JP3735211B2 - Converter refining method for adjusting the silicon content - Google Patents

Converter refining method for adjusting the silicon content Download PDF

Info

Publication number
JP3735211B2
JP3735211B2 JP13079299A JP13079299A JP3735211B2 JP 3735211 B2 JP3735211 B2 JP 3735211B2 JP 13079299 A JP13079299 A JP 13079299A JP 13079299 A JP13079299 A JP 13079299A JP 3735211 B2 JP3735211 B2 JP 3735211B2
Authority
JP
Japan
Prior art keywords
converter
slag
amount
value
hot metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP13079299A
Other languages
Japanese (ja)
Other versions
JP2000328123A (en
Inventor
政宣 熊倉
雄一 廣川
敏 鷲巣
学 吉見
尚近 今村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP13079299A priority Critical patent/JP3735211B2/en
Publication of JP2000328123A publication Critical patent/JP2000328123A/en
Application granted granted Critical
Publication of JP3735211B2 publication Critical patent/JP3735211B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は転炉における珪素入量を調整する転炉精錬方法に関する。
【0002】
【従来の技術】
従来の多工程にわたる精錬機能を転炉に集約して行い、溶銑のもつエネルギーロスを大幅に低減するとともに、転炉前後工程の固定費(設備費、労務費)の大幅な軽減を可能とする方法が、例えば特願平2−181989号で開示されている。
【0003】
この発明は、第一工程として溶銑を転炉に装入し、第二工程としてフラックス添加と酸素吹き込みを行って脱Si、脱P精錬を施し、所定のP含有量まで低減させ、第三工程として前記転炉を傾動して第二工程で生成したスラグを排出し、その後第四工程として同一転炉にてフラックス添加と酸素吹錬により、所定のC含有量まで脱Cを行い、第五工程として第四工程で生成したスラグを該転炉内に残したまま出鋼して再び第一工程へ戻り、前記第五工程までを繰り返し実施するもので、場合によっては、第四工程で生成したスラグを第一工程に戻さず、第五工程において出鋼した後、スラグを全量排出する方法である。
【0004】
上述の同一転炉を用いて脱P、脱炭工程を続けて行うプロセスで実施すると、脱P工程から脱C工程へ移る際のエネルギーロスを少なくすることができ、また固定費(設備費、労務費)の大幅な軽減を可能にすることができる。
ところが、第三工程でのスラグ排出量が少ないと、第二工程でスラグ中に除去したPが第四工程で再び溶鋼中に戻ってくるため、第四工程にて再び脱Pする必要が生じ、生石灰等のフラックス量を増加させねばならずコスト増につながる。しかも、この第四工程でP濃度が高くなったスラグが第二工程で再び使用されるため、第二工程での脱P負荷が増加しコスト増になる。このように第三工程でのスラグ排出量が少ないと、脱Pを行うための負荷の増大を避けることができず、コストアップに繋がるという問題が生ずる。
【0005】
上記発明の問題点の解決を図るための技術の1例として特開平7−179920号公報が提案されている。この発明は、溶鋼製造法の第二工程での操業条件を適正化することにより、第三工程においてスラグ排出量を多くし、第四工程での復P量を抑え、生石灰原単位の低減を図る方法である。その概要は、一つの精錬容器にて脱P処理および脱C処理を行い溶銑から溶鋼を製造する際に、脱P処理後のスラグ中のCaO/SiO2 が2.5以下、かつ酸化鉄とマンガン酸化物濃度の和(T.Fe+MnO)が10%以上、かつMgO濃度が10%以下であり、かつ処理終点温度を1320℃以上、1400℃以下とすることを特徴とする溶鋼製造方法にある。
【0006】
【発明が解決しようとする課題】
高炉から出銑される溶銑Si成分値は、通常、0.15〜0.80%レベルまでばらついており、特に最近の高炉においては、安価原燃料を使用する操業法が指向されており、その結果溶銑中のSi値が増加する傾向にある。上記特開平7−179920号に開示された内容には、こうした溶銑Si値の増大に対してはなんらの考慮もなされていない。
【0007】
溶銑Si値が高いと脱Si、P工程において、塩基度を2.0程度確保する必要性から、同工程で使用する生石灰原単位は溶銑Si値に比例して増加させる必要が生じ、脱Si、P工程におけるスラグ量が増大し、中間排滓率を低下せざるを得ない。
【0008】
また、該発明で規制している塩基度を2.5以下にするためには、生石灰原単位が低く抑えられ脱Pに必要な最低必要スラグ量が確保できないという問題が発生し、同工程においては脱P不良が発生する惧れがある。これを防止するために塩基度を2.5を超えた操業を行うとスラグの流動性が悪化して排滓率がさらに低下する事態が生じる。
【0009】
また、特に溶銑Si値が高い場合に塩基度が2.0を超えるとスラグの流動性が悪くなるので、螢石等の造滓材を使用せざるを得ないという問題がある。螢石は、スラグの流動性を向上するが転炉耐火物を溶損するので転炉炉寿命を低下させる上、当該スラグにフッ素を含有させるのでスラグの土木工事材料等への使用が困難となる惧れがある。
【0010】
【課題を解決するための手段】
本発明は前記した従来方法における問題点を解決するためになされたものであって、その要旨とするところは、下記手段にある。
(1) 上底吹き転炉に溶銑、スクラップを装入する第一工程、脱Si、脱Pを行う第二工程、生成したスラグを排滓する第三工程、その後脱C吹錬を行う第四工程からなる転炉精錬方法において、溶銑中のSi値が高い場合は、転炉装入前に脱Si処理するか、または転炉装入後に脱Siを行いSi値を調整し、第二工程において生成するスラグ中に存在するSiO2 量を5〜10kg/tの範囲内となし、該第二工程において蛍石を使用しない珪素入量を調整する転炉精錬方法。
(2) 前記第二工程の脱Si、脱P処理を転炉で行う場合、吹錬用ランスを通して生石灰を含む粉体を転炉内に吹き込む(1)記載の珪素入量を調整する転炉精錬方法。
【0011】
【発明の実施の形態】
以下本発明を詳述する。本発明は溶銑予備処理と脱炭とを集約して同一転炉によって操業する。ただし、溶銑中のSi値が高い場合には、予め事前処理によって脱Siし、Si値を所定値まで下げた溶銑を用いる。
炉底に脱P、脱C用フラックスを吹き込むための1個ないし複数個の底吹き羽口と、出鋼孔と対面炉腹にスラグフォーミング用ガス吹込み羽口を備えた上底吹き転炉に溶銑を装入し、前述の底吹き羽口より生石灰粉をベースとしたフラックスを窒素等または不活性ガスを搬送ガスとして吹き込み、脱Siおよび脱P処理を行う。
【0012】
所定のP含有量まで低下した時点で炉を反出鋼側(排滓側)に傾動しスラグのみを排出させる。この時のスラグ排出量が少ないと、スラグ中に除去したPが次の脱C処理時に復Pするため生石灰を余計に添加する必要が生じ、コスト増につながる。
排滓終了とともに直ちに炉を正立させ、副原料(耐火物保護、復P防止用生石灰、ドロマイト、鉄鉱石、Mn鉱石等)を投入して通常の上底吹き脱C精錬を行い、吹止後に溶鋼の出鋼を行う。
【0013】
従来、溶銑Si値が高く生石灰使用量の多い場合など、生石灰の滓化が問題とされるケースにおいては、螢石等の造滓材を脱Si、P工程にて使用することが一般的に行われてきた。特に1400℃以下における比較的低温の溶銑脱P処理においては、螢石の使用が必要とされていた。
【0014】
溶銑の脱Si、Pを行う第二工程において、溶銑Si値が高い場合には塩基度確保のために生石灰原単位が増大し、同工程のスラグ量が増大することで第三工程での中間排滓率が低下してしまう。すなわち、第二工程におけるスラグ中のSiO2 が10kg/tを超えるような場合は、生石灰原単位も20kg/tを超えスラグ量も50kg/t程度となり、第三工程における転炉からの中間排滓のために時間がかかり、スラグの流動性が悪化し充分なる排出ができない事態が発生する。このため、脱Cを行う第四工程において復Pが懸念されるため生石灰原単位を増加せざるを得なくなる。
【0015】
また、第二工程において溶銑Si値が低い場合には、脱Pに必要なスラグ量が確保できず脱P不良が生じる。すなわち、スラグ中のSiO2 が5kg/t未満の場合においては、スラグ量が少ないと脱P不良が発生する。適切な脱Pを確保するために生石灰原単位を増大すると、塩基度が上昇してスラグの流動性を悪化させ第三工程での中間排滓率が低下する。
【0016】
したがって、本発明ではスラグ中のSiO2 の量を5〜10kg/tと規定した。また、塩基度は2.0という低塩基度にし生石灰原単位を低く抑えることが好ましく、生石灰の滓化を促進し、脱Si、P処理において螢石等の造滓材の使用を中止することが可能となる。
【0017】
本発明において前記したように転炉内でのスラグ中SiO2 量を一定の範囲内、すなわち、5〜10kg/tとするためには、溶銑Si値が高い場合、例えばSi値が0.50%を超えるときは0.50%まで事前脱Siを実施する。これは転炉以外の工程にて脱Si処理を行い、脱Si溶銑を転炉に装入するか、または、転炉に装入した高Si溶銑を転炉にて事前脱Si処理し排滓した後に、第二工程での脱Si、Pに移行してもよい。
【0018】
図1は第二工程におけるスラグ塩基度の違いによるスラグ中SiO2 量と、全スラグ量との関係を示したもので、スラグ中SiO2 量が適正範囲(5〜10kg/t)であれば塩基度にもよるが総スラグ量もほぼ13〜53kg/tの範囲内に収まり、スラグフォーミングによる転炉炉口からのスロッピングもなく、またスラグ量が少ないために脱P反応に不都合をきたすこともない。
【0019】
さらに、第二工程において生石灰の滓化を促進する技術として、転炉の上吹き酸素用ランスから粉状の生石灰含有物質を転炉内に吹き込むことで、上記生石灰の滓化問題点を容易に解決することができ、脱Si、脱Pをより確実に行うことができる。
【0020】
【実施例】
以下、本発明を実施例に基づいて説明する。表1に本発明と比較のための従来例について示す。
【0021】
【表1】

Figure 0003735211
【0022】
実施No.1〜4、7、8および11、12は請求項1に対応する本発明の実施例であり、実施No.5、6、9、10は請求項2に対応する本発明の実施例である。
また、実施No.1〜6は溶銑中のSi値が低く、事前脱Si処理を行わなかった例であり、実施No.7〜12においては逆に溶銑Si値が高く、事前脱Si処理を行った例である。
実施No.1〜12までの本発明の実施例では、スラグ中のSiO2 を適正値に制御できたため、塩基度が2.0以下であったにも関わらず、中間排滓率を70%以上に高く維持でき、蛍石等の造滓剤を使用することなく転炉処理後のPを低くすることが可能であった。
【0023】
一方、実施No.13〜17ではスラグ中のSiO2 量を適正値に制御できなかった比較例である。
実施No.13、14ではスラグ流動性確保のため蛍石を使用したものの、中間排滓率は低かった。また、実施No.15は中間排滓率が低く、しかも復Pのため転炉処理後のP値が高くなった。
実施No.16は中間排滓率は高かったものの、復Pのため転炉処理後のP値が高くなった。また、実施No.17は塩基度が高くなってしまい、そのため中間排滓率が低くなり、更に復Pのため転炉処理後のP値が高くなった。
【0024】
【発明の効果】
以上説明したように本発明によれば、同一精錬容器にて脱Si、脱P処理と脱C処理を行うプロセスにおいて、本発明を実施することにより、溶銑Si量が高い場合であっても従来技術に比較して、脱P処理後のスラグの排出量を高めることができ、生石灰原単位を低減することができ、生成スラグ量の減少が可能となる。また、螢石を使用しなくて済む効果も有し、産業上有益な発明である。
【図面の簡単な説明】
【図1】スラグ中SiO2 量と総スラグ発生量の関係を示した図[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a converter refining method for adjusting the silicon charge in a converter.
[0002]
[Prior art]
The conventional refining functions over multiple processes are consolidated in the converter, greatly reducing the energy loss of hot metal and enabling significant reduction in fixed costs (equipment costs and labor costs) before and after the converter. The method is disclosed, for example, in Japanese Patent Application No. 2-181989 .
[0003]
In this invention, hot metal is charged into a converter as a first step, flux addition and oxygen blowing are performed as a second step, and Si removal and P refining are performed to reduce it to a predetermined P content. The converter is tilted to discharge the slag produced in the second step, and then, as the fourth step, degassing is performed to the predetermined C content by adding flux and oxygen blowing in the same converter, As a process, the slag produced in the fourth step is left in the converter, and the steel is returned to the first step, and the steps up to the fifth step are repeated. In some cases, the slag is produced in the fourth step. This is a method of discharging the entire amount of slag after returning the steel in the fifth step without returning the slag to the first step.
[0004]
If the same converter is used to carry out the de-P and decarburization processes in succession, energy loss when moving from the de-P process to the de-C process can be reduced, and fixed costs (equipment costs, Labor costs) can be greatly reduced.
However, if the amount of slag discharged in the third step is small, the P removed in the slag in the second step returns to the molten steel again in the fourth step, so it is necessary to remove P again in the fourth step. In addition, the amount of flux of quicklime must be increased, which leads to an increase in cost. Moreover, since the slag having a high P concentration in the fourth step is used again in the second step, the de-P load in the second step increases and the cost increases. Thus, if there is little slag discharge | emission amount in a 3rd process, the increase in the load for performing P removal cannot be avoided, but the problem that it leads to a cost increase arises.
[0005]
Japanese Patent Laid-Open No. 7-179920 has been proposed as an example of a technique for solving the problems of the invention. By optimizing the operating conditions in the second step of the molten steel manufacturing method, the present invention increases the amount of slag discharged in the third step, suppresses the amount of recovered P in the fourth step, and reduces the basic unit of quick lime. It is a method to plan. The outline is that when producing molten steel from molten iron by performing de-P treatment and de-C treatment in one refining vessel, CaO / SiO2 in the slag after de-P treatment is 2.5 or less, and iron oxide and manganese. The molten steel production method is characterized in that the sum of oxide concentrations (T.Fe + MnO) is 10% or more, the MgO concentration is 10% or less, and the treatment end point temperature is 1320 ° C. or more and 1400 ° C. or less.
[0006]
[Problems to be solved by the invention]
The hot metal Si component value discharged from the blast furnace usually varies from 0.15 to 0.80%, and particularly in recent blast furnaces, an operation method using inexpensive raw fuel is directed. As a result, the Si value in the hot metal tends to increase. In the contents disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 7-179920, no consideration is given to such an increase in the molten iron Si value.
[0007]
When the hot metal Si value is high, it is necessary to secure a basicity of about 2.0 in the de-Si and P processes, so the quick lime unit used in the process needs to be increased in proportion to the hot metal Si value. The amount of slag in the P process increases, and the intermediate rejection rate must be reduced.
[0008]
In addition, in order to make the basicity regulated in the present invention 2.5 or less, there is a problem that the basic unit of quicklime is kept low and the minimum necessary slag amount necessary for de-P cannot be secured. There is a possibility that P removal failure may occur. In order to prevent this, if the operation is performed with a basicity exceeding 2.5, the fluidity of the slag is deteriorated and the evacuation rate further decreases.
[0009]
In addition, particularly when the hot metal Si value is high, if the basicity exceeds 2.0, the fluidity of the slag deteriorates, so that there is a problem that a slagging material such as meteorite must be used. Meteorite improves the fluidity of slag but melts down the refractory of the converter, so that the life of the converter is reduced and fluorine is contained in the slag, making it difficult to use slag for civil engineering materials. There is a concern.
[0010]
[Means for Solving the Problems]
The present invention has been made in order to solve the problems in the above-described conventional methods, and the gist thereof is the following means.
(1) The first step of charging hot metal and scrap into the top-bottom blowing converter, the second step of removing Si and removing P, the third step of discharging generated slag, and the second step of removing C In the converter refining method consisting of four steps, when the Si value in the hot metal is high, the Si value is adjusted by performing de-Si treatment before charging the converter or by removing Si after charging the converter. A converter refining method in which the amount of SiO2 present in the slag produced in the process is within a range of 5 to 10 kg / t, and the silicon content is adjusted without using fluorite in the second process.
(2) When performing de-Si and P removal processes in the second step in a converter, a powder containing quick lime is blown into the converter through a lance for blowing and the converter for adjusting the silicon loading according to (1) Refining method.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is described in detail below. In the present invention, hot metal preliminary treatment and decarburization are integrated and operated in the same converter. However, when the Si value in the hot metal is high, the hot metal is used that has been previously removed by pretreatment and the Si value is lowered to a predetermined value.
Top-bottom blowing converter equipped with one or more bottom-blowing tuyere for blowing de-P and de-C flux to the bottom of the furnace, and slag forming gas-blowing tuyere on the outlet hole The hot metal is charged into the steel, and the flux based on quick lime powder is blown from the aforementioned bottom blowing tuyere using nitrogen or the like or an inert gas as a carrier gas to perform Si removal and P removal treatment.
[0012]
When the P content is lowered to a predetermined level, the furnace is tilted to the rebound steel side (exhaust side) to discharge only the slag. If the amount of slag discharged at this time is small, the P removed in the slag is restored at the time of the next de-C treatment, so it is necessary to add extra quick lime, leading to an increase in cost.
Immediately after the end of slagging, the furnace is erected immediately, and auxiliary raw materials (refractory protection, anti-recovery quicklime, dolomite, iron ore, Mn ore, etc.) are added, and normal top-bottom blow-off C refining is performed. Later, molten steel is produced.
[0013]
Conventionally, in cases where quick lime hatching is a problem, such as when the hot metal Si value is high and the amount of quick lime used is large, it is common to use a slagging material such as meteorite in the Si removal and P processes. Has been done. In particular, in the relatively low temperature hot metal removal P treatment at 1400 ° C. or lower, the use of meteorite has been required.
[0014]
In the second step of removing hot metal from Si and P, if the hot metal Si value is high, the basic unit of quick lime increases to ensure basicity, and the amount of slag in the same step increases, so the intermediate in the third step The rejection rate will decrease. That is, when the SiO2 in the slag in the second step exceeds 10 kg / t, the quick lime unit also exceeds 20 kg / t, and the slag amount is about 50 kg / t, and the intermediate waste from the converter in the third step. For this reason, it takes time, and the fluidity of the slag deteriorates, resulting in a situation where sufficient discharge cannot be performed. For this reason, since there is a concern about recovery P in the fourth step of removing C, it is necessary to increase the quick lime unit.
[0015]
In addition, when the molten iron Si value is low in the second step, the amount of slag necessary for de-Ping cannot be ensured, and de-P defect occurs. That is, in the case where the SiO2 in the slag is less than 5 kg / t, if the amount of slag is small, defective P removal occurs. If the quick lime basic unit is increased in order to ensure appropriate de-P, the basicity increases, the slag fluidity is deteriorated, and the intermediate rejection rate in the third step decreases.
[0016]
Therefore, in the present invention, the amount of SiO2 in the slag is defined as 5 to 10 kg / t. In addition, it is preferable to keep the basicity as low as 2.0 and to keep the quicklime basic unit low, promote the hatching of quicklime, and discontinue the use of stone-making materials such as meteorite in de-Si and P treatment. Is possible.
[0017]
In the present invention, as described above, in order to set the amount of SiO2 in the slag in the converter within a certain range, that is, 5 to 10 kg / t, when the hot metal Si value is high, for example, the Si value is 0.50%. When exceeding, pre-desiliconization is performed to 0.50%. This is done by removing Si from the converter and charging the molten Si into the converter, or removing the high Si molten iron charged in the converter in advance. Then, it may be shifted to Si removal and P in the second step.
[0018]
FIG. 1 shows the relationship between the amount of SiO2 in the slag and the total amount of slag due to the difference in slag basicity in the second step. If the amount of SiO2 in the slag is within an appropriate range (5 to 10 kg / t), the basicity is shown. However, the total slag amount is within the range of about 13 to 53 kg / t, there is no slopping from the converter furnace port due to slag forming, and the slag amount is small, which may cause inconvenience to the de-P reaction. Absent.
[0019]
Furthermore, as a technology for promoting the quick lime hatching in the second step, the quick lime hatching problem can be easily achieved by blowing powdered quick lime-containing material into the converter from the top blown oxygen lance of the converter. It is possible to solve this problem, and it is possible to perform de-Si and de-P more reliably.
[0020]
【Example】
Hereinafter, the present invention will be described based on examples. Table 1 shows a conventional example for comparison with the present invention.
[0021]
[Table 1]
Figure 0003735211
[0022]
Implementation No. 1-4, 7, 8 and 11, 12 are embodiments of the present invention corresponding to claim 1, and no. 5, 6, 9, and 10 are embodiments of the present invention corresponding to claim 2.
In addition, the implementation No. Nos. 1 to 6 are examples in which the Si value in the hot metal was low, and the preliminary de-Si treatment was not performed. On the other hand, in Nos. 7 to 12, the hot metal Si value is high, and this is an example in which pre-desiliconization processing was performed.
Implementation No. In Examples 1 to 12 of the present invention, since SiO2 in the slag was controlled to an appropriate value, the intermediate rejection rate was maintained at 70% or higher despite the basicity being 2.0 or less. It was possible to reduce the P after the converter process without using a slagging agent such as fluorite.
[0023]
On the other hand, the implementation No. In Comparative Examples 13 to 17, the amount of SiO2 in the slag could not be controlled to an appropriate value.
Implementation No. In 13 and 14, fluorite was used to secure slag fluidity, but the intermediate rejection rate was low. In addition, the implementation No. No. 15 had a low intermediate rejection rate, and because of recovery P, the P value after the converter process was high.
Implementation No. Although the intermediate rejection rate of No. 16 was high, the P value after the converter treatment was high because of the recovery P. In addition, the implementation No. No. 17 had a high basicity, so the intermediate rejection rate was low, and the P value after the converter treatment was high due to the recovery P.
[0024]
【The invention's effect】
As described above, according to the present invention, in the process of performing the Si removal, the P removal process and the C removal process in the same refining vessel, even if the amount of molten iron Si is high, it is conventional. Compared with the technology, the discharge amount of slag after the de-P treatment can be increased, the basic unit of quick lime can be reduced, and the amount of generated slag can be reduced. In addition, this invention has the effect of eliminating the use of meteorites and is an industrially useful invention.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the amount of SiO2 in slag and the total amount of slag generated

Claims (2)

上底吹き転炉に溶銑、スクラップを装入する第一工程、脱Si、脱Pを行う第二工程、生成したスラグを排滓する第三工程、その後脱C吹錬を行う第四工程からなる転炉精錬方法において、溶銑中のSi値が高い場合は、転炉装入前に脱Si処理するか、または転炉装入後に脱Siを行いSi値を調整し、第二工程において生成するスラグ中に存在するSiO2 量を5〜10kg/tの範囲内となし、該第二工程において蛍石を使用しないことを特徴とする珪素入量を調整する転炉精錬方法。From the first step of introducing hot metal and scrap into the top-bottom blown converter, the second step of removing Si, removing P, the third step of discharging generated slag, and then the fourth step of removing C blowing In the converter refining method, when the Si value in the hot metal is high, de-Si treatment is performed before the converter is charged, or the Si value is adjusted by removing Si after the converter is charged and generated in the second step A converter refining method for adjusting the amount of silicon, characterized in that the amount of SiO2 present in the slag is within a range of 5 to 10 kg / t and fluorite is not used in the second step. 前記第二工程の脱Si、脱P処理を転炉で行う場合、吹錬用ランスを通して生石灰を含む粉体を転炉内に吹き込むことを特徴とする請求項1記載の珪素入量を調整する転炉精錬方法。2. The silicon content is adjusted according to claim 1, wherein when the de-Si and P treatment in the second step is performed in a converter, powder containing quicklime is blown into the converter through a lance for blowing. Converter refining method.
JP13079299A 1999-05-12 1999-05-12 Converter refining method for adjusting the silicon content Expired - Lifetime JP3735211B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13079299A JP3735211B2 (en) 1999-05-12 1999-05-12 Converter refining method for adjusting the silicon content

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13079299A JP3735211B2 (en) 1999-05-12 1999-05-12 Converter refining method for adjusting the silicon content

Publications (2)

Publication Number Publication Date
JP2000328123A JP2000328123A (en) 2000-11-28
JP3735211B2 true JP3735211B2 (en) 2006-01-18

Family

ID=15042809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13079299A Expired - Lifetime JP3735211B2 (en) 1999-05-12 1999-05-12 Converter refining method for adjusting the silicon content

Country Status (1)

Country Link
JP (1) JP3735211B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4983303B2 (en) * 2006-02-28 2012-07-25 Jfeスチール株式会社 Hot metal refining method
CN103045789B (en) * 2012-12-21 2014-03-26 广东韶钢松山股份有限公司 Converter smelting method for high-silicon molten iron generated during new blow-in of blast furnace
JP6693536B2 (en) * 2017-04-18 2020-05-13 Jfeスチール株式会社 Converter steelmaking method
JP6665884B2 (en) * 2017-04-27 2020-03-13 Jfeスチール株式会社 Converter steelmaking method

Also Published As

Publication number Publication date
JP2000328123A (en) 2000-11-28

Similar Documents

Publication Publication Date Title
KR101361991B1 (en) Method for reclaiming iron and phosphorus from steelmaking slag
JP5408369B2 (en) Hot metal pretreatment method
WO2014112432A1 (en) Converter steelmaking process
JP4999483B2 (en) Manufacturing method of stainless steel
JP2004190101A (en) Method for pre-treating molten iron
JP4977870B2 (en) Steel making method
JP5408379B2 (en) Hot metal pretreatment method
JP3735211B2 (en) Converter refining method for adjusting the silicon content
JP5983492B2 (en) Hot metal pretreatment method
JP6773131B2 (en) Pretreatment method for hot metal and manufacturing method for ultra-low phosphorus steel
CN1195881C (en) Method for removing chrome and/or nickel from liquid slags
JP2020180322A (en) Production method of molten steel using converter
KR101185240B1 (en) Method of desulfuration of return molten steel using slag made in KR desulfuration process
JP2896839B2 (en) Molten steel manufacturing method
JP2008184648A (en) Method for desiliconizing and dephosphorizing molten pig iron
JP5272378B2 (en) Hot metal dephosphorization method
JP3790414B2 (en) Hot metal refining method
JP2006265623A (en) Method for pre-treating molten iron
JP4854933B2 (en) Refining method with high reaction efficiency
JP3771634B2 (en) Effective utilization of chromium oxide-containing dust
JP2607329B2 (en) Hot metal dephosphorization method
JP2004190114A (en) Method for dephosphorizing molten pig iron
JP2012017521A (en) Dephosphorization method of molten iron using dust
JP2001107124A (en) Method for dephosphorizing molten iron
JP3742543B2 (en) Hot metal desulfurization method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050712

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051011

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051021

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091028

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101028

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101028

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111028

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111028

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121028

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121028

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131028

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131028

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131028

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term