in the hot metal tapped from the blast furnace move into the slag in the hot metal pretreatment step, and also in the converter together with the dephosphorization process into the slag.

【0003】溶銑予備処理工程や転炉工程にて溶銑より
除去されたバナジウムは製鋼スラグとして処理される
が、従来より、バナジウムを含有する溶銑または溶鋼に
おいてバナジウムを回収するための種々の方法が提案さ
れている。即ち、バナジウムを含有する溶銑を酸素条件
下、あるいは、ソーダ灰と反応させることにより、バナ
ジウム化合物を生成させ、それによって得たバナジウム
化合物をスラグ中へ移行させることにより、バナジウム
を回収する手法が提案されている。
The vanadium removed from the hot metal in the hot metal pretreatment process and the converter process is processed as steelmaking slag. Conventionally, various methods have been proposed for recovering vanadium in hot metal or molten steel containing vanadium. Has been done. That is, a method of recovering vanadium is proposed by producing a vanadium compound by reacting hot metal containing vanadium under oxygen conditions, or by reacting with soda ash, and transferring the vanadium compound thus obtained into slag. Has been done.

【0004】例えば、特開昭62-185821 号公報には、
「バナジウム及びりんを含有する溶鋼を1650℃で酸化条
件下におくことにより、バナジウムを酸化させること」
が記載され、更に、「酸化条件の形成を酸素ガスの吹き
込み又はFe2O3 の添加により行うこと」が記載されてい
る。また、特開昭55-94453号公報には、「含バナジウム
溶銑にアルカリ金属化合物を添加し、1250〜1500℃にて
酸化制御してスラグ中へバナジウムの酸化物を移行させ
ること」が記載されている。更に、特公昭58-38485号公
報には、転炉装入前の溶銑からバナジウムを可及的高効
率で回収する方法として、「脱珪処理した溶銑を脱りん
処理して溶銑のりん濃度を0.080%以下とすること、そし
て、溶銑のバナジウムを二次脱りんにて生成するスラグ
中に効率よく移行せしめ、このスラグからバナジウムを
回収すること」が記載されている。
For example, Japanese Patent Laid-Open No. 62-185821 discloses that
"To oxidize vanadium by subjecting molten steel containing vanadium and phosphorus to oxidizing conditions at 1650 ° C"
Furthermore, "the formation of the oxidizing condition is performed by blowing oxygen gas or adding Fe 2 O 3 " is described. Further, JP-A-55-94453 discloses that "adding an alkali metal compound to vanadium-containing hot metal and controlling oxidation at 1250 to 1500 ° C to migrate vanadium oxide into slag". ing. Furthermore, Japanese Patent Publication No. 58-38485 discloses a method for recovering vanadium from hot metal before charging a converter with the highest possible efficiency, "Phosphorus concentration of hot metal is dephosphorized by desiliconizing treatment. It is set to 0.080% or less, and vanadium in the hot metal is efficiently transferred to the slag produced by secondary dephosphorization, and vanadium is recovered from this slag. "

【0005】[0005]

【発明が解決しようとする課題】ところが、前記従来の
バナジウム回収技術においては、溶銑のバナジウム濃度
を効果的に低減することについては、ほとんど言及され
ていない。例えば、使用する溶銑のバナジウム濃度が目
的の製品規格の上限値を超える場合など、溶銑のバナジ
ウム濃度を低減させることを目的とした明確な条件につ
いては、提案されておらず、何も示されていない。近
年、高炉へ供給される鉱石または焼結等の原料事情の変
化に伴い、溶銑中に含有されるバナジウム濃度が高くな
る場合が発生する。その際に、従来の溶銑予備処理技
術、転炉吹錬技術では、転炉吹錬後の溶鋼のバナジウム
濃度が製品規格の上限値を超える場合が発生している。
However, in the above-mentioned conventional vanadium recovery technique, there is almost no mention of effectively reducing the vanadium concentration in the hot metal. For example, when the vanadium concentration of the hot metal to be used exceeds the upper limit of the intended product standard, no explicit condition has been proposed for reducing the vanadium concentration of the hot metal, and nothing is shown. Absent. In recent years, the concentration of vanadium contained in the hot metal may increase due to changes in the circumstances of raw materials such as ores supplied to the blast furnace or sintering. At that time, in the conventional hot metal pretreatment technology and converter blowing technology, the vanadium concentration of the molten steel after converter blowing may exceed the upper limit of the product specification.

【0006】本発明は、このような事情に着目してなさ
れたものであって、その目的は、溶銑予備処理工程にお
ける精錬の際、または、転炉における吹錬の際に、溶鉄
からの脱バナジウムを効果的に促進させ、溶鉄のバナジ
ウム濃度を充分に低減させることができる溶鉄の脱バナ
ジウム方法を提供しようとするものである。
The present invention has been made in view of such circumstances, and its purpose is to remove the molten iron from the molten iron during refining in the hot metal pretreatment step or during blowing in a converter. It is intended to provide a method for removing vanadium from molten iron, which can effectively promote vanadium and sufficiently reduce the vanadium concentration of molten iron.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するこ
とのできた本発明に係る溶鉄の脱バナジウム方法は、請
求項1〜6記載の溶鉄の脱バナジウム方法(第1発明〜
第6発明に係る溶鉄の脱バナジウム方法)であり、それ
は次のような構成としたものである。
A method for removing vanadium from molten iron according to the present invention, which has been able to achieve the above object, is a method for removing vanadium from molten iron according to claims 1 to 6 (first invention to first invention).
A method for removing vanadium from molten iron according to a sixth aspect of the invention, which has the following configuration.

【0008】即ち、請求項1記載の溶鉄の脱バナジウム
方法は、溶銑予備処理工程における精錬の際に下記式
(1) で示されるCVO値を35以下に制御することを特
徴とする溶鉄の脱バナジウム方法である(第1発明)。
ただし、下記式(1) において、WCaO :精錬時に添加す
るCaO の質量(kg)、WOR:精錬時に添加される酸素の
質量(:WO )の中で溶銑中のSiの酸化反応に消費される
酸素以外の酸素の質量(kg)、WV :溶銑中のバナジウ
ムの初期質量(kg)である。
That is, the method for removing vanadium from molten iron according to claim 1 is as follows when refining in the hot metal pretreatment step.
It is a method for removing vanadium from molten iron, characterized in that the CVO value represented by (1) is controlled to 35 or less (first invention).
However, in the following formula (1), W CaO : mass of CaO added during refining (kg), W OR : mass of oxygen added during refining (: W O ) in the oxidation reaction of Si in the hot metal Mass (kg) of oxygen other than consumed oxygen, W V : initial mass (kg) of vanadium in the hot metal.

【0009】 CVO値=(WOR)2/(WCaO ×WV ) -------- 式(1) CVO value = (W OR ) 2 / (W CaO × W V ) --------- Equation (1)

【0010】請求項2記載の溶鉄の脱バナジウム方法
は、溶銑中のSiの初期濃度に応じて前記WCaO と前記W
V との比を下記式(2) を満たす値に制御することを特徴
とする請求項1記載の溶鉄の脱バナジウム方法である
(第2発明)。ただし、下記式(2) において[Si]:溶銑
中のSiの初期濃度(質量%)である。
In the method for removing vanadium from molten iron according to a second aspect of the present invention, the W CaO and the W CaO are added depending on the initial concentration of Si in the hot metal.
The method for removing vanadium from molten iron according to claim 1, wherein the ratio with V is controlled to a value that satisfies the following formula (2) (second invention). However, in the following formula (2), [Si] is the initial concentration (mass%) of Si in the hot metal.

【0011】 15≦(WCaO /WV )/ [Si] ≦200 -------- 式(2) 15 ≦ (W CaO / W V ) / [Si] ≦ 200 -------- Equation (2)

【0012】請求項3記載の溶鉄の脱バナジウム方法
は、精錬終了後の溶銑温度を1200〜1400℃に制
御することを特徴とする請求項1又は2記載の溶鉄の脱
バナジウム方法である(第3発明)。
The method for removing vanadium from molten iron according to claim 3 is characterized in that the temperature of the hot metal after the completion of refining is controlled to 1200 to 1400 ° C (devanadium method for molten iron according to claim 1 or 2. 3 invention).

【0013】請求項4記載の溶鉄の脱バナジウム方法
は、転炉において下記式(3) 、(4) 、(5) 及び(6) を満
たす条件にて吹錬を行うことを特徴とする溶鉄の脱バナ
ジウム方法である(第4発明)。ただし、下記式(3) に
おいて、塩基度は炉内スラグでの塩基度〔:CaO(%)/
SiO2(%)〕である。下記式(4) において、T.Feは炉内
スラグでのT.Fe(:トータル鉄)である。下記式(5) に
おいて、炉内スラグ量は炉内での溶鉄1トン(t・s )
当たりのスラグ量(kg)である。
The method for removing vanadium from molten iron according to claim 4 is characterized in that blowing is carried out in a converter under conditions satisfying the following formulas (3), (4), (5) and (6). (4th invention). However, in the following formula (3), the basicity is the basicity [: CaO (%) /
SiO 2 (%)]. In the formula (4) below, T.Fe is T.Fe (: total iron) in the slag in the furnace. In formula (5) below, the amount of slag in the furnace is 1 ton (t ・ s) of molten iron in the furnace.
The amount of slag (kg).

【0014】 3.0<塩基度(CaO /SiO2)<5.0 ------------ 式(3) 10%<(T.Fe)<25% ------------------------ 式(4) 15kg/t・s <炉内スラグ量<80kg/t・s ------ 式(5) 1600℃<吹止温度<1680℃ ---------------- 式(6) 3.0 <Basicity (CaO / SiO 2 ) <5.0 ------------ Formula (3) 10% <(T.Fe) <25% ---- -------------------- Formula (4) 15kg / t ・ s <In-furnace slag amount <80kg / t ・ s ------ Formula (5) 1600 ° C <blown-out temperature <1680 ° C ---------------- Formula (6)

【0015】請求項5記載の溶鉄の脱バナジウム方法
は、下記式(7) で示される必要脱V率が50〜80%で
ある場合には、下記式(8) 、(9) 、(10)及び(11)を満た
す条件にて吹錬を行い、必要脱V率が80〜95%であ
る場合には、下記式(12)、(13)、(14)及び(15)を満たす
条件にて吹錬を行い、必要脱V率が95〜100%であ
る場合には、下記式(16)、(17)、(18)及び(19)を満たす
条件にて吹錬を行うことを特徴とする請求項4記載の溶
鉄の脱バナジウム方法である(第5発明)。ただし、下
記式(7) において、CV0は精錬前でのVの濃度(%)で
あって下記式(20)で示されるCV0の値であり、CV1は精
錬終了後での溶鉄中のVの目標濃度(%)である。下記
式(8) 〜(19)において、塩基度は炉内スラグでの塩基度
〔:CaO(%)/SiO2(%)〕、T.Feは炉内スラグでのT.
Fe(:トータル鉄)、炉内スラグ量は炉内での溶鉄1ト
ン(t・s )当たりのスラグ量(kg)である。
In the method for removing vanadium from molten iron according to claim 5, when the required V removal rate represented by the following formula (7) is 50 to 80%, the following formulas (8), (9), (10) ) And (11) are blown, and the required V removal rate is 80 to 95%, conditions (12), (13), (14) and (15) below are satisfied. If the required V removal rate is 95 to 100%, blow it under the conditions that satisfy the following equations (16), (17), (18) and (19). A method for removing vanadium from molten iron according to claim 4 (5th invention). However, in the following formula (7), C V0 is the concentration (%) of V before refining, which is the value of C V0 shown in the following formula (20), and C V1 is in the molten iron after the refining is completed. Is the target concentration (%) of V. In the following formulas (8) to (19), the basicity is the basicity in the furnace slag [: CaO (%) / SiO 2 (%)], and T.Fe is the T.
Fe (: total iron) and the amount of slag in the furnace are the amount of slag (kg) per ton (t · s) of molten iron in the furnace.

【0016】 必要脱V率=〔(CV0−CV1)/CV0〕×100(%) ---- 式(7) Required V removal rate = [(C V0 −C V1 ) / C V0 ] × 100 (%) ---- Formula (7)

【0017】 必要脱V率=50〜80%の場合 3.0<塩基度(CaO /SiO2)<5.0 ------------ 式(8) 10%<(T.Fe)<25% ------------------------ 式(9) 15kg/t・s <炉内スラグ量<80kg/t・s ------ 式(10) 1600℃<吹止温度<1680℃ ---------------- 式(11)When the required V removal rate = 50 to 80% 3.0 <Basicity (CaO / SiO 2 ) <5.0 ------------ Formula (8) 10% <( T.Fe) <25% ------------------------ Equation (9) 15 kg / t ・ s <Slag amount in furnace <80 kg / t ・s ------ Formula (10) 1600 ° C <blown temperature <1680 ° C ---------------- Formula (11)

【0018】 必要脱V率=80〜95%の場合 3.4<塩基度(CaO /SiO2)<4.5 ------------ 式(12) 12%<(T.Fe)<25% ------------------------ 式(13) 20kg/t・s <炉内スラグ量<80kg/t・s ------ 式(14) 1600℃<吹止温度<1680℃ ---------------- 式(15)When the required V removal rate = 80 to 95% 3.4 <basicity (CaO / SiO 2 ) <4.5 ------------ Formula (12) 12% <( T.Fe) <25% ------------------------ Formula (13) 20kg / t ・ s <Slag amount in furnace <80kg / t ・s ------ Formula (14) 1600 ° C <blowing temperature <1680 ° C ---------------- Formula (15)

【0019】 必要脱V率=95〜100%の場合 3.8<塩基度(CaO /SiO2)<4.2 ------------ 式(16) 15%<(T.Fe)<25% ------------------------ 式(17) 25kg/t・s <炉内スラグ量<80kg/t・s ------ 式(18) 1600℃<吹止温度<1680℃ ---------------- 式(19)When the required V removal rate = 95 to 100%, 3.8 <basicity (CaO / SiO 2 ) <4.2 ------------ Equation (16) 15% <( T.Fe) <25% ------------------------ Equation (17) 25kg / t ・ s <Slag amount in furnace <80kg / t ・s ------ Formula (18) 1600 ° C <blown temperature <1680 ° C ---------------- Formula (19)

【0020】 CV0=〔転炉に装入された物に含まれるVの全量(精錬前)/精錬終了後 の溶鉄の量〕×100(%) ---------------- 式(20)C V0 = [total amount of V contained in the material charged in the converter (before refining) / amount of molten iron after refining] × 100 (%) ----------- ----- Formula (20)

【0021】請求項6記載の溶鉄の脱バナジウム方法
は、前記吹錬をする溶鉄として、この吹錬の前に脱珪・
脱りん処理を施した溶鉄を用いることを特徴とする請求
項4又は5記載の溶鉄の脱バナジウム方法である(第6
発明)。
In the method for removing vanadium from molten iron according to claim 6, the molten iron to be blown is desiliconized before the blowing.
The method for removing vanadium from molten iron according to claim 4 or 5, characterized in that molten iron subjected to dephosphorization treatment is used.
invention).

【0022】[0022]

【発明の実施の形態】本発明は例えば次のような形態
(形態1、形態2)で実施する。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention is implemented, for example, in the following modes (modes 1 and 2).

【0023】〔形態1〕高炉より出銑された溶銑(バナ
ジウム含有)を溶銑予備処理用容器に装入した後、この
溶銑中に酸素を吹き込むと共に、CaO を含む副原料を添
加して、溶銑の予備処理(脱珪・脱りん処理)をする。
このとき、前述の式(1) で示されるCVO値を35以下
に制御する。あるいは更に前述の式(2) を満たす条件に
する。そうすると、溶銑の脱珪・脱りんと共に、溶銑の
バナジウム濃度を充分に低減させる脱バナジウムを行う
ことができる。
[Mode 1] After the hot metal (containing vanadium) tapped from the blast furnace is charged into a hot metal pretreatment container, oxygen is blown into the hot metal, and an auxiliary material containing CaO is added to the hot metal. Pretreatment (desiliconization / phosphorus removal treatment).
At this time, the CVO value represented by the above equation (1) is controlled to be 35 or less. Alternatively, a condition that satisfies the above-mentioned expression (2) is set. By doing so, it is possible to carry out desiliconization and dephosphorization of the hot metal as well as devanadium that sufficiently reduces the vanadium concentration of the hot metal.

【0024】〔形態2〕高炉より出銑された溶銑(バナ
ジウム含有)を転炉に装入した後、この溶銑中に酸素を
吹き込むと共に、CaO 及び鉄鉱石を含む副原料を添加
し、吹錬を行う。このとき、前述の式(3) 、(4) 、(5)
及び(6) を満たす条件にて吹錬を行う。あるいは更に前
述の式(8) 、(9) 、(10)及び(11)を満たす条件、また
は、式(12)、(13)、(14)及び(15)を満たす条件、あるい
は、式(16)、(17)、(18)及び(19)を満たす条件とする。
そうすると、溶銑のバナジウム濃度を充分に低減させる
脱バナジウムも行うことができる。
[Mode 2] After the hot metal (containing vanadium) tapped from the blast furnace is charged into a converter, oxygen is blown into the hot metal and an auxiliary material containing CaO and iron ore is added and blown. I do. At this time, the above equations (3), (4), (5)
And blowing is performed under the condition that (6) is satisfied. Alternatively, the conditions (8), (9), (10) and (11) above, or the conditions (12), (13), (14) and (15), or the expression ( The conditions satisfy 16), (17), (18) and (19).
Then, vanadium removal for sufficiently reducing the vanadium concentration of the hot metal can also be performed.

【0025】このような形態で本発明が実施される。The present invention is implemented in such a form.

【0026】本発明は、溶銑予備処理工程での溶鉄の脱
バナジウム方法および転炉での溶鉄の脱バナジウム方法
を開発すべく、種々の条件で実験を重ね、得られたデー
タを解析するという研究を鋭意行い、その結果、得られ
た知見に基づき完成されたものである。即ち、本発明者
らは、鋭意研究を重ねた結果、溶銑予備処理工程での条
件を特定の条件にすることにより、あるいは、転炉での
吹錬を特定の条件にすることにより、溶鉄からの脱バナ
ジウムを効果的に促進させ、溶鉄のバナジウム濃度を充
分に低減させることができることを見出し、この知見に
基づき本発明を完成させた。このようにして完成された
本発明は溶鉄の脱バナジウム方法に係わり、それは請求
項1〜6記載の溶鉄の脱バナジウム方法(第1発明〜第
6発明に係る溶鉄の脱バナジウム方法)である。
In order to develop a method for removing vanadium of molten iron in a hot metal pretreatment step and a method for removing vanadium of molten iron in a converter, the present invention carries out experiments under various conditions and analyzes the obtained data. It was completed based on the knowledge obtained as a result. That is, the inventors of the present invention, as a result of earnest studies, by adjusting the conditions in the hot metal pretreatment step to specific conditions, or by blowing in the converter to specific conditions, from molten iron It has been found that the vanadium deoxidization of can be effectively promoted and the vanadium concentration of molten iron can be sufficiently reduced, and the present invention has been completed based on this finding. The present invention thus completed relates to a method for removing vanadium from molten iron, which is the method for removing vanadium from molten iron according to claims 1 to 6 (the method for removing vanadium from molten iron according to the first invention to the sixth invention).

【0027】本発明の第1発明(請求項1)に係る溶鉄
の脱バナジウム方法によれば、溶銑予備処理工程におけ
る精錬の際に前述の式(1) で示されるCVO値を35以
下に制御することとしており、これにより、溶銑予備処
理工程において溶銑(溶鉄)からの脱バナジウムを効果
的に促進させ、溶鉄のバナジウム濃度を充分に低減させ
ることができる。なお、前記CVO値を20以下に制御
すると脱バナジウムをより一層効果的に促進させること
ができ、前記CVO値を10以下に制御すると脱バナジ
ウムを更に効果的に促進させることができる。
According to the method for removing vanadium from molten iron according to the first aspect of the present invention (claim 1), the CVO value represented by the above formula (1) is controlled to 35 or less during refining in the hot metal pretreatment step. As a result, vanadium removal from molten pig iron (molten iron) can be effectively promoted in the molten pig iron pretreatment step, and the vanadium concentration of molten iron can be sufficiently reduced. It should be noted that if the CVO value is controlled to 20 or less, the vanadium removal can be promoted more effectively, and if the CVO value is controlled to 10 or less, the vanadium removal can be promoted more effectively.

【0028】第2発明(請求項2)に係る溶鉄の脱バナ
ジウム方法では、上記第1発明での要件に加えて、溶銑
中のSiの初期濃度に応じて前述の式(2) を満たすことも
要件としており、これにより、溶銑中のSiの酸化反応に
必要な酸素量と脱バナジウムに必要な酸素量を確保する
ことができる。即ち、Siの初期濃度に合わせた最適な脱
バナジウム条件に制御させ、脱バナジウムをより一層効
果的に促進させることができる。なお、前述の式(2) で
の(WCaO /WV )/ [Si] を15〜130にした場
合、脱バナジウムを更に効果的に促進させることができ
る。
In the method for removing vanadium from molten iron according to the second aspect of the invention (claim 2), in addition to the requirements of the first aspect of the invention, the above equation (2) must be satisfied according to the initial concentration of Si in the hot metal. As a requirement, the oxygen amount necessary for the oxidation reaction of Si in the hot metal and the oxygen amount necessary for vanadium removal can be secured. That is, the vanadium removal can be controlled more effectively by controlling the optimum vanadium removal conditions according to the initial Si concentration. When (W CaO / W V ) / [Si] in the above formula (2) is set to 15 to 130, vanadium desorption can be promoted more effectively.

【0029】第3発明(請求項3)に係る溶鉄の脱バナ
ジウム方法では、上記第1発明または第2発明での要件
に加えて、精錬終了後の溶銑温度を1200〜1400
℃に制御することも要件としており、これにより、バナ
ジウムの酸化反応平衡が促進される。即ち、脱バナジウ
ム反応の効率が向上することにより、脱バナジウムをよ
り一層効果的に促進させることができる。なお、前記精
錬終了後の溶銑温度を1250〜1320℃に制御する
と、脱バナジウムを更に効果的に促進させることができ
る。
In the method for removing vanadium from molten iron according to the third invention (claim 3), in addition to the requirements of the first invention or the second invention, the hot metal temperature after refining is 1200 to 1400.
It is also a requirement to control the temperature at 0 ° C, which promotes the oxidation reaction equilibrium of vanadium. That is, by improving the efficiency of the devanadium reaction, the vanadium removal can be promoted more effectively. In addition, if the hot metal temperature after completion of the refining is controlled to 1250 to 1320 ° C., vanadium removal can be promoted more effectively.

【0030】本発明の第4発明(請求項4)に係る溶鉄
の脱バナジウム方法によれば、転炉において前述の式
(3) 、(4) 、(5) 及び(6) を満たす条件にて吹錬を行う
こととしており、これにより、転炉において溶鉄からの
脱バナジウムを効果的に促進させ、溶鉄のバナジウム濃
度を充分に低減させることができる。
According to the method for vanadium removal of molten iron according to the fourth aspect of the present invention (claim 4), the above-mentioned formula is used in the converter.
Blowing is carried out under the conditions that satisfy (3), (4), (5) and (6), which effectively promotes devanadium removal from molten iron in the converter and the vanadium concentration of molten iron. Can be sufficiently reduced.

【0031】本発明の第5発明(請求項5)に係る溶鉄
の脱バナジウム方法では、上記第4発明での要件の範囲
内の条件であって、必要な脱バナジウム率(脱V率)に
応じて定められた条件にて吹錬を行うことに特定し、こ
れにより、副原料使用量の増加や鉄歩留まりの低下等を
招くことなく、脱バナジウムを行うことができ、必要な
脱V率を得ることができる。
In the method for vanadium removal of molten iron according to the fifth aspect of the present invention (claim 5), the required vanadium removal rate (de-V removal rate) is obtained under the conditions within the requirements of the fourth invention. Therefore, it is possible to perform vanadium removal without incurring an increase in the amount of auxiliary raw materials used and a decrease in iron yield. Can be obtained.

【0032】即ち、脱バナジウム反応は酸化反応である
ため、炉内スラグの塩基度(CaO /SiO2)が低すぎると
脱V率が低下し、一方、炉内スラグの塩基度(CaO /Si
O2)が高すぎると滓化不良が生じて脱V率が低下し、副
原料使用量が増加してコストアップも招く。
That is, since the vanadium removal reaction is an oxidation reaction, if the basicity (CaO / SiO 2 ) of the slag in the furnace is too low, the V removal rate decreases, while the basicity (CaO / Si 2 ) of the slag in the furnace decreases.
If the content of O 2 ) is too high, poor slag formation occurs, the V removal rate decreases, the amount of auxiliary raw materials used increases, and the cost increases.

【0033】炉内スラグでのトータル鉄量(T.Fe)につ
いては、これが高い方が脱V率の点において有利となる
が、高すぎると鉄歩留まりの低下、Mn歩留まりの低
下、転炉耐火物の寿命低下を招く。操業上では、あまり
(T.Fe)を上昇させて過酸化にすると、スロッピングを
発生させることになる。
Regarding the total iron content (T.Fe) in the in-furnace slag, the higher it is, the more advantageous it is in terms of the V removal rate, but if it is too high, the iron yield decreases, the Mn yield decreases, and the converter furnace refractory This will shorten the life of the product. In operation, if (T.Fe) is raised too much to cause peroxide, sloping will occur.

【0034】炉内スラグ量は、多い方が脱バナジウムに
は当然有利であり、条件に応じて必要量があるが、これ
が多すぎると副原料使用量が増加してコストアップも招
き、更には、鉄歩留まりの低下も伴う。そこで、吹止時
の溶鉄中V濃度が満足できる範囲で可能な限り炉内スラ
グ量を低減することが望ましい。しかし、炉内スラグ量
を低減しすぎると、溶鋼面を覆うカバースラグがなくな
るため、転炉耐火物の寿命低下を招き、更には、スピッ
ティングが激しくなり、ランスへの地金付着等の操業上
の問題が発生すると共に、鉄歩留まりの低下を招く。
A larger amount of in-furnace slag is naturally advantageous for vanadium removal, and there is a necessary amount depending on the conditions. However, if this amount is too large, the amount of auxiliary raw material used increases and the cost rises. The iron yield is also reduced. Therefore, it is desirable to reduce the amount of in-furnace slag as much as possible within a range where the V concentration in molten iron at the time of blowing is satisfied. However, if the amount of slag in the furnace is reduced too much, the cover slag that covers the molten steel surface disappears, leading to a decrease in the life of the refractory of the converter. In addition to the above problems, the yield of iron decreases.

【0035】吹止温度は、低い方が脱バナジウムの点に
おいて有利であるが、これは鋼種や転炉以降の工程での
温度低下を考慮して決定されるものであり、大きくは制
御できない。
A lower blowout temperature is more advantageous in terms of vanadium removal, but this is determined in consideration of the type of steel and the temperature drop in the steps after the converter and cannot be largely controlled.

【0036】第5発明(請求項5)に係る溶鉄の脱バナ
ジウム方法は、以上のことを考慮したものであって、前
記の如きマイナス面が生じないように必要な脱V率に応
じて条件を定めたものである。従って、前記副原料使用
量の増加や鉄歩留まりの低下等の如きマイナス面の発生
を招くことなく、脱バナジウムを行うことができ、必要
な脱V率を得ることができる。
The method for removing vanadium from molten iron according to the fifth aspect of the invention (claim 5) takes the above into consideration, and conditions are set according to the required V removal rate so as not to cause the above-mentioned negative side. Is defined. Therefore, vanadium can be removed and the required V removal rate can be obtained without causing negative effects such as an increase in the amount of the auxiliary raw material used and a decrease in iron yield.

【0037】第6発明(請求項6)に係る溶鉄の脱バナ
ジウム方法では、上記第4発明または第5発明での要件
に加えて、吹錬をする溶鉄として該吹錬の前に脱珪・脱
りん処理を施した溶鉄を用いることも要件としており、
これにより、転炉での吹錬に際してC濃度や温度調整を
容易にすることができる。また、脱珪・脱りん処理を施
した溶鉄を用いる転炉吹錬では、脱珪・脱りん処理を殆
どする必要がないことから、通常、コストメリットを追
求するため、スラグ量の低減および(T.Fe)の低減をは
かる。これは、脱バナジウムに不利であり、従来の通常
の方法ではVの目標濃度の上限外れを招くことが多くな
る。そこで、本発明範囲に制御すれば、必要な脱V率を
得、V外れを防止することができる。
In the method for removing vanadium from molten iron according to the sixth aspect of the present invention (claim 6), in addition to the requirements of the fourth or fifth aspect of the invention, desiliconization before the blowing is performed as molten iron for blowing. It is also a requirement to use molten iron that has been dephosphorized,
This makes it possible to easily adjust the C concentration and temperature during blowing in the converter. Further, in converter blowing using molten iron that has been subjected to desiliconization / dephosphorization treatment, there is almost no need to perform desiliconization / dephosphorization treatment, so normally, in order to pursue cost merit, reduction of slag amount and ( T.Fe) is reduced. This is disadvantageous for vanadium removal, and the conventional conventional method often causes the target concentration of V to deviate from the upper limit. Therefore, if the control is performed within the range of the present invention, it is possible to obtain a necessary V-elimination ratio and prevent V deviation.

【0038】本発明において、溶銑予備処理工程におい
て精錬時に添加される酸素の質量すなわちWO とは、精
錬剤として添加される酸化鉄等の酸化物中の酸素(いわ
ゆる固酸)の量と、吹き込まれる酸素(いわゆる気酸)
の量との合計酸素量のことである。前者の固酸は脱りん
反応や脱バナジウム反応等に関与して消費され、後者の
気酸は溶銑中のSiの酸化反応に関与して消費される。
In the present invention, the mass of oxygen added during refining in the hot metal pretreatment step, that is, W O , means the amount of oxygen (so-called solid acid) in oxides such as iron oxide added as a refining agent, Oxygen blown in (so-called vapor acid)
And the total amount of oxygen. The former solid acid is consumed by participating in dephosphorization reaction and vanadium reaction, and the latter gas acid is consumed by participating in oxidation reaction of Si in hot metal.

【0039】WORは、前述のように、精錬時に添加され
る酸素の質量(:WO )の中で溶銑中のSiの酸化反応に消
費される酸素以外の酸素の質量のことである。即ち、W
OR=WO −〔Siの酸化反応に消費される酸素(気酸+固
酸)の質量〕であり、換言すれば、WORは精錬時添加の
酸素の中でもSiの酸化反応に寄与しなかった固酸+気酸
の質量である。
As described above, W OR is the mass of oxygen other than oxygen consumed in the oxidation reaction of Si in the hot metal in the mass of oxygen added during refining (: W O ). That is, W
OR = W O - a [mass of oxygen consumed in the oxidation reaction (hexane + Katasan) of Si], in other words, W OR is not contribute to the oxidation reaction of Si among oxygen addition during refining It is the mass of solid acid + gas acid.

【0040】溶鉄には、当然に溶銑が含まれるが、本発
明では溶鋼も含まれることとしている。即ち、溶銑は転
炉に装入され、転炉において通常は成分調整されて溶鋼
と化するが、この溶鋼も転炉装入時点では溶銑であるこ
とから、本発明では溶鉄として表現した。従って、本発
明に係る脱バナジウム方法は、厳密には溶銑・溶鋼の脱
バナジウム方法というべきであるかもしれないが、溶銑
の脱バナジウム方法と表現した。
Molten iron naturally includes molten iron, but in the present invention, molten steel is also included. That is, the molten iron is charged into the converter, and the components are usually adjusted in the converter to form molten steel. However, this molten steel is also the molten iron at the time of charging the converter, so it is expressed as molten iron in the present invention. Therefore, the devanadium removal method according to the present invention may be called a devanadium removal method for hot metal and molten steel in a strict sense, but it is expressed as a vanadium removal method for hot metal.

【0041】前記式(20)において、転炉に装入された物
とは、転炉に装入された溶鉄およびそれ以外の物のこと
である。この溶鉄以外の物としては、場合によって相違
するが、スクラップ、副原料、スラグ等がある。即ち、
転炉へは、溶鉄は必ず装入され、この他に、スクラッ
プ、副原料、スラグ等が装入されるが、後者のものにつ
いては全て装入されるとは限らず、装入されるものは場
合によって相違する。転炉に装入された物に含まれるV
の全量(精錬前)とは、転炉に装入された物に含まれる
Vの合計量のことである。例えば、転炉に装入された物
のそれぞれにVが含まれている場合には、それらのVの
合計量ということになる。
In the above formula (20), the material charged in the converter means the molten iron charged in the converter and the other materials. The materials other than the molten iron include scraps, auxiliary materials, slag, etc., depending on the case. That is,
Molten iron is always charged to the converter, and in addition to this, scrap, auxiliary materials, slag, etc. are charged, but not all of the latter ones are charged. Depends on the case. V contained in the material charged in the converter
The total amount (before refining) of is the total amount of V contained in the material charged in the converter. For example, when each of the materials charged in the converter contains V, it means the total amount of V.

【0042】[0042]

【実施例】本発明の実施例及び比較例を以下説明する。
尚、本発明はこの実施例に限定されるものではない。
EXAMPLES Examples and comparative examples of the present invention will be described below.
The present invention is not limited to this embodiment.

【0043】〔実施例1〕高炉より出銑された溶銑の成
分および温度を表1に示す。この溶銑90t(トン)を
転炉型溶銑予備処理用容器に装入した後、石灰、スケー
ル等の副原料を上方より装入し、酸素ランスを用いて溶
銑中に酸素を吹き込みながら、更に石灰とスケールを混
合した粉体〔石灰:56.0質量%、スケール(Fe2O3):4
4.0質量%〕をインジェクションランスから溶銑中に吹
き込んで、溶銑の予備処理(脱珪・脱りん処理)を行っ
た。尚、溶銑中のバナジウムの初期質量WV は27kgで
ある。
[Example 1] Table 1 shows the components and temperatures of the hot metal tapped from the blast furnace. After loading 90 t (tons) of this hot metal into a converter-type hot metal pretreatment container, auxiliary materials such as lime and scale are charged from above, and further oxygen is blown into the hot metal using an oxygen lance while further adding lime. And scale mixed powder (lime: 56.0% by mass, scale (Fe 2 O 3 ): 4
4.0 mass%] was blown into the hot metal from the injection lance to perform a pretreatment (desiliconization / dephosphorization treatment) of the hot metal. The initial mass W V of vanadium in the hot metal is 27 kg.

【0044】このとき、上方より装入の石灰の量を95
0kg、インジェクションランスからの粉体の吹き込み量
を1250kg、酸素ランスからの酸素の吹き込み量を4
03Nm3 とした。つまり、溶銑の脱珪のために使用さ
れた酸素量は、403Nm3となる。この気酸とスケー
ル(Fe2O3)からの固酸とを合わせると計651Nm3
なる。前記上方より装入の石灰の量と上記粉体中の石灰
の量とを合わせると計1650kgとなる。即ち、
CaO :1650kg、WO :160kg、WOR:770kg
とした。これにより、前述の式(1) で示されるCVO値
を13に制御した。なお、前述の式(2) での(WCaO
V )/ [Si] の値は191となっている。
At this time, the amount of lime charged from above is 95
0kg, the amount of powder blown from the injection lance is 1250kg, the amount of oxygen blown from the oxygen lance is 4
It was set to 03 Nm 3 . That is, the amount of oxygen used for desiliconizing the hot metal is 403 Nm 3 . The total amount of this gaseous acid and the solid acid from the scale (Fe 2 O 3 ) is 651 Nm 3 . The sum of the amount of lime charged from above and the amount of lime in the powder is 1650 kg in total. That is,
W CaO : 1650 kg, W O : 160 kg, W OR : 770 kg
And As a result, the CVO value represented by the above equation (1) was controlled to 13. Note that (W CaO /
The value of W V ) / [Si] is 191.

【0045】上記溶銑予備処理後の溶銑の成分および温
度を表2に示す。表1と表2とからわかるように、上記
溶銑予備処理により、Si、P及びVの量が大幅に減少し
ており、脱珪・脱りんと共に脱バナジウムが効果的にな
され、脱珪・脱りん率および脱V率が大きい。
Table 2 shows the components and temperatures of the hot metal after the hot metal pretreatment. As can be seen from Tables 1 and 2, the amounts of Si, P and V are greatly reduced by the hot metal pretreatment, and vanadium is effectively removed together with desiliconization and dephosphorization. High phosphorus rate and V removal rate.

【0046】〔比較例1〕高炉より出銑された溶銑の成
分および温度を表3に示す。この溶銑90tを転炉型溶
銑予備処理用容器に装入した後、石灰、スケール等の副
原料を上方より装入し、酸素ランスを用いて溶銑中に酸
素を吹き込みながら、更に石灰とスケールを混合した粉
体〔石灰:56.0質量%、スケール(Fe2O3):44.0質量
%〕をインジェクションランスから溶銑中に吹き込ん
で、溶銑の予備処理(脱珪・脱りん処理)を行った。な
お、溶銑中のバナジウムの初期質量WV は27kgであ
る。
[Comparative Example 1] Table 3 shows the components and temperature of the hot metal tapped from the blast furnace. After loading 90 tons of this hot metal into a converter-type hot metal pretreatment container, lime and auxiliary materials such as scales were charged from above, and oxygen was blown into the hot metal using an oxygen lance to further add lime and scale. The mixed powder [lime: 56.0% by mass, scale (Fe 2 O 3 ): 44.0% by mass] was blown into the hot metal from the injection lance to carry out a pretreatment (desiliconization / dephosphorization treatment) of the hot metal. The initial mass W V of vanadium in the hot metal is 27 kg.

【0047】このとき、上方より装入の石灰の量を58
0kg、インジェクションランスからの粉体の吹き込み量
を1180kg、酸素ランスからの酸素の吹き込み量を4
18Nm3 とした。つまり、溶銑の脱珪のために使用さ
れた酸素量は、418Nm3となる。この気酸とスケー
ル(Fe2O3)からの固酸とを合わせると計880Nm3
なる。前記上方より装入の石灰の量と上記粉体中の石灰
の量とを合わせると計1218kgとなる。即ち、
CaO :1218kg、WO :137kg、WOR:1120
kgとした。これにより、前述の式(1) で示されるCVO
値は38となり、この値は前記実施例1の場合のCVO
値よりも大きく、しかも本発明で規定するCVO値:3
5以下を満たしていない。なお、前述の式(2) での(W
CaO /WV )/[Si] の値は129となっている。
At this time, the amount of lime charged from above is 58
0kg, the amount of powder blown from the injection lance is 1180kg, the amount of oxygen blown from the oxygen lance is 4
It was set to 18 Nm 3 . That is, the amount of oxygen used for desiliconizing the hot metal is 418 Nm 3 . This gas acid and the solid acid from the scale (Fe 2 O 3 ) are combined to give a total of 880 Nm 3 . The sum of the amount of lime charged from above and the amount of lime in the powder gives a total of 1218 kg. That is,
W CaO : 1218 kg, W O : 137 kg, W OR : 1120
It was set to kg. As a result, the CVO expressed by the above equation (1) is obtained.
The value is 38, which is the CVO in the case of the first embodiment.
CVO value larger than the above value and defined by the present invention: 3
It does not satisfy 5 or less. In addition, (W in the above equation (2)
The value of CaO / W V) / [Si ] has become a 129.

【0048】上記溶銑予備処理後の溶銑の成分および温
度を表4に示す。表3と表4とからわかるように、上記
溶銑予備処理により、脱珪・脱りんは前記実施例1の場
合と同様に効果的になされているが、脱バナジウムにつ
いては前記実施例1の場合に比較して劣っており、Vの
量の減少の程度が小さく、脱V率が小さい。
Table 4 shows the components and temperatures of the hot metal after the hot metal pretreatment. As can be seen from Tables 3 and 4, desiliconization and dephosphorization are effectively performed by the above-described hot metal pretreatment as in the case of Example 1, but devanadium is removed in the case of Example 1 above. It is inferior to the above, the degree of decrease in the amount of V is small, and the V removal rate is small.

【0049】〔実験例1〕前述の式(1) で示されるCV
O値と実験により求められた脱V率:ΔVとの関係につ
いての一例を図1に示す。この脱V率(ΔV)は、ΔV
(%×103 )=100×103 ×〔(処理前の溶銑中
V濃度)−(処理後の溶銑中V濃度)〕/(処理前の溶
銑中V濃度)である。このデータは少しバラツキがある
ものの、CVO値により脱V率(ΔV)を調整し得るこ
とがわかる。特にCVO値を10以下にした場合、脱V
率が大きく、効果的に脱Vが促進されることがわかる。
[Experimental Example 1] CV represented by the above equation (1)
FIG. 1 shows an example of the relationship between the O value and the V removal rate ΔV obtained by the experiment. This V removal rate (ΔV) is ΔV
(% × 10 3 ) = 100 × 10 3 × [(V concentration in hot metal before treatment)-(V concentration in hot metal after treatment)] / (V concentration in hot metal before treatment). Although this data has some variations, it can be seen that the V removal rate (ΔV) can be adjusted by the CVO value. Especially when the CVO value is 10 or less,
It can be seen that the rate is large and the V removal is effectively promoted.

【0050】この図1において、実施例のデータは前記
実施例1の場合の結果を示し、比較例のデータは前記比
較例1の場合の結果を示すものである。実施例1の場合
は比較例1の場合よりもCVO値が小さく、それに起因
して脱V率に優れていることが、図1からもわかる。
In FIG. 1, the data of the example shows the result in the case of the above-mentioned example 1, and the data of the comparative example shows the result in the case of the above-mentioned comparative example 1. It can be seen from FIG. 1 that the CVO value in the case of Example 1 is smaller than that in Comparative Example 1 and the resulting deV removal rate is excellent.

【0051】〔実施例2、比較例2〕高炉より出銑され
た溶銑を転炉に装入した後、この溶銑中に酸素を吹き込
むとともに、生石灰、蛍石、鉄鉱石および軽ドロを含む
副原料を添加し、吹錬を行った。
Example 2 and Comparative Example 2 After the hot metal tapped from the blast furnace was charged into the converter, oxygen was blown into the hot metal, and by-products containing quick lime, fluorite, iron ore and light dross were added. Raw materials were added and blowing was performed.

【0052】このとき、転炉としては上底吹き型の24
0t転炉を用いた。転炉への装入溶銑のV含有量すなわ
ちVの初期濃度(CV0)は、0.005〜0.060質
量%である。転炉への装入溶銑温度は、1250〜14
00℃である。吹錬の条件については、上吹き酸素原単
位:42〜52Nm3/t、上吹き酸素供給速度:2.0
〜4.0Nm3/t・s 、炉内スラグでの塩基度(CaO(%)
/SiO2(%)):2.0〜6.0、炉内スラグでのトータル
鉄量(T.Fe):5〜35%、炉内スラグ量:0〜100
kg/t・s 、吹止温度:1580〜1720℃とした。
At this time, as the converter, a top-bottom blow type 24
A 0t converter was used. The V content of the molten pig iron charged to the converter, that is, the initial concentration of V (C V0 ) is 0.005 to 0.060 mass%. The temperature of the molten iron charged into the converter is 1250 to 14
It is 00 ° C. Regarding blowing conditions, the basic unit of top-blown oxygen: 42 to 52 Nm 3 / t, the upper-blown oxygen supply rate: 2.0
~ 4.0 Nm 3 / t ・ s, basicity in furnace slag (CaO (%)
/ SiO 2 (%): 2.0 to 6.0, total iron content (T.Fe) in the furnace slag: 5 to 35%, furnace slag content: 0 to 100
kg / t · s, blowing stop temperature: 1580 to 1720 ° C.

【0053】副原料の原単位については、生石灰:0〜
30kg/t、蛍石:0〜4kg/t、鉄鉱石:7〜25kg
/t、軽ドロ:0〜20kg/tである。
As for the basic unit of the auxiliary raw material, quick lime: 0
30kg / t, fluorite: 0-4kg / t, iron ore: 7-25kg
/ T, light drop: 0 to 20 kg / t.

【0054】上記の吹錬の結果を、以下説明する。な
お、以下の脱バナジウム率(脱V率)は、下記式(22)で
示される脱V率(%)である。
The results of the above blowing will be described below. In addition, the following vanadium removal rate (V removal rate) is the V removal rate (%) shown by the following formula (22).

【0055】 脱V率=〔(CV0−CVX)/CV0〕×100(%) ---- 式(22)V removal rate = [(C V0 −C VX ) / C V0 ] × 100 (%) ---- Formula (22)

【0056】ただし、上記式(22)において、CV0は精錬
前でのVの濃度(%)であって下記式(23)で示されるC
V0の値であり、CVXは精錬終了後での溶鉄中のVの濃度
(%)である。
However, in the above formula (22), C V0 is the concentration (%) of V before refining, and C represented by the following formula (23)
It is the value of V0 , and C VX is the concentration (%) of V in the molten iron after the completion of refining.

【0057】 CV0=〔転炉に装入された物に含まれるVの全量(精錬前)/精錬終了後 の溶鉄の量〕×100(%) ---------------- 式(23)C V0 = [total amount of V contained in the material charged in the converter (before refining) / amount of molten iron after refining] × 100 (%) ----------- ----- Formula (23)

【0058】上記吹錬の結果として、先ず、炉内スラグ
の塩基度(CaO(%)/SiO2(%))(以下C/Sともいう)と
脱バナジウム率との関係を図2に示す。C/Sが低いと
脱バナジウム率(脱V率)が小さく、C/Sが高くなる
と脱V率が大きくなるが、C/Sが高くなりすぎると脱
V率が小さくなり、C/S:3.0〜5.0の場合に脱
V率が高く、良好な脱V率が得られることがわかる。
As a result of the above-mentioned blowing, first, the relationship between the basicity (CaO (%) / SiO 2 (%)) (hereinafter also referred to as C / S) of the in-furnace slag and the vanadium removal rate is shown in FIG. . When C / S is low, the vanadium removal rate (V removal rate) is small, and when C / S is high, the V removal rate is large, but when C / S is too high, the V removal rate is small, and C / S: It can be seen that in the case of 3.0 to 5.0, the V removal rate is high and a good V removal rate can be obtained.

【0059】炉内スラグの(T.Fe)と脱バナジウム率と
の関係を図3に示す。(T.Fe)が低いと脱V率が小さ
く、(T.Fe)が高くなると脱V率が大きくなり、(T.F
e):10%以上で良好な脱V率が得られている。しか
し、(T.Fe)が25%超になると鉄歩留まりの低下等を
来す。従って、(T.Fe)は10〜25%とするのがよい
ことがわかる。
FIG. 3 shows the relationship between the (T.Fe) of the in-furnace slag and the vanadium removal rate. When (T.Fe) is low, the V removal rate is low, and when (T.Fe) is high, the V removal rate is high, and (TF
e): A good V removal rate is obtained at 10% or more. However, if (T.Fe) exceeds 25%, the yield of iron decreases. Therefore, it is understood that (T.Fe) should be 10 to 25%.

【0060】炉内スラグ量と脱バナジウム率との関係を
図4に示す。炉内スラグ量が少ないと脱V率が小さく、
炉内スラグ量が多くなると脱V率が大きくなり、炉内ス
ラグ量:15kg/t・s 以上で良好な脱V率が得られて
いる。しかし、炉内スラグ量が80kg/t・s 超になる
と副原料使用量の増加や鉄歩留まりの低下等を招く。従
って、炉内スラグ量は15〜80kg/t・s とするのが
よいことがわかる。
FIG. 4 shows the relationship between the amount of slag in the furnace and the vanadium removal rate. If the amount of slag in the furnace is small, the V removal rate is small,
When the amount of slag in the furnace increases, the V removal rate increases, and when the amount of slag in the furnace: 15 kg / t · s or more, a good V removal rate is obtained. However, if the amount of slag in the furnace exceeds 80 kg / t · s, the amount of auxiliary raw materials used increases and the iron yield decreases. Therefore, it is understood that the amount of slag in the furnace should be 15 to 80 kg / t · s.

【0061】吹止温度と脱バナジウム率との関係を図5
に示す。吹止温度は脱V率に大きな影響を及ぼさない
が、吹止温度を1680℃超にすると脱V率が低下して
くることがわかる。また、吹止温度を1680℃超にす
ると、耐火物寿命の低下等を招く。一方、吹止温度を1
600℃以下にすると、転炉吹錬の適用可能な鋼種が制
約を受けること等の支障がある。従って、吹止温度は1
600〜1680℃とするのがよいことがわかる。
FIG. 5 shows the relationship between the blowout temperature and the vanadium removal rate.
Shown in. It can be seen that the blowout temperature does not significantly affect the V removal rate, but the V removal rate decreases when the blowout temperature exceeds 1680 ° C. Further, if the blowing stop temperature exceeds 1680 ° C., the life of the refractory material is shortened. On the other hand, set the blowout temperature to 1
If the temperature is 600 ° C. or lower, there are problems such as restrictions on the steel types to which converter blowing can be applied. Therefore, the blowout temperature is 1
It is understood that the temperature is preferably 600 to 1680 ° C.

【0062】上記吹錬の結果の中、本発明の要件を満た
す条件で転炉吹錬した本発明の実施例(本発明方法)の
場合と、本発明の要件を満たさない条件で転炉吹錬した
比較例(従来技術)の場合とについて、転炉への溶銑装
入時のV含有量(精錬前のV濃度、すなわち、前記式(2
3)で示されるV濃度:CV0)および転炉吹止後のV濃度
(精錬終了後での溶鉄中のVの濃度:CVX)を、図6に
示す。本発明の実施例の場合は、比較例の場合に比較
し、精錬前のVの濃度(CV0)が高いが、吹錬の経過時
間に伴うV濃度の減少の速度が大きく、脱V率が大き
く、転炉吹止時のV濃度(CVX)が極めて低いことがわ
かる。比較例の場合、V濃度の規格上限値:0.006
質量%を超えているが、本発明の実施例の場合は、転炉
吹止時のV濃度(CVX)が規格上限値:0.006質量
%よりも極めて低く、V濃度の規格を充分に満たしてい
る。
Among the results of the above blowing, the case of the example of the present invention (the method of the present invention) in which the conditions of the present invention are satisfied and the conditions of the example in which the conditions of the present invention are not satisfied are used. In the case of the smelted comparative example (prior art), the V content at the time of charging the hot metal into the converter (the V concentration before refining, that is, the above formula (2
The V concentration shown in 3): C V0 ) and the V concentration after blowing off the converter (concentration of V in molten iron after the end of refining: C VX ) are shown in FIG. In the case of the embodiment of the present invention, the V concentration before refining (C V0 ) is higher than in the case of the comparative example, but the rate of decrease of the V concentration with the elapsed time of blowing is large, and the V removal rate is high. And the V concentration (C VX ) at the time of blowing off the converter is extremely low. In the case of the comparative example, the standard upper limit value of V concentration: 0.006
However, in the case of the examples of the present invention, the V concentration (C VX ) at the time of blowing off the converter is extremely lower than the standard upper limit value: 0.006 mass%, and the V concentration standard is sufficiently satisfied. Meet

【0063】[0063]

【表1】 [Table 1]

【0064】[0064]

【表2】 [Table 2]

【0065】[0065]

【表3】 [Table 3]

【0066】[0066]

【表4】 [Table 4]

【0067】[0067]

【発明の効果】本発明に係る溶鉄の脱バナジウム方法に
よれば、溶銑予備処理工程における精錬の際に溶鉄から
の脱バナジウムを効果的に促進させ、溶鉄のバナジウム
濃度を充分に低減させることができるようになる。ま
た、転炉における吹錬の際に溶鉄からの脱バナジウムを
効果的に促進させ、溶鉄のバナジウム濃度を充分に低減
させることができるようになる。
INDUSTRIAL APPLICABILITY According to the method for vanadium removal of molten iron according to the present invention, the vanadium concentration of molten iron can be sufficiently reduced by effectively promoting the removal of vanadium from molten iron during refining in the hot metal pretreatment process. become able to. Further, it becomes possible to effectively promote vanadium removal from molten iron at the time of blowing in the converter, and to sufficiently reduce the vanadium concentration of molten iron.

【図面の簡単な説明】[Brief description of drawings]

【図1】 実験例1に係るCVOの値と脱V率のΔVの
値との関係を示す図である。
FIG. 1 is a diagram showing a relationship between a CVO value and a ΔV value of a V removal rate according to Experimental Example 1.

【図2】 実施例2及び比較例2に係るスラグの塩基度
のC/Sと脱バナジウム率との関係を示す図である。
FIG. 2 is a diagram showing a relationship between C / S of basicity of slag and a vanadium removal rate according to Example 2 and Comparative Example 2.

【図3】 実施例2及び比較例2に係るスラグの(T.F
e)と脱バナジウム率との関係を示す図である。
FIG. 3 shows (TF of slag according to Example 2 and Comparative Example 2).
It is a figure which shows the relationship between e) and a vanadium removal rate.

【図4】 実施例2及び比較例2に係る炉内スラグ量と
脱バナジウム率との関係を示す図である。
FIG. 4 is a diagram showing a relationship between an in-reactor slag amount and a vanadium removal rate according to Example 2 and Comparative Example 2.

【図5】 実施例2及び比較例2に係る転炉吹止温度と
脱バナジウム率との関係を示す図である。
FIG. 5 is a graph showing a relationship between a converter blowing temperature and a vanadium removal rate according to Example 2 and Comparative Example 2.

【図6】 本発明方法による場合および従来技術による
場合についての溶銑装入の時点および吹止の時点での
[V] (即ち、V濃度)を示す図である。
FIG. 6 at the time of hot metal charging and at the time of blowing stop according to the method of the invention and according to the prior art
It is a figure which shows [V] (namely, V density).

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 4K014 AA00 AB03 AC16 4K070 AB00 AB11 AB13 AB14 AB18 AC02 AC14 AC15 BA00 BC00 BC01 BC02 BC07 BD02 BD09 BD10 BD12 BD18 EA02 EA03 EA07 EA10    ─────────────────────────────────────────────────── ─── Continued front page    F-term (reference) 4K014 AA00 AB03 AC16                 4K070 AB00 AB11 AB13 AB14 AB18                       AC02 AC14 AC15 BA00 BC00                       BC01 BC02 BC07 BD02 BD09                       BD10 BD12 BD18 EA02 EA03                       EA07 EA10

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 溶銑予備処理工程における精錬の際に下
記式(1) で示されるCVO値を35以下に制御すること
を特徴とする溶鉄の脱バナジウム方法。 CVO値=(WOR)2/(WCaO ×WV ) -------- 式(1) ただし、上記式(1) において、WCaO :精錬時に添加す
るCaO の質量(kg)、WOR:精錬時に添加される酸素の
質量(:WO )の中で溶銑中のSiの酸化反応に消費される
酸素以外の酸素の質量(kg)、WV :溶銑中のバナジウ
ムの初期質量(kg)である。
1. A method for removing vanadium from molten iron, wherein the CVO value represented by the following formula (1) is controlled to 35 or less during refining in the hot metal pretreatment step. CVO value = (W OR ) 2 / (W CaO × W V ) -------- Formula (1) However, in the above formula (1), W CaO : Mass of CaO added during refining (kg) , W OR : Mass of oxygen other than oxygen consumed for oxidation reaction of Si in hot metal in mass of oxygen added during refining (: W O ), W V : Initial vanadium content in hot metal Mass (kg).
【請求項2】 溶銑中のSiの初期濃度に応じて前記W
CaO と前記WV との比を下記式(2) を満たす値に制御す
ることを特徴とする請求項1記載の溶鉄の脱バナジウム
方法。 15≦(WCaO /WV )/ [Si] ≦200 -------- 式(2) ただし、上記式(2) において[Si]:溶銑中のSiの初期濃
度(質量%)である。
2. The W according to the initial concentration of Si in the hot metal
2. The vanadium removal method for molten iron according to claim 1, wherein the ratio of CaO and W V is controlled to a value that satisfies the following formula (2). 15 ≦ (W CaO / W V ) / [Si] ≦ 200 -------- Equation (2) However, in the above equation (2), [Si]: initial concentration of Si in the hot metal (mass%) Is.
【請求項3】 精錬終了後の溶銑温度を1200〜14
00℃に制御することを特徴とする請求項1又は2記載
の溶鉄の脱バナジウム方法。
3. The hot metal temperature after the refining is 1200 to 14
The method for removing vanadium from molten iron according to claim 1 or 2, wherein the temperature is controlled to 00 ° C.
【請求項4】 転炉において下記式(3) 、(4) 、(5) 及
び(6) を満たす条件にて吹錬を行うことを特徴とする溶
鉄の脱バナジウム方法。 3.0<塩基度(CaO /SiO2)<5.0 ------------ 式(3) 10%<(T.Fe)<25% ------------------------ 式(4) 15kg/t・s <炉内スラグ量<80kg/t・s ------ 式(5) 1600℃<吹止温度<1680℃ ---------------- 式(6) ただし、上記式(3) において、塩基度は炉内スラグでの
塩基度〔:CaO(%)/SiO2(%)〕である。上記式(4)
において、T.Feは炉内スラグでのT.Fe(:トータル鉄)
である。上記式(5) において、炉内スラグ量は炉内での
溶鉄1トン(t・s )当たりのスラグ量(kg)である。
4. A method for removing vanadium from molten iron, which comprises performing blowing in a converter under conditions satisfying the following formulas (3), (4), (5) and (6). 3.0 <basicity (CaO / SiO 2) <5.0 ------------ formula (3) 10% <(T.Fe ) <25% ------- ----------------- Equation (4) 15 kg / t · s <In-furnace slag amount <80 kg / t · s ------ Equation (5) 1600 ° C < Blown temperature <1680 ° C ---------------- Formula (6) However, in the above formula (3), the basicity is the basicity [: CaO (% ) / SiO 2 (%)]. Equation (4)
At, T.Fe is T.Fe in the furnace slag (: total iron)
Is. In the above formula (5), the amount of slag in the furnace is the amount of slag (kg) per ton (t · s) of molten iron in the furnace.
【請求項5】 下記式(7) で示される必要脱V率が50
〜80%である場合には、下記式(8) 、(9) 、(10)及び
(11)を満たす条件にて吹錬を行い、必要脱V率が80〜
95%である場合には、下記式(12)、(13)、(14)及び(1
5)を満たす条件にて吹錬を行い、必要脱V率が95〜1
00%である場合には、下記式(16)、(17)、(18)及び(1
9)を満たす条件にて吹錬を行うことを特徴とする請求項
4記載の溶鉄の脱バナジウム方法。 必要脱V率=〔(CV0−CV1)/CV0〕×100(%) ---- 式(7) 必要脱V率=50〜80%の場合 3.0<塩基度(CaO /SiO2)<5.0 ------------ 式(8) 10%<(T.Fe)<25% ------------------------ 式(9) 15kg/t・s <炉内スラグ量<80kg/t・s ------ 式(10) 1600℃<吹止温度<1680℃ ---------------- 式(11) 必要脱V率=80〜95%の場合 3.4<塩基度(CaO /SiO2)<4.5 ------------ 式(12) 12%<(T.Fe)<25% ------------------------ 式(13) 20kg/t・s <炉内スラグ量<80kg/t・s ------ 式(14) 1600℃<吹止温度<1680℃ ---------------- 式(15) 必要脱V率=95〜100%の場合 3.8<塩基度(CaO /SiO2)<4.2 ------------ 式(16) 15%<(T.Fe)<25% ------------------------ 式(17) 25kg/t・s <炉内スラグ量<80kg/t・s ------ 式(18) 1600℃<吹止温度<1680℃ ---------------- 式(19) ただし、上記式(7) において、CV0は精錬前でのVの濃
度(%)であって下記式(20)で示されるCV0の値であ
り、CV1は精錬終了後での溶鉄中のVの目標濃度(%)
である。上記式(8) 〜(19)において、塩基度は炉内スラ
グでの塩基度〔:CaO(%)/SiO2(%)〕、T.Feは炉内
スラグでのT.Fe(:トータル鉄)、炉内スラグ量は炉内
での溶鉄1トン(t・s )当たりのスラグ量(kg)であ
る。 CV0=〔転炉に装入された物に含まれるVの全量(精錬前)/精錬終了後 の溶鉄の量〕×100(%) ---------------- 式(20)
5. The required V removal rate represented by the following formula (7) is 50:
In the case of 80%, the following formulas (8), (9), (10) and
Blowing under conditions that satisfy (11), the required V removal rate is 80-
In the case of 95%, the following formulas (12), (13), (14) and (1
Blowing is performed under the conditions that satisfy 5), and the required V removal rate is 95-1.
When it is 00%, the following formulas (16), (17), (18) and (1
The method for removing vanadium from molten iron according to claim 4, wherein the blowing is performed under a condition that satisfies 9). Required de-V ratio = [(C V0 −C V1 ) / C V0 ] × 100 (%) ---- Formula (7) When required de-V ratio = 50 to 80% 3.0 <basicity (CaO / SiO 2 ) <5.0 ------------ Formula (8) 10% <(T.Fe) <25% ---------------- -------- Formula (9) 15kg / t ・ s <Furnace slag amount <80kg / t ・ s ------ Formula (10) 1600 ℃ <Blowout temperature <1680 ℃ --- ------------- case of formula (11) requires removal V rate = 80% to 95% 3.4 <basicity (CaO / SiO 2) <4.5 ------ ------ Formula (12) 12% <(T.Fe) <25% ------------------------ Formula (13) 20kg / T ・ s <amount of slag in the furnace <80 kg / t ・ s ------ Formula (14) 1600 ° C <blowing temperature <1680 ° C ---------------- Formula (15) When the required V removal rate = 95 to 100% 3.8 <Basicity (CaO / SiO 2 ) <4.2 ------------ Formula (16) 15% < (T.Fe) <25% ------------------------ Equation (17) 25kg / t ・ s <amount of slag in the furnace < 80 kg / t · s ------ Formula (18) 1600 ° C <blown-out temperature <1680 ° C ---------------- Formula (19) However, the above formula (7 ), C V0 is the concentration (%) of V before refining and is the value of C V0 represented by the following formula (20), and C V1 is the target concentration of V in molten iron after the refining is finished ( %)
Is. In the above formulas (8) to (19), the basicity is the basicity in the furnace slag [: CaO (%) / SiO 2 (%)], and T.Fe is the T.Fe (: total in the furnace slag. Iron) and the amount of slag in the furnace are the amount of slag (kg) per ton (t · s) of molten iron in the furnace. C V0 = [total amount of V contained in the material charged in the converter (before refining) / amount of molten iron after finishing refining] × 100 (%) -------------- -Formula (20)
【請求項6】 前記吹錬をする溶鉄として、この吹錬の
前に脱珪・脱りん処理を施した溶鉄を用いることを特徴
とする請求項4又は5記載の溶鉄の脱バナジウム方法。
6. The method for removing vanadium from molten iron according to claim 4, wherein the molten iron to be blown is a molten iron which has been subjected to desiliconization / phosphorus removal treatment before the blowing.
JP2001294220A 2001-09-26 2001-09-26 Method of removing vanadium from molten iron Expired - Fee Related JP3776778B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001294220A JP3776778B2 (en) 2001-09-26 2001-09-26 Method of removing vanadium from molten iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001294220A JP3776778B2 (en) 2001-09-26 2001-09-26 Method of removing vanadium from molten iron

Publications (2)

Publication Number Publication Date
JP2003105421A true JP2003105421A (en) 2003-04-09
JP3776778B2 JP3776778B2 (en) 2006-05-17

Family

ID=19115866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001294220A Expired - Fee Related JP3776778B2 (en) 2001-09-26 2001-09-26 Method of removing vanadium from molten iron

Country Status (1)

Country Link
JP (1) JP3776778B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010514942A (en) * 2007-01-04 2010-05-06 エスエムエス・ジーマーク・アクチエンゲゼルシャフト Method and equipment for producing steel
CN114657324A (en) * 2022-03-29 2022-06-24 湖州盛特隆金属制品有限公司 V removal method for stainless steel furnace external refining

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103194565B (en) * 2013-04-28 2014-12-31 攀钢集团攀枝花钢铁研究院有限公司 Method for synchronously dephosphorization and vanadium extraction of vanadium-containing molten iron

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010514942A (en) * 2007-01-04 2010-05-06 エスエムエス・ジーマーク・アクチエンゲゼルシャフト Method and equipment for producing steel
CN114657324A (en) * 2022-03-29 2022-06-24 湖州盛特隆金属制品有限公司 V removal method for stainless steel furnace external refining

Also Published As

Publication number Publication date
JP3776778B2 (en) 2006-05-17

Similar Documents

Publication Publication Date Title
JP6773131B2 (en) Pretreatment method for hot metal and manufacturing method for ultra-low phosphorus steel
JP2003105421A (en) Method for removing vanadium in molten iron
JP2947063B2 (en) Stainless steel manufacturing method
KR100946128B1 (en) Method for Refining Molten Steel Using Converter
JPH10237526A (en) Dephosphorization of hot metal
JP2002105526A (en) Method for dephosphorizing molten iron generating little non-slagging lime
JPH07179920A (en) Production of molten steel
JP4461495B2 (en) Dephosphorization method of hot metal
JP2607329B2 (en) Hot metal dephosphorization method
JP3158912B2 (en) Stainless steel refining method
JP3735211B2 (en) Converter refining method for adjusting the silicon content
JP4411934B2 (en) Method for producing low phosphorus hot metal
JP2607328B2 (en) Hot metal dephosphorization method
JP3063537B2 (en) Stainless steel manufacturing method
JPH0967608A (en) Production of stainless steel
JPH10219330A (en) Refining method into stainless steel
JP2000328121A (en) Dephosphorization method of molten iron
JP2882236B2 (en) Stainless steel manufacturing method
JPS5855504A (en) Manufacture for pig and steel
JPH0762413A (en) Production of stainless steel
JPS63223112A (en) Smelting and reduction method for iron ore
JP2002129220A (en) Method for dephosphorizing molten iron with high reaction efficiency
KR100264996B1 (en) The method of converter refining used dephosphorizing molten metal
CN115989324A (en) Method for producing low-phosphorus iron liquid
JP2003253317A (en) Method for manufacturing molten steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060223

R150 Certificate of patent or registration of utility model

Ref document number: 3776778

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100303

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100303

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110303

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110303

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120303

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120303

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130303

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140303

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees