JP3776778B2 - Method of removing vanadium from molten iron - Google Patents

Method of removing vanadium from molten iron Download PDF

Info

Publication number
JP3776778B2
JP3776778B2 JP2001294220A JP2001294220A JP3776778B2 JP 3776778 B2 JP3776778 B2 JP 3776778B2 JP 2001294220 A JP2001294220 A JP 2001294220A JP 2001294220 A JP2001294220 A JP 2001294220A JP 3776778 B2 JP3776778 B2 JP 3776778B2
Authority
JP
Japan
Prior art keywords
formula
molten iron
vanadium
amount
blowing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001294220A
Other languages
Japanese (ja)
Other versions
JP2003105421A (en
Inventor
正信 中村
敦彦 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2001294220A priority Critical patent/JP3776778B2/en
Publication of JP2003105421A publication Critical patent/JP2003105421A/en
Application granted granted Critical
Publication of JP3776778B2 publication Critical patent/JP3776778B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、溶鉄の脱バナジウム方法に関する技術分野に属し、特には、転炉における吹錬の際に、溶鉄からの脱バナジウムを促進させ、溶鉄のバナジウム濃度を低減させる方法に関する技術分野に属する。
【0002】
【従来の技術】
製鋼工程における脱りん処理や脱硫処理等を施す溶銑予備処理工程は、溶銑のS濃度やP濃度等を低減させ、転炉でのC濃度や温度調整を容易にするためのものである。高炉より出銑される溶銑に含まれるバナジウム等の有価元素は、溶銑予備処理工程においてスラグ中へ移行し、更に転炉においても脱りん処理とともにスラグ中へ移行する。
【0003】
溶銑予備処理工程や転炉工程にて溶銑より除去されたバナジウムは製鋼スラグとして処理されるが、従来より、バナジウムを含有する溶銑または溶鋼においてバナジウムを回収するための種々の方法が提案されている。即ち、バナジウムを含有する溶銑を酸素条件下、あるいは、ソーダ灰と反応させることにより、バナジウム化合物を生成させ、それによって得たバナジウム化合物をスラグ中へ移行させることにより、バナジウムを回収する手法が提案されている。
【0004】
例えば、特開昭62-185821 号公報には、「バナジウム及びりんを含有する溶鋼を1650℃で酸化条件下におくことにより、バナジウムを酸化させること」が記載され、更に、「酸化条件の形成を酸素ガスの吹き込み又はFe2O3 の添加により行うこと」が記載されている。また、特開昭55-94453号公報には、「含バナジウム溶銑にアルカリ金属化合物を添加し、1250〜1500℃にて酸化制御してスラグ中へバナジウムの酸化物を移行させること」が記載されている。更に、特公昭58-38485号公報には、転炉装入前の溶銑からバナジウムを可及的高効率で回収する方法として、「脱珪処理した溶銑を脱りん処理して溶銑のりん濃度を0.080%以下とすること、そして、溶銑のバナジウムを二次脱りんにて生成するスラグ中に効率よく移行せしめ、このスラグからバナジウムを回収すること」が記載されている。
【0005】
【発明が解決しようとする課題】
ところが、前記従来のバナジウム回収技術においては、溶銑のバナジウム濃度を効果的に低減することについては、ほとんど言及されていない。例えば、使用する溶銑のバナジウム濃度が目的の製品規格の上限値を超える場合など、溶銑のバナジウム濃度を低減させることを目的とした明確な条件については、提案されておらず、何も示されていない。近年、高炉へ供給される鉱石または焼結等の原料事情の変化に伴い、溶銑中に含有されるバナジウム濃度が高くなる場合が発生する。その際に、従来の溶銑予備処理技術、転炉吹錬技術では、転炉吹錬後の溶鋼のバナジウム濃度が製品規格の上限値を超える場合が発生している。
【0006】
本発明は、このような事情に着目してなされたものであって、その目的は、転炉における吹錬の際に、溶鉄からの脱バナジウムを効果的に促進させ、溶鉄のバナジウム濃度を充分に低減させることができる溶鉄の脱バナジウム方法を提供しようとするものである。
【0007】
【課題を解決するための手段】
上記の目的を達成することのできた本発明に係る溶鉄の脱バナジウム方法は、請求項1〜記載の溶鉄の脱バナジウム方法(第1発明〜第発明に係る溶鉄の脱バナジウム方法)であり、それは次のような構成としたものである。
【0008】
【0009】
【0010】
【0011】
【0012】
【0013】
請求項記載の溶鉄の脱バナジウム方法は、転炉において下記式(3) 、(4) 、(5) 及び(6) を満たす条件にて吹錬を行うことを特徴とする溶鉄の脱バナジウム方法である(第発明)。ただし、下記式(3) において、塩基度は炉内スラグでの塩基度〔:CaO(%)/SiO2(%)〕である。下記式(4) において、T.Feは炉内スラグでのT.Fe(:トータル鉄)である。下記式(5) において、炉内スラグ量は炉内での溶鉄1トン(t・s )当たりのスラグ量(kg)である。
【0014】
3.0<塩基度(CaO /SiO2)<5.0 ------------ 式(3)
10%<(T.Fe)<25% ------------------------ 式(4)
15kg/t・s <炉内スラグ量<80kg/t・s ------ 式(5)
1600℃<吹止温度<1680℃ ---------------- 式(6)
【0015】
請求項記載の溶鉄の脱バナジウム方法は、下記式(7) で示される必要脱V率が50〜80%である場合には、下記式(8) 、(9) 、(10)及び(11)を満たす条件にて吹錬を行い、必要脱V率が80〜95%である場合には、下記式(12)、(13)、(14)及び(15)を満たす条件にて吹錬を行い、必要脱V率が95〜100%である場合には、下記式(16)、(17)、(18)及び(19)を満たす条件にて吹錬を行うことを特徴とする請求項記載の溶鉄の脱バナジウム方法である(第発明)。ただし、下記式(7) において、CV0は精錬前でのVの濃度(%)であって下記式(20)で示されるCV0の値であり、CV1は精錬終了後での溶鉄中のVの目標濃度(%)である。下記式(8) 〜(19)において、塩基度は炉内スラグでの塩基度〔:CaO(%)/SiO2(%)〕、T.Feは炉内スラグでのT.Fe(:トータル鉄)、炉内スラグ量は炉内での溶鉄1トン(t・s )当たりのスラグ量(kg)である。
【0016】
必要脱V率=〔(CV0−CV1)/CV0〕×100(%) ---- 式(7)
【0017】
[1] 必要脱V率=50〜80%の場合
3.0<塩基度(CaO /SiO2)<5.0 ------------ 式(8)
10%<(T.Fe)<25% ------------------------ 式(9)
15kg/t・s <炉内スラグ量<80kg/t・s ------ 式(10)
1600℃<吹止温度<1680℃ ---------------- 式(11)
【0018】
[2] 必要脱V率=80〜95%の場合
3.4<塩基度(CaO /SiO2)<4.5 ------------ 式(12)
12%<(T.Fe)<25% ------------------------ 式(13)
20kg/t・s <炉内スラグ量<80kg/t・s ------ 式(14)
1600℃<吹止温度<1680℃ ---------------- 式(15)
【0019】
[3] 必要脱V率=95〜100%の場合
3.8<塩基度(CaO /SiO2)<4.2 ------------ 式(16)
15%<(T.Fe)<25% ------------------------ 式(17)
25kg/t・s <炉内スラグ量<80kg/t・s ------ 式(18)
1600℃<吹止温度<1680℃ ---------------- 式(19)
【0020】
V0=〔転炉に装入された物に含まれるVの全量(精錬前)/精錬終了後
の溶鉄の量〕×100(%) ---------------- 式(20)
【0021】
請求項記載の溶鉄の脱バナジウム方法は、前記吹錬をする溶鉄として、この吹錬の前に脱珪・脱りん処理を施した溶鉄を用いることを特徴とする請求項2又は3記載の溶鉄の脱バナジウム方法である(第発明)。
【0022】
【発明の実施の形態】
本発明は例えば次のような形態で実施する。
【0023】
【0024】
炉より出銑された溶銑(バナジウム含有)を転炉に装入した後、この溶銑中に酸素を吹き込むと共に、CaO 及び鉄鉱石を含む副原料を添加し、吹錬を行う。このとき、前述の式(3) 、(4) 、(5) 及び(6) を満たす条件にて吹錬を行う。あるいは更に前述の式(8) 、(9) 、(10)及び(11)を満たす条件、または、式(12)、(13)、(14)及び(15)を満たす条件、あるいは、式(16)、(17)、(18)及び(19)を満たす条件とする。そうすると、溶銑のバナジウム濃度を充分に低減させる脱バナジウムも行うことができる。
【0025】
このような形態で本発明が実施される。
【0026】
本発明は、転炉での溶鉄の脱バナジウム方法を開発すべく、種々の条件で実験を重ね、得られたデータを解析するという研究を鋭意行い、その結果、得られた知見に基づき完成されたものである。即ち、本発明者らは、鋭意研究を重ねた結果、転炉での吹錬を特定の条件にすることにより、溶鉄からの脱バナジウムを効果的に促進させ、溶鉄のバナジウム濃度を充分に低減させることができることを見出し、この知見に基づき本発明を完成させた。このようにして完成された本発明は溶鉄の脱バナジウム方法に係わり、それは請求項1〜記載の溶鉄の脱バナジウム方法(第1発明〜第発明に係る溶鉄の脱バナジウム方法)である。
【0027】
【0028】
【0029】
【0030】
本発明の第発明(請求項)に係る溶鉄の脱バナジウム方法によれば、転炉において前述の式(3) 、(4) 、(5) 及び(6) を満たす条件にて吹錬を行うこととしており、これにより、転炉において溶鉄からの脱バナジウムを効果的に促進させ、溶鉄のバナジウム濃度を充分に低減させることができる。
【0031】
本発明の第発明(請求項)に係る溶鉄の脱バナジウム方法では、上記第発明での要件の範囲内の条件であって、必要な脱バナジウム率(脱V率)に応じて定められた条件にて吹錬を行うことに特定し、これにより、副原料使用量の増加や鉄歩留まりの低下等を招くことなく、脱バナジウムを行うことができ、必要な脱V率を得ることができる。
【0032】
即ち、脱バナジウム反応は酸化反応であるため、炉内スラグの塩基度(CaO /SiO2)が低すぎると脱V率が低下し、一方、炉内スラグの塩基度(CaO /SiO2)が高すぎると滓化不良が生じて脱V率が低下し、副原料使用量が増加してコストアップも招く。
【0033】
炉内スラグでのトータル鉄量(T.Fe)については、これが高い方が脱V率の点において有利となるが、高すぎると鉄歩留まりの低下、Mn歩留まりの低下、転炉耐火物の寿命低下を招く。操業上では、あまり(T.Fe)を上昇させて過酸化にすると、スロッピングを発生させることになる。
【0034】
炉内スラグ量は、多い方が脱バナジウムには当然有利であり、条件に応じて必要量があるが、これが多すぎると副原料使用量が増加してコストアップも招き、更には、鉄歩留まりの低下も伴う。そこで、吹止時の溶鉄中V濃度が満足できる範囲で可能な限り炉内スラグ量を低減することが望ましい。しかし、炉内スラグ量を低減しすぎると、溶鋼面を覆うカバースラグがなくなるため、転炉耐火物の寿命低下を招き、更には、スピッティングが激しくなり、ランスへの地金付着等の操業上の問題が発生すると共に、鉄歩留まりの低下を招く。
【0035】
吹止温度は、低い方が脱バナジウムの点において有利であるが、これは鋼種や転炉以降の工程での温度低下を考慮して決定されるものであり、大きくは制御できない。
【0036】
発明(請求項)に係る溶鉄の脱バナジウム方法は、以上のことを考慮したものであって、前記の如きマイナス面が生じないように必要な脱V率に応じて条件を定めたものである。従って、前記副原料使用量の増加や鉄歩留まりの低下等の如きマイナス面の発生を招くことなく、脱バナジウムを行うことができ、必要な脱V率を得ることができる。
【0037】
発明(請求項)に係る溶鉄の脱バナジウム方法では、上記第発明または第発明での要件に加えて、吹錬をする溶鉄として該吹錬の前に脱珪・脱りん処理を施した溶鉄を用いることも要件としており、これにより、転炉での吹錬に際してC濃度や温度調整を容易にすることができる。また、脱珪・脱りん処理を施した溶鉄を用いる転炉吹錬では、脱珪・脱りん処理を殆どする必要がないことから、通常、コストメリットを追求するため、スラグ量の低減および(T.Fe)の低減をはかる。これは、脱バナジウムに不利であり、従来の通常の方法ではVの目標濃度の上限外れを招くことが多くなる。そこで、本発明範囲に制御すれば、必要な脱V率を得、V外れを防止することができる。
【0038】
【0039】
【0040】
溶鉄には、当然に溶銑が含まれるが、本発明では溶鋼も含まれることとしている。即ち、溶銑は転炉に装入され、転炉において通常は成分調整されて溶鋼と化するが、この溶鋼も転炉装入時点では溶銑であることから、本発明では溶鉄として表現した。従って、本発明に係る脱バナジウム方法は、厳密には溶銑・溶鋼の脱バナジウム方法というべきであるかもしれないが、溶銑の脱バナジウム方法と表現した。
【0041】
前記式(20)において、転炉に装入された物とは、転炉に装入された溶鉄およびそれ以外の物のことである。この溶鉄以外の物としては、場合によって相違するが、スクラップ、副原料、スラグ等がある。即ち、転炉へは、溶鉄は必ず装入され、この他に、スクラップ、副原料、スラグ等が装入されるが、後者のものについては全て装入されるとは限らず、装入されるものは場合によって相違する。転炉に装入された物に含まれるVの全量(精錬前)とは、転炉に装入された物に含まれるVの合計量のことである。例えば、転炉に装入された物のそれぞれにVが含まれている場合には、それらのVの合計量ということになる。
【0042】
【実施例】
本発明の実施例及び比較例を以下説明する。尚、本発明はこの実施例に限定されるものではない。
【0043】
【0044】
【0045】
【0046】
【0047】
【0048】
【0049】
【0050】
【0051】
〔実施例、比較例
高炉より出銑された溶銑を転炉に装入した後、この溶銑中に酸素を吹き込むとともに、生石灰、蛍石、鉄鉱石および軽ドロを含む副原料を添加し、吹錬を行った。
【0052】
このとき、転炉としては上底吹き型の240t転炉を用いた。転炉への装入溶銑のV含有量すなわちVの初期濃度(CV0)は、0.005〜0.060質量%である。転炉への装入溶銑温度は、1250〜1400℃である。吹錬の条件については、上吹き酸素原単位:42〜52Nm3/t、上吹き酸素供給速度:2.0〜4.0Nm3/t・s 、炉内スラグでの塩基度(CaO(%)/SiO2(%)):2.0〜6.0、炉内スラグでのトータル鉄量(T.Fe):5〜35%、炉内スラグ量:0〜100kg/t・s 、吹止温度:1580〜1720℃とした。
【0053】
副原料の原単位については、生石灰:0〜30kg/t、蛍石:0〜4kg/t、鉄鉱石:7〜25kg/t、軽ドロ:0〜20kg/tである。
【0054】
上記の吹錬の結果を、以下説明する。なお、以下の脱バナジウム率(脱V率)は、下記式(22)で示される脱V率(%)である。
【0055】
脱V率=〔(CV0−CVX)/CV0〕×100(%) ---- 式(22)
【0056】
ただし、上記式(22)において、CV0は精錬前でのVの濃度(%)であって下記式(23)で示されるCV0の値であり、CVXは精錬終了後での溶鉄中のVの濃度(%)である。
【0057】
V0=〔転炉に装入された物に含まれるVの全量(精錬前)/精錬終了後
の溶鉄の量〕×100(%) ---------------- 式(23)
【0058】
上記吹錬の結果として、先ず、炉内スラグの塩基度(CaO(%)/SiO2(%))(以下C/Sともいう)と脱バナジウム率との関係を図に示す。C/Sが低いと脱バナジウム率(脱V率)が小さく、C/Sが高くなると脱V率が大きくなるが、C/Sが高くなりすぎると脱V率が小さくなり、C/S:3.0〜5.0の場合に脱V率が高く、良好な脱V率が得られることがわかる。
【0059】
炉内スラグの(T.Fe)と脱バナジウム率との関係を図に示す。(T.Fe)が低いと脱V率が小さく、(T.Fe)が高くなると脱V率が大きくなり、(T.Fe):10%以上で良好な脱V率が得られている。しかし、(T.Fe)が25%超になると鉄歩留まりの低下等を来す。従って、(T.Fe)は10〜25%とするのがよいことがわかる。
【0060】
炉内スラグ量と脱バナジウム率との関係を図に示す。炉内スラグ量が少ないと脱V率が小さく、炉内スラグ量が多くなると脱V率が大きくなり、炉内スラグ量:15kg/t・s 以上で良好な脱V率が得られている。しかし、炉内スラグ量が80kg/t・s 超になると副原料使用量の増加や鉄歩留まりの低下等を招く。従って、炉内スラグ量は15〜80kg/t・s とするのがよいことがわかる。
【0061】
吹止温度と脱バナジウム率との関係を図に示す。吹止温度は脱V率に大きな影響を及ぼさないが、吹止温度を1680℃超にすると脱V率が低下してくることがわかる。また、吹止温度を1680℃超にすると、耐火物寿命の低下等を招く。一方、吹止温度を1600℃以下にすると、転炉吹錬の適用可能な鋼種が制約を受けること等の支障がある。従って、吹止温度は1600〜1680℃とするのがよいことがわかる。
【0062】
上記吹錬の結果の中、本発明の要件を満たす条件で転炉吹錬した本発明の実施例(本発明方法)の場合と、本発明の要件を満たさない条件で転炉吹錬した比較例(従来技術)の場合とについて、転炉への溶銑装入時のV含有量(精錬前のV濃度、すなわち、前記式(23)で示されるV濃度:CV0)および転炉吹止後のV濃度(精錬終了後での溶鉄中のVの濃度:CVX)を、図に示す。本発明の実施例の場合は、比較例の場合に比較し、精錬前のVの濃度(CV0)が高いが、吹錬の経過時間に伴うV濃度の減少の速度が大きく、脱V率が大きく、転炉吹止時のV濃度(CVX)が極めて低いことがわかる。比較例の場合、V濃度の規格上限値:0.006質量%を超えているが、本発明の実施例の場合は、転炉吹止時のV濃度(CVX)が規格上限値:0.006質量%よりも極めて低く、V濃度の規格を充分に満たしている。
【0063】
【0064】
【0065】
【0066】
【0067】
【発明の効果】
本発明に係る溶鉄の脱バナジウム方法によれば、転炉における吹錬の際に溶鉄からの脱バナジウムを効果的に促進させ、溶鉄のバナジウム濃度を充分に低減させることができるようになる。
【図面の簡単な説明】
【図1】 実施例1及び比較例1に係るスラグの塩基度のC/Sと脱バナジウム率との関係を示す図である。
【図2】 実施例1及び比較例1に係るスラグの( T.Fe )と脱バナジウム率との関係を示す図である。
【図3】 実施例1及び比較例1に係る炉内スラグ量と脱バナジウム率との関係を示す図である。
【図4】 実施例1及び比較例1に係る転炉吹止温度と脱バナジウム率との関係を示す図である。
【図5】 本発明方法による場合および従来技術による場合についての溶銑装入の時点および吹止の時点での [ ] (即ち、V濃度)を示す図である。
[0001]
BACKGROUND OF THE INVENTION
The present invention belongs to a technical field related to a method for removing vanadium from molten iron, and particularly to a technical field related to a method for promoting vanadium removal from molten iron and reducing the vanadium concentration of molten iron during blowing in a converter .
[0002]
[Prior art]
The hot metal preliminary treatment step for performing dephosphorization treatment, desulfurization treatment, etc. in the steel making process is intended to reduce the S concentration, P concentration, etc. of the hot metal and facilitate the C concentration and temperature adjustment in the converter. Valuable elements such as vanadium contained in the hot metal discharged from the blast furnace move into the slag in the hot metal preliminary treatment step, and further move into the slag along with the dephosphorization treatment in the converter.
[0003]
The vanadium removed from the hot metal in the hot metal pretreatment process and the converter process is processed as a steelmaking slag. Conventionally, various methods for recovering vanadium in the hot metal or hot steel containing vanadium have been proposed. . That is, a method for recovering vanadium by generating vanadium compounds by reacting hot metal containing vanadium under oxygen conditions or with soda ash and transferring the resulting vanadium compounds into slag is proposed. Has been.
[0004]
For example, Japanese Patent Laid-Open No. 62-185821 describes that “vanadium is oxidized by placing molten steel containing vanadium and phosphorus under oxidizing conditions at 1650 ° C.”, and further, “Formation of oxidizing conditions” Is performed by blowing oxygen gas or adding Fe 2 O 3 ”. JP-A-55-94453 describes that “addition of an alkali metal compound to vanadium-containing molten iron and oxidation control at 1250 to 1500 ° C. to transfer vanadium oxide into the slag”. ing. Furthermore, Japanese Patent Publication No. 58-38485 discloses a method for recovering vanadium from hot metal before charging the converter as efficiently as possible. It is described that it should be 0.080% or less, and that the vanadium of the hot metal is efficiently transferred into the slag produced by the secondary dephosphorization, and the vanadium is recovered from this slag.
[0005]
[Problems to be solved by the invention]
However, in the conventional vanadium recovery technique, there is little mention of effectively reducing the vanadium concentration of the hot metal. For example, no clear conditions have been proposed for the purpose of reducing the vanadium concentration of hot metal, such as when the vanadium concentration of the hot metal used exceeds the upper limit of the target product specification. Absent. In recent years, with changes in raw material circumstances such as ore or sintering supplied to a blast furnace, a case where the concentration of vanadium contained in hot metal is increased occurs. At that time, in the conventional hot metal pretreatment technology and converter blowing technology, there is a case where the vanadium concentration of the molten steel after converter blowing exceeds the upper limit of the product standard.
[0006]
The present invention has been made paying attention to such circumstances, and its purpose is to effectively promote vanadium removal from molten iron during blowing in a converter , and to sufficiently increase the vanadium concentration of molten iron. An object of the present invention is to provide a method for removing vanadium from molten iron that can be reduced to a low level.
[0007]
[Means for Solving the Problems]
The method for removing vanadium from molten iron according to the present invention that has achieved the above object is the method for removing vanadium from molten iron according to claims 1 to 3 (method for removing vanadium from molten iron according to the first to third inventions). It has the following configuration.
[0008]
[0009]
[0010]
[0011]
[0012]
[0013]
The method for removing vanadium from molten iron according to claim 1 is characterized in that in the converter, blowing is performed under conditions satisfying the following formulas (3), (4), (5) and (6): This is a method ( first invention). However, in the following formula (3), the basicity is the basicity [: CaO (%) / SiO 2 (%)] in the furnace slag. In the following formula (4), T.Fe is T.Fe (: total iron) in the furnace slag. In the following formula (5), the amount of slag in the furnace is the amount of slag (kg) per ton of molten iron (t · s) in the furnace.
[0014]
3.0 <basicity (CaO / SiO 2 ) <5.0 ----------- Formula (3)
10% <(T.Fe) <25% ------------------------ Equation (4)
15kg / t · s <In-furnace slag amount <80kg / t · s ------ Equation (5)
1600 ° C <blowing temperature <1680 ° C ---------------- Equation (6)
[0015]
According to the method for removing vanadium from molten iron according to claim 2, when the required V-removal rate represented by the following formula (7) is 50 to 80%, the following formulas (8), (9), (10) and ( Blowing is performed under conditions that satisfy 11), and if the required V-removal rate is 80 to 95%, blowing is performed under conditions that satisfy the following formulas (12), (13), (14), and (15). When smelting is performed and the required V-removal rate is 95 to 100%, blowing is performed under conditions satisfying the following formulas (16), (17), (18), and (19). A method for removing vanadium from molten iron according to claim 1 ( second invention). However, in the following formula (7), C V0 is the concentration (%) of V before refining and is the value of C V0 represented by the following formula (20), and C V1 is in the molten iron after the refining is finished. V is a target concentration (%). In the following formulas (8) to (19), the basicity is basicity in the furnace slag [: CaO (%) / SiO 2 (%)], and T.Fe is T.Fe in the furnace slag (: total Iron), the amount of slag in the furnace is the amount of slag (kg) per ton of molten iron (t · s) in the furnace.
[0016]
Necessary V-removal rate = [(C V0 −C V1 ) / C V0 ] × 100 (%) ---- Formula (7)
[0017]
[1] Necessary V-removal rate = 50 to 80% 3.0 <basicity (CaO / SiO 2 ) <5.0 -----------
10% <(T.Fe) <25% ------------------------ Equation (9)
15kg / t · s <In-furnace slag amount <80kg / t · s
1600 ° C <blowing temperature <1680 ° C ---------------- Equation (11)
[0018]
[2] When the required V-free rate = 80 to 95% 3.4 <basicity (CaO / SiO 2 ) <4.5 -----------
12% <(T.Fe) <25% ------------------------ Equation (13)
20kg / t · s <In-furnace slag amount <80kg / t · s ------------
1600 ° C <blowing temperature <1680 ° C ---------------- Equation (15)
[0019]
[3] Necessary V-free rate = 95 to 100% 3.8 <basicity (CaO / SiO 2 ) <4.2 ------------
15% <(T.Fe) <25% ------------------------ Equation (17)
25kg / t · s <In-furnace slag amount <80kg / t · s ------ Equation (18)
1600 ° C <blowing temperature <1680 ° C ---------------- Equation (19)
[0020]
C V0 = [Total amount of V contained in the material charged in the converter (before refining) / After refining
Amount of molten iron] x 100 (%) ---------------- Equation (20)
[0021]
De vanadium method of molten iron according to claim 3, wherein, as the molten iron to the blowing of claim 2 or 3, wherein the use of molten iron subjected to desiliconization-dephosphorization process before this blowing This is a method for removing vanadium of molten iron ( third invention).
[0022]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is embodied in the form condition as follows, for example.
[0023]
[0024]
After charged into a converter of the blast furnace from the tapping has been hot metal (vanadium-containing), with blowing oxygen into the molten iron, adding a secondary raw material containing CaO and iron ore, perform blowing. At this time, blowing is performed under the conditions satisfying the above-mentioned formulas (3), (4), (5) and (6). Alternatively, further satisfy the above conditions (8), (9), (10) and (11), or satisfy the conditions (12), (13), (14) and (15), or The conditions satisfying 16), (17), (18) and (19). If it does so, the vanadium removal which fully reduces the vanadium density | concentration of hot metal can also be performed.
[0025]
The present invention is implemented in such a form.
[0026]
In order to develop a method for removing vanadium of molten iron in a converter, the present invention has been conducted intensively under various conditions to analyze the obtained data, and as a result, has been completed based on the obtained knowledge. It is a thing. That is, the present inventors have found, after extensive research, by the blowing in the converter of specific criteria effectively promote the removal of vanadium from the molten iron, sufficiently reduce the concentration of vanadium molten iron Based on this finding, the present invention has been completed. The present invention thus completed relates to a molten iron devanadium method, which is the molten iron devanadium method according to claims 1 to 3 (the molten iron devanadium method according to the first to third inventions).
[0027]
[0028]
[0029]
[0030]
According to the method for removing vanadium from molten iron according to the first invention of the present invention (Claim 1 ), blowing in a converter satisfying the above-mentioned formulas (3), (4), (5) and (6). Thus, vanadium removal from the molten iron is effectively promoted in the converter, and the vanadium concentration of the molten iron can be sufficiently reduced.
[0031]
In the method for removing vanadium from molten iron according to the second invention of the present invention (invention 2 ), it is a condition within the range of the requirement in the first invention, and is determined according to the required devanadium rate (deV rate). It is specified that blowing is performed under the specified conditions, and thereby, it is possible to perform vanadium removal without causing an increase in the amount of auxiliary raw materials used or a decrease in iron yield, and to obtain a necessary V-free rate. Can do.
[0032]
That is, since the vanadium reaction is an oxidation reaction, if the basicity of the slag in the furnace (CaO / SiO 2 ) is too low, the de-V rate decreases, while the basicity of the slag in the furnace (CaO / SiO 2 ) If it is too high, hatching defects will occur, the V-free rate will decrease, the amount of auxiliary materials used will increase, and the cost will increase.
[0033]
The higher the total iron content (T.Fe) in the furnace slag, the better the V-free rate. However, if it is too high, the iron yield decreases, the Mn yield decreases, the life of the converter refractory Incurs a decline. In operation, if too much (T.Fe) is raised to peroxidation, slapping will occur.
[0034]
A larger amount of slag in the furnace is naturally advantageous for vanadium removal, and there is a necessary amount depending on the conditions. However, if this amount is too large, the amount of secondary raw material used increases, resulting in an increase in cost, and further, the iron yield. Also accompanied by a decline. Therefore, it is desirable to reduce the amount of slag in the furnace as much as possible within a range where the V concentration in the molten iron at the time of blowing can be satisfied. However, if the amount of slag in the furnace is reduced too much, there will be no cover slag covering the molten steel surface. The above problems occur and the iron yield is reduced.
[0035]
The lower blowing temperature is advantageous in terms of vanadium removal, but this is determined in consideration of the temperature drop in the steel grade and the process after the converter, and cannot be controlled greatly.
[0036]
The method for removing vanadium from molten iron according to the second invention (invention 2 ) is based on the above considerations, and the conditions are determined in accordance with the required V-free rate so as not to cause the negative aspect as described above. Is. Therefore, vanadium can be removed without causing negative aspects such as an increase in the amount of secondary raw material used and a decrease in iron yield, and the required de-V rate can be obtained.
[0037]
In the devanadium method for molten iron according to the third invention (Claim 3 ), in addition to the requirements of the first invention or the second invention, the desiliconization / dephosphorization treatment is performed before the blowing as the molten iron to be blown. It is also a requirement to use molten iron that has been subjected to heat treatment, and this makes it easy to adjust the C concentration and temperature during blowing in the converter. In addition, in converter blowing using desiliconized and dephosphorized molten iron, there is almost no need for desiliconizing and dephosphorizing treatment. Therefore, in order to pursue cost merit, Reduce T.Fe). This is disadvantageous for vanadium removal, and the conventional normal method often causes the upper limit of the V target concentration to be exceeded. Therefore, if controlled within the scope of the present invention, the required V-free rate can be obtained and V deviation can be prevented.
[0038]
[0039]
[0040]
The molten iron naturally includes molten iron, but in the present invention, molten steel is also included. That is, the hot metal is charged into the converter and the components are usually adjusted in the converter to form molten steel. However, since this molten steel is also molten metal at the time of charging the converter, it is expressed as molten iron in the present invention. Therefore, the vanadium removal method according to the present invention may be strictly referred to as a hot metal / molten steel removal vanadium method, but is expressed as a hot metal removal vanadium method.
[0041]
In the above formula (20), the material charged in the converter refers to the molten iron charged into the converter and other materials. There are scraps, auxiliary materials, slag, and the like as the material other than the molten iron depending on the case. That is, molten iron is always charged into the converter, and in addition to this, scrap, secondary raw materials, slag, etc. are charged, but not all of the latter are charged. Things vary from case to case. The total amount of V contained in the product charged in the converter (before refining) is the total amount of V contained in the product charged in the converter. For example, when V is included in each of the items charged in the converter, this is the total amount of those Vs.
[0042]
【Example】
Examples of the present invention and comparative examples will be described below. In addition, this invention is not limited to this Example.
[0043]
[0044]
[0045]
[0046]
[0047]
[0048]
[0049]
[0050]
[0051]
[Example 1 and Comparative Example 1 ]
After the hot metal extracted from the blast furnace was charged into the converter, oxygen was blown into the hot metal, and auxiliary materials including quick lime, fluorite, iron ore and light dross were added and blown.
[0052]
At this time, an upper bottom blowing type 240t converter was used as the converter. The V content of the molten iron charged into the converter, that is, the initial concentration of V (C V0 ) is 0.005 to 0.060 mass%. The temperature of the molten iron charged to the converter is 1250 to 1400 ° C. Regarding blowing conditions, top blown oxygen intensity: 42 to 52 Nm 3 / t, top blow oxygen supply rate: 2.0 to 4.0 Nm 3 / t · s, basicity (CaO (% ) / SiO 2 (%)): 2.0 to 6.0, total iron amount in furnace slag (T.Fe): 5 to 35%, furnace slag amount: 0 to 100 kg / t · s, blowing Stop temperature: 1580 to 1720 ° C.
[0053]
The basic unit of the auxiliary raw material is quick lime: 0 to 30 kg / t, fluorite: 0 to 4 kg / t, iron ore: 7 to 25 kg / t, light dross: 0 to 20 kg / t.
[0054]
The results of the above blowing will be described below. The following vanadium removal rate (de-V rate) is a de-V rate (%) represented by the following formula (22).
[0055]
V-free rate = [(C V0 −C VX ) / C V0 ] × 100 (%)
[0056]
However, in the above formula (22), C V0 is the concentration (%) of V before refining and is the value of C V0 represented by the following formula (23), and C VX is in the molten iron after refining is completed. V concentration (%).
[0057]
C V0 = [Total amount of V contained in the material charged in the converter (before refining) / After refining
Amount of molten iron] x 100 (%) ---------------- Equation (23)
[0058]
As a result of the blowing, firstly, the basicity of the furnace slag (CaO (%) / SiO 2 (%)) ( hereinafter also referred to as C / S) and shows the relationship between the de-vanadium ratio in FIG. When C / S is low, the vanadium removal rate (de-V rate) is small, and when C / S is high, the de-V rate increases, but when C / S is too high, the de-V rate decreases, and C / S: It can be seen that in the case of 3.0 to 5.0, the de-V rate is high and a good de-V rate is obtained.
[0059]
FIG. 2 shows the relationship between (T.Fe) of the furnace slag and the vanadium removal rate. When (T.Fe) is low, the de-V rate is small, and when (T.Fe) is high, the de-V rate increases. When (T.Fe): 10% or more, a good de-V rate is obtained. However, when (T.Fe) exceeds 25%, the iron yield decreases. Therefore, it can be seen that (T.Fe) is preferably 10 to 25%.
[0060]
FIG. 3 shows the relationship between the amount of slag in the furnace and the vanadium removal rate. When the in-furnace slag amount is small, the de-V rate is small, and when the in-furnace slag amount is large, the de-V rate is large. A good de-V rate is obtained when the in-furnace slag amount is 15 kg / t · s or more. However, if the amount of slag in the furnace exceeds 80 kg / t · s, an increase in the amount of secondary materials used and a decrease in iron yield are caused. Therefore, it is understood that the furnace slag amount is preferably 15 to 80 kg / t · s.
[0061]
FIG. 4 shows the relationship between the blowing temperature and the vanadium removal rate. Although the blowing temperature does not have a great influence on the de-V-ratio, it can be seen that when the blowing temperature exceeds 1680 ° C., the de-V-ratio decreases. Further, if the blowing temperature exceeds 1680 ° C., the life of the refractory is reduced. On the other hand, when the blowing temperature is set to 1600 ° C. or lower, there is a problem that a steel type applicable to converter blowing is restricted. Therefore, it can be seen that the blowing temperature is preferably 1600 to 1680 ° C.
[0062]
In the above-mentioned results of the blowing, the example of the present invention (the method of the present invention) in which the converter was blown under the conditions satisfying the requirements of the present invention and the converter blown in the condition not satisfying the requirements of the present invention In the case of the example (prior art), the V content at the time of molten metal charging to the converter (V concentration before refining, that is, V concentration represented by the above formula (23): C V0 ) and converter blowing FIG. 5 shows the later V concentration (concentration of V in molten iron after completion of refining: C VX ). In the case of the example of the present invention, the concentration of V before refining (C V0 ) is higher than in the case of the comparative example, but the rate of decrease in the V concentration with the elapsed time of blowing is large and It can be seen that the V concentration (C VX ) at the time of blowing the converter is extremely low. In the case of the comparative example, the standard upper limit value of V concentration exceeds 0.006% by mass, but in the case of the example of the present invention, the V concentration (C VX ) at the time of blowing the converter is the standard upper limit value: 0. It is extremely lower than 0.006% by mass and sufficiently satisfies the V concentration standard.
[0063]
[0064]
[0065]
[0066]
[0067]
【The invention's effect】
According to the method for removing vanadium from molten iron according to the present invention, vanadium from molten iron can be effectively promoted during blowing in a converter , and the vanadium concentration of molten iron can be sufficiently reduced.
[Brief description of the drawings]
FIG. 1 is a graph showing a relationship between C / S of slag basicity and vanadium removal rate according to Example 1 and Comparative Example 1. FIG.
FIG. 2 is a graph showing the relationship between ( T.Fe ) and the vanadium removal rate of slag according to Example 1 and Comparative Example 1 .
FIG. 3 is a graph showing the relationship between the amount of slag in the furnace and the vanadium removal rate according to Example 1 and Comparative Example 1.
4 is a graph showing the relationship between converter blowing temperature and vanadium removal rate according to Example 1 and Comparative Example 1. FIG.
FIG. 5 is a diagram showing [ V ] (that is, V concentration) at the time of hot metal charging and at the time of blowing off in the case of the method of the present invention and the case of the prior art .

Claims (3)

転炉において下記式In the converter, the following formula (3) (3) , (4) (Four) , (5) (Five) 及びas well as (6) (6) を満たす条件にて吹錬を行うことを特徴とする溶鉄の脱バナジウム方法。A method for removing vanadium from molten iron, characterized in that blowing is performed under conditions satisfying the above conditions.
3.0<塩基度(3.0 <basicity ( CaO CaO / SiOSiO 22 )<5.0 <5.0 ------------  ------------ formula (3) (3)
10%<(10% <( T.FeT.Fe )<25% ) <25% ------------------------  ------------------------ formula (4) (Four)
1515 kgkg /t・/ T. s s <炉内スラグ量<80<In-furnace slag amount <80 kgkg /t・/ T. ss ------ ------ formula (5) (Five)
1600℃<吹止温度<1680℃ 1600 ° C <blowing temperature <1680 ° C ----------------  ---------------- formula (6) (6)
ただし、上記式However, the above formula (3) (3) において、塩基度は炉内スラグでの塩基度〔:The basicity in the furnace slag [: CaO(CaO ( %)/%) / SiOSiO 22 (%)〕である。上記式(%)]. Above formula (4) (Four) において、In T.FeT.Fe は炉内スラグでのIn the furnace slag T.FeT.Fe (:トータル鉄)である。上記式(: Total iron). Above formula (5) (Five) において、炉内スラグ量は炉内での溶鉄1トン(t・The amount of slag in the furnace is 1 ton of molten iron (t · s s )当たりのスラグ量() Slag amount ( kgkg )である。).
下記式Following formula (7) (7) で示される必要脱V率が50〜80%である場合には、下記式When the required V-removal rate indicated by is 50 to 80%, (8) (8) , (9) (9) , (10)(Ten) 及びas well as (11)(11) を満たす条件にて吹錬を行い、必要脱V率が80〜95%である場合には、下記式When the required V-removal rate is 80 to 95%, (12)(12) , (13)(13) , (14)(14) 及びas well as (15)(15) を満たす条件にて吹錬を行い、必要脱V率が95〜100%である場合には、下記式When the required de V rate is 95 to 100% (16)(16) , (17)(17) , (18)(18) 及びas well as (19)(19) を満たす条件にて吹錬を行うことを特徴とする請求項1記載の溶鉄の脱バナジウム方法。The method for removing vanadium from molten iron according to claim 1, wherein blowing is performed under conditions satisfying
必要脱V率=〔(CNecessary V-removal rate = [(C V0V0 −C-C V1V1 )/C) / C V0V0 〕×100(%)] X 100 (%) ----  ---- formula (7)(7)
[1] [1] 必要脱V率=50〜80%の場合Necessary V-removal rate = 50-80%
3.0<塩基度(3.0 <basicity ( CaO CaO / SiOSiO 22 )<5.0 <5.0 ------------  ------------ formula (8) (8)
10%<(10% <( T.FeT.Fe )<25% ) <25% ------------------------  ------------------------ formula (9) (9)
1515 kgkg /t・/ T. s s <炉内スラグ量<80<In-furnace slag amount <80 kgkg /t・/ T. ss ------ ------ formula (10)(Ten)
1600℃<吹止温度<1680℃ 1600 ° C <blowing temperature <1680 ° C ----------------  ---------------- formula (11)(11)
[2] [2] 必要脱V率=80〜95%の場合When required V-removal rate = 80-95%
3.4<塩基度(3.4 <basicity ( CaO CaO / SiOSiO 22 )<4.5 ) <4.5 ------------  ------------ formula (12)(12)
12%<(12% <( T.FeT.Fe )<25% ) <25% ------------------------  ------------------------ formula (13)(13)
2020 kgkg /t・/ T. s s <炉内スラグ量<80<In-furnace slag amount <80 kgkg /t・/ T. ss ------ ------ formula (14)(14)
1600℃<吹止温度<1680℃ 1600 ° C <blowing temperature <1680 ° C ----------------  ---------------- formula (15)(15)
[3] [3] 必要脱V率=95〜100%の場合When required V-removal rate is 95-100%
3.8<塩基度(3.8 <basicity ( CaO CaO / SiOSiO 22 )<4.2 ) <4.2 ------------  ------------ formula (16)(16)
15%<(15% <( T.FeT.Fe )<25% ) <25% ------------------------  ------------------------ formula (17)(17)
2525 kgkg /t・/ T. s s <炉内スラグ量<80<In-furnace slag amount <80 kgkg /t・/ T. ss ------ ------ formula (18)(18)
1600℃<吹止温度<1680℃ 1600 ° C <blowing temperature <1680 ° C ----------------  ---------------- formula (19)(19)
ただし、上記式However, the above formula (7) (7) において、CIn C V0V0 は精錬前でのVの濃度(%)であって下記式Is the concentration (%) of V before refining (20)(20) で示されるCIndicated by C V0V0 の値であり、CThe value of C V1V1 は精錬終了後での溶鉄中のVの目標濃度(%)である。上記式Is the target concentration (%) of V in the molten iron after completion of refining. Above formula (8) (8) ~ (19)(19) において、塩基度は炉内スラグでの塩基度〔:The basicity in the furnace slag [: CaO(CaO ( %)/%) / SiOSiO 22 (%)〕、(%)], T.FeT.Fe は炉内スラグでのIn the furnace slag T.FeT.Fe (:トータル鉄)、炉内スラグ量は炉内での溶鉄1トン(t・(: Total iron), the amount of slag in the furnace is 1 ton of molten iron (t · s s )当たりのスラグ量() Slag amount ( kgkg )である。).
C V0V0 =〔転炉に装入された物に含まれるVの全量(精錬前)/精錬終了後= [Total amount of V contained in the material charged in the converter (before refining) / After refining の溶鉄の量〕×100(%)Amount of molten iron] x 100 (%) ----------------  ---------------- formula (20)(20)
前記吹錬をする溶鉄として、この吹錬の前に脱珪・脱りん処理を施した溶鉄を用いることを特徴とする請求項1又は2記載の溶鉄の脱バナジウム方法。The molten iron devanadium method according to claim 1 or 2, wherein molten iron subjected to desiliconization and dephosphorization before blowing is used as the molten iron to be blown.
JP2001294220A 2001-09-26 2001-09-26 Method of removing vanadium from molten iron Expired - Fee Related JP3776778B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001294220A JP3776778B2 (en) 2001-09-26 2001-09-26 Method of removing vanadium from molten iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001294220A JP3776778B2 (en) 2001-09-26 2001-09-26 Method of removing vanadium from molten iron

Publications (2)

Publication Number Publication Date
JP2003105421A JP2003105421A (en) 2003-04-09
JP3776778B2 true JP3776778B2 (en) 2006-05-17

Family

ID=19115866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001294220A Expired - Fee Related JP3776778B2 (en) 2001-09-26 2001-09-26 Method of removing vanadium from molten iron

Country Status (1)

Country Link
JP (1) JP3776778B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2571969C2 (en) * 2013-04-28 2015-12-27 ПаньГан Груп Паньчжихуа Айрон энд Стил Рисерч Инститьют Ко., Лтд. Method of simultaneous dephosphorisation and extraction of vanadium from vanadium-bearing melted cast iron

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007001098A1 (en) * 2007-01-04 2008-07-10 Sms Demag Ag Process and plant for the production of steel
CN114657324B (en) * 2022-03-29 2023-07-04 湖州盛特隆金属制品有限公司 V removing method for stainless steel external refining

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2571969C2 (en) * 2013-04-28 2015-12-27 ПаньГан Груп Паньчжихуа Айрон энд Стил Рисерч Инститьют Ко., Лтд. Method of simultaneous dephosphorisation and extraction of vanadium from vanadium-bearing melted cast iron

Also Published As

Publication number Publication date
JP2003105421A (en) 2003-04-09

Similar Documents

Publication Publication Date Title
JP5954551B2 (en) Converter steelmaking
JPH11158526A (en) Production of high p slag
JP3776778B2 (en) Method of removing vanadium from molten iron
JP2006009146A (en) Method for refining molten iron
JPH10237526A (en) Dephosphorization of hot metal
JP3705170B2 (en) Hot phosphorus dephosphorization method
KR100825554B1 (en) A Method for Refining Hot Metal in a Converter with High Efficiency of Dephosphurization
JPH01316409A (en) Method for dephosphorizing molten iron accompanied with scrap melting
JP3744133B2 (en) Method for removing slag generated during the manufacture of stainless steel and method for reusing waste slag
JP4210011B2 (en) Dephosphorization method of hot metal using converter
JP4461495B2 (en) Dephosphorization method of hot metal
JP3158912B2 (en) Stainless steel refining method
KR100946128B1 (en) Method for Refining Molten Steel Using Converter
JPH05148525A (en) Treatment of molten iron
JP4411934B2 (en) Method for producing low phosphorus hot metal
JP2003147430A (en) Reducing agent for steelmaking, and steelmaking method
JP2803528B2 (en) Converter steelmaking method
JP2607329B2 (en) Hot metal dephosphorization method
JP4080679B2 (en) Hot phosphorus dephosphorization method
JPH0967608A (en) Production of stainless steel
JPH0437137B2 (en)
JPH0341525B2 (en)
JP2000328121A (en) Dephosphorization method of molten iron
JP2882236B2 (en) Stainless steel manufacturing method
JPH10102120A (en) Steelmaking method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060223

R150 Certificate of patent or registration of utility model

Ref document number: 3776778

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100303

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100303

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110303

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110303

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120303

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120303

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130303

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140303

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees