JPS63216908A - Bach type production for molten metal - Google Patents

Bach type production for molten metal

Info

Publication number
JPS63216908A
JPS63216908A JP5088787A JP5088787A JPS63216908A JP S63216908 A JPS63216908 A JP S63216908A JP 5088787 A JP5088787 A JP 5088787A JP 5088787 A JP5088787 A JP 5088787A JP S63216908 A JPS63216908 A JP S63216908A
Authority
JP
Japan
Prior art keywords
ore
gas
furnace
combustion
carbonaceous material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5088787A
Other languages
Japanese (ja)
Other versions
JPH0723490B2 (en
Inventor
Hideyuki Yamaoka
山岡 秀行
Tomio Miyazaki
宮崎 富夫
Yasuo Kamei
亀井 康夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP5088787A priority Critical patent/JPH0723490B2/en
Publication of JPS63216908A publication Critical patent/JPS63216908A/en
Publication of JPH0723490B2 publication Critical patent/JPH0723490B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture Of Iron (AREA)

Abstract

PURPOSE:To improve thermal efficiency, by utilizing reducing gas generating by burning carboneous material in packing layer in a furnace to the reduction of ore and burning by produced gas, which does not reduct ore, by combustion- aiding gas blowing to the packing layer, to utilize as sensible heat. CONSTITUTION:The carboneous material 6 and the ore 7 are charged in the cylindrical furnace 1 to form the packing layer 9. Next, the combustion-aiding gas (for example, O2) is blown from the combustion-aiding gas blowing nozzle 3 arranged at the furnace bottom of the above cylindrical furnace 1, to burn the carboneous material 6. By this method, high temp. reducing gas is generated and also the ore 7 is prereduced. Next, the combustion-aiding gas is blown in the above packing layer 9, to burn the by produced gas, which is not contributed to the reduction of ore 7, and preheat the ore 7. Further, under remaining condition of the carboneous material 6 in the furnace 1, by blowing the combustion-aiding gas, molten iron and molten slag are extracted from tapping hole 4 for the molten iron and slag.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は高炉法によらない銑鉄の製造方法に係り、よ
り詳しくは回分式の精錬形態を採用し、低品質の原料を
使用して効率的に溶銑を製造する方法に関する。
[Detailed Description of the Invention] Industrial Application Field This invention relates to a method for producing pig iron without using a blast furnace method, and more specifically, it adopts a batch refining method and uses low-quality raw materials to efficiently produce pig iron. This invention relates to a method for producing hot metal.

従来技術とその問題点 現在における製銑法の主流は高炉法である。高炉法にお
ける主要な化学反応は下記0〜0式で表わすことができ
る。
Prior Art and Its Problems The mainstream iron making method at present is the blast furnace method. The main chemical reactions in the blast furnace method can be expressed by the following formulas 0 to 0.

C+1/20e−+CO+29.410 kcal/K
fllOI C、・、■F@203 +CO→2FeO
+CO2+ 2.330 Kd/にnot Fe2O2
”・■FsO+CO−+Fe+COz + 4.390 Kcal/Kmol FQO”・■F
@O+C−+Fs+CD −33,790にcal/K11101 FQO・・・
■すなわち、炉頂から装入されたコークスは羽口前に降
下し、■式の反応で高温の還元性ガスに転換され、降下
する鉱石と向流で上昇する過程において、ガスの顕熱と
化学エネルギーは下方から順次残存酸化鉄の溶融還元(
0式)、予備還元鉄の溶解と酸化鉄の予備還元(■、■
式)、および鉱石の予熱に利用される。このように高炉
法はガスと鉱石を向流させることにより高い熱効率、還
元能力を達成している。
C+1/20e-+CO+29.410 kcal/K
fllOI C,・,■F@203 +CO→2FeO
+CO2+ 2.330 Kd/not Fe2O2
"・■FsO+CO-+Fe+COz + 4.390 Kcal/Kmol FQO"・■F
@O+C-+Fs+CD -33,790 cal/K11101 FQO...
■In other words, coke charged from the top of the furnace falls in front of the tuyere, is converted into high-temperature reducing gas by the reaction of formula (■), and in the process of rising in countercurrent to the falling ore, the sensible heat of the gas and Chemical energy is applied sequentially from the bottom to the melting reduction of the remaining iron oxide (
0 formula), melting of pre-reduced iron and pre-reduction of iron oxide (■,■
formula) and used for preheating ore. In this way, the blast furnace method achieves high thermal efficiency and reduction ability by countercurrent flow of gas and ore.

しかし、単一容器で安定なガスと鉱石の向流反応を達成
するためには、高強度、低反応性のコークスと高強度、
高被還元性の鉱石を必須とするため、原料炭と鉄鉱石の
厳選、並びにコークス炉、焼結機、ベレット設備等大型
の事前処理設備を必要とし、資源の有効利用、省エネル
ギーおよび環境保全の面でコストアップの原因となって
いる。
However, in order to achieve a stable countercurrent reaction of gas and ore in a single vessel, high-strength, low-reactivity coke and high-strength,
Since highly reducible ores are required, careful selection of coking coal and iron ore, as well as large pre-processing equipment such as coke ovens, sintering machines, and pellet equipment, are required to ensure effective use of resources, energy conservation, and environmental protection. This causes an increase in costs.

これらの問題に対し、原料制約の緩和と事前処理設備の
簡素化を目的として、鉄鉱石を加熱溶解した俊固体還元
剤で還元する溶融還元法が開発されている。
To address these problems, a smelting reduction method has been developed in which iron ore is reduced using a solid reducing agent heated and melted, with the aim of easing raw material constraints and simplifying pre-treatment equipment.

溶融還元法の化学反応は下記■、■式で表わされる。The chemical reactions of the melt reduction method are expressed by the following formulas (1) and (2).

F@t03 + 3C42Fm+ 3cO−108,0
90にd/にnot Fe2O2・・・■ω+1/20
.→CO2+67.590Kcal/Kmol Co 
 ・・・■すなわち、高炉法とは逆に、酸化鉄はまず溶
解され、溶融状態で炭素により還元される(0式)。
F@t03 + 3C42Fm+ 3cO-108,0
90 to d/not Fe2O2...■ω+1/20
.. →CO2+67.590Kcal/Kmol Co
...■ That is, contrary to the blast furnace method, iron oxide is first melted and reduced with carbon in the molten state (equation 0).

この反応は大きな吸熱を伴うが、0式に示すように溶融
還元反応で副生じたCOガスの燃焼熱により補償される
Although this reaction is accompanied by a large endotherm, it is compensated for by the combustion heat of CO gas produced as a by-product in the melting reduction reaction, as shown in equation 0.

このようにして、酸化鉄を液体状態で還元することによ
り原料品質制約の緩和をはかろうとするのが初期段階に
おける [) ored法や E ketorl)Va
llac法に代表される溶融還元法であった。
In this way, in the initial stage, attempts were made to alleviate constraints on raw material quality by reducing iron oxide in a liquid state.
It was a melt reduction method typified by the llac method.

しかるに、溶融還元法の場合は、高いエネルギー効率を
指向しようとして0式の反応を促進させると炉内の還元
性雰囲気が低下し、酸化鉄を十分に還元できない状態が
発生して鉄歩留りの低下やスラグ中鉄酸化物による耐火
物損傷の問題が発生するため、これらの試みは実用化さ
れるまでには至らなかった。
However, in the case of the smelting reduction method, if the Equation 0 reaction is promoted in an attempt to achieve high energy efficiency, the reducing atmosphere in the furnace decreases, creating a state in which iron oxide cannot be sufficiently reduced, resulting in a decrease in iron yield. However, these attempts were not put into practical use because of the problem of damage to refractories caused by iron oxides and iron oxides in the slag.

かかる対策として、現在、別の炉で酸化鉄の予備還元を
強化させる試み(COIN法、CIG法等)や、溶融還
元の熱補償として0式に変えて電力を使用する試み(E
 I red法、l nred法等)がなされているが
、いずれも原料制約条件を緩和させる一方で、プルセス
の複雑化を招く結果となっている。
As countermeasures against this problem, there are currently attempts to strengthen the preliminary reduction of iron oxide in another furnace (COIN method, CIG method, etc.), and attempts to use electric power instead of the 0 type as heat compensation for smelting reduction (E
I red method, l n red method, etc.), but while all of these methods ease the raw material constraint conditions, they result in complication of the process.

この発明はこのような高炉法、溶融還元法の有する諸問
題を解決し、簡素な方法で、劣質原料を使用して高エネ
ルギー効率の下に溶銑を製造する方法を提案せんとする
ものである。
This invention aims to solve the problems of the blast furnace method and the smelting reduction method, and to propose a simple method for producing hot metal with high energy efficiency using inferior raw materials. .

問題点を解決するための手段 この発明は従来の前記問題点を解決する手段として、回
分式の精錬形態を採用し、低品質の原料を使用して効率
的に溶銑を製造する方法を提案するもので、その要旨は
、上部に原料装入とガス回収のための開口を有し、炉底
に支燃性ガス吹込みノズルと溶銑滓抽出口を有する筒型
炉を用い、炉内に炭材と鉱石の充填層を形成し、底吹き
ノズルより吹込む空気、酸素等の支燃性ガスにより炭材
を燃焼させて高温の還元性ガスを生成させるとともに、
該還元性ガスにより鉱石を予備還元し、さらに上吹きラ
ンスにて炭材と鉱石の充填層内に空気、酸素等の支燃性
ガスを吹込み鉱石の還元に寄与しないガスを燃焼させて
鉱石を予熱し、炉内に炭材を残存させた状態で底吹きノ
ズルおよび上吹きランスより炉底部および鉱石と炭材の
充填層部に支燃性ガスを吹込み、炭材を燃焼させて前記
予備還元鉱石を溶解精錬し、生成した溶銑と溶滓を溶銑
滓抽出口より抽出することを特徴とする溶銑の回分式製
造方法にある。
Means for Solving the Problems This invention proposes a method for efficiently producing hot metal using low-quality raw materials by employing a batch refining method as a means for solving the above-mentioned conventional problems. The gist of this method is to use a cylindrical furnace with openings at the top for charging raw materials and gas recovery, and a combustion-supporting gas injection nozzle and hot metal slag extraction port at the bottom. A packed bed of wood and ore is formed, and the carbon material is combusted with combustion-supporting gases such as air and oxygen blown in from the bottom blowing nozzle to generate high-temperature reducing gas.
The ore is pre-reduced using the reducing gas, and combustion-supporting gases such as air and oxygen are blown into the packed bed of carbonaceous material and ore using a top blowing lance to burn gases that do not contribute to the reduction of the ore. is preheated, and with the carbonaceous material remaining in the furnace, combustion-supporting gas is blown into the bottom of the furnace and the packed bed of ore and carbonaceous material through the bottom blowing nozzle and top blowing lance, and the carbonaceous material is combusted. The present invention provides a batch method for producing hot metal, which is characterized by melting and refining pre-reduced ore and extracting the generated hot metal and slag from a hot metal slag extraction port.

高炉法は連続式のプロセスで、還元の主体をガス還元(
■、■式)に置こうとするため、良質の鉱石とコークス
を必須とした。一方、溶融還元法は溶融還元に主体を置
き、溶融還元吸熱を、副生するガスの燃焼発熱(0式)
で補償しようとしたため、還元能力の低下を引起こした
The blast furnace method is a continuous process in which the main body of reduction is gas reduction (
(■, ■), high-quality ore and coke were required. On the other hand, the smelting reduction method mainly focuses on smelting reduction, and uses the smelting reduction heat absorption as the heat generated by combustion of the by-product gas (equation 0).
As a result, the reduction ability decreased.

そこで、この発明では、高炉法における0〜0式の反応
と、溶融還元法における■、■式の反応のいずれをも取
込み、かつ回分式の処理方式を採用し、時間的に順次鉱
石の予熱、予備還元、溶解、溶融還元を行なわせること
により劣質原料の使用を可能とし、かつ高いエネルギー
効率と鉄歩留りて溶銑を製造し得る方法を提案したもの
である。
Therefore, in this invention, we incorporate both the 0-0 reaction in the blast furnace method and the reactions in the smelting reduction method and the reactions in the This paper proposes a method that allows the use of inferior raw materials by performing preliminary reduction, melting, and smelting reduction, and that can produce hot metal with high energy efficiency and iron yield.

なおこの発明において、回分式の処理方式を採用したの
は、劣質の炭材や鉱石の使用をはかるためである。
In this invention, the batch treatment method is adopted in order to use inferior quality carbon materials and ores.

作   用 図面はこの発明の一実施例を模式的に示す製造工程図で
ある。
The operational drawings are manufacturing process diagrams schematically showing one embodiment of the present invention.

まず、この発明で用いる反応容器としては、上部に原料
の装入とガス回収のための開口(2)を有し、底部に空
気、酸素等の支燃性ガス吹込み用底吹きノズル(3)と
溶銑滓抽出口(4)を有する筒型炉(1)を用いる。
First, the reaction vessel used in this invention has an opening (2) at the top for charging raw materials and recovering gas, and a bottom blowing nozzle (3) at the bottom for blowing combustion-supporting gas such as air or oxygen. ) and a cylindrical furnace (1) having a hot metal slag extraction port (4).

使用する原料としては、炭材と鉱石が主体である。炭材
としてはコークス、成型底、石炭のいずれでもよく、粒
度としては5mm以上のものが望ましい。鉱石としては
塊鉱石、焼成ベレット、生ペレット、焼結鉱等いずれで
もよく、粒度としては2mm以上が望ましい。他に石灰
石、ドロマイト、その他の造滓剤を必要に応じて使用す
る。
The raw materials used are mainly carbonaceous materials and ores. The carbon material may be coke, molded bottom, or coal, and the particle size is preferably 5 mm or more. The ore may be any lump ore, fired pellet, raw pellet, sintered ore, etc., and the particle size is preferably 2 mm or more. In addition, limestone, dolomite, and other slag-forming agents are used as necessary.

すなわち、まず筒型炉(1)の上部開口(2)より炭材
(6)と鉱石(7)、必要に応じて造滓剤(8)を炉内
に装入して炉内に充填層(9)を形成する。その際の装
入力2法としては、炭材と鉱石および造滓剤を層状に装
入するか、もしくは混合して装入してもよいが、炉底部
に炭材を集中させることが望ましい(図a)。
That is, first, carbon material (6), ore (7), and if necessary, a slag-forming agent (8) are charged into the furnace through the upper opening (2) of the cylindrical furnace (1), and a packed bed is formed in the furnace. (9) is formed. In this case, the two methods of charging force include charging the carbonaceous material, ore, and slag-forming agent in layers, or charging them in a mixed manner, but it is preferable to concentrate the carbonaceous material at the bottom of the furnace ( Diagram a).

次に、底吹きノズル(3)より空気また酸素等の支燃性
ガス(0を吹込み炭材(6)に着火せしめる。炭材の燃
焼が進むとともに、 燃焼生成ガス中の02eCO2、
)120は減少し、下記0式に示す反応によりCOとH
2を主成分とする還元性ガスを生成する(図b)。
Next, combustion-supporting gas (0) such as air or oxygen is injected from the bottom blowing nozzle (3) to ignite the carbonaceous material (6). As the combustion of the carbonaceous material progresses, CO2 in the combustion generated gas,
) 120 decreases, and through the reaction shown in the following equation 0, CO and H
A reducing gas containing 2 as the main component is produced (Figure b).

Cm  Hn +T O2−1tl Co + 282
・・・■上記の反応が安定した段階で、炉底からの支燃
性ガス吹込み置を増加し、かつ上吹きランス(5)を充
@層(9)内に挿入し空気、酸素等の支燃性ガスを吹込
む。この段階では充填層内の鉱石の温度は低い状態にあ
る。したがって、下記に示す燃焼反応が起る。
Cm Hn +T O2-1tl Co + 282
...■ When the above reaction becomes stable, increase the number of combustion-supporting gas injection stations from the bottom of the furnace, and insert the top blowing lance (5) into the filling layer (9) to inject air, oxygen, etc. Inject combustion-supporting gas. At this stage, the temperature of the ore in the packed bed is low. Therefore, the combustion reaction shown below occurs.

ot+co ()12> =C0z  (H2O) +
 67590(57800)にad/KIIIO1Co
 (H2)    ・・・■この燃焼熱により、鉱石は
加熱されて昇温するとともに、前記0式の反応で生成し
たCOとH2を主成分とする還元性ガスによる還元反応
(■、[株]式)が生起する(図C)。
ot+co ()12> =C0z (H2O) +
67590 (57800) ad/KIIIO1Co
(H2) ...■This combustion heat heats the ore and raises its temperature, and a reduction reaction (■, [Co., Ltd.] equation) occurs (Figure C).

F8□03 +CD ()12)→2FaO+COz 
 (H2O)+2330(−7460)Kcal/Kf
llOI F11203 ・・・■FsO+CD ()
12) →Fe+C02()120 )+4390(−
5400)Kcal/KmOI FsO・・・■すなわ
ち、この段階では、炉底部において0式の反応で生成し
た還元性ガスを燃料および還元剤として利用し、鉱石の
予熱、予備還元を促進させる。またこの時、炉底部で0
式の反応により生成するCo、 H2ガスが全量CO2
、H2Oに転換され、排出されるガス中のCo、 H2
がゼロとなるように充填層(9)内に吹込む支燃性ガス
(O2)量を調整する。
F8□03 +CD ()12)→2FaO+COz
(H2O)+2330(-7460)Kcal/Kf
llOI F11203...■FsO+CD ()
12) →Fe+C02()120 )+4390(-
5400) Kcal/KmOI FsO...■ That is, at this stage, the reducing gas generated by the 0-type reaction at the bottom of the furnace is used as a fuel and reducing agent to promote preheating and preliminary reduction of the ore. At this time, 0 at the bottom of the furnace
The total amount of Co and H2 gas produced by the reaction of the formula is CO2
, Co in the gas that is converted to H2O and exhausted, H2
The amount of combustion-supporting gas (O2) blown into the packed bed (9) is adjusted so that the amount becomes zero.

その後、炉内に炭材を残存させた状態でさらに底吹きノ
ズル(3)および上吹きランス(5)より支燃性ガスの
吹込みを継続することにより、炭材の燃焼により予備還
元鉱石の温度が融点に到達し、鉱石類の溶は落ちが始ま
る。この段階では0〜0式の反応で生成するCO2、)
(aoは再び炭材中Cと反応してCo、 H2に転換さ
れる。したがって、この段階。
After that, by continuing to blow combustion supporting gas from the bottom blowing nozzle (3) and top blowing lance (5) with the carbonaceous material remaining in the furnace, the pre-reduced ore is produced by burning the carbonaceous material. The temperature reaches the melting point and the ore begins to melt. At this stage, CO2 is generated by the reaction of 0 to 0 formula,)
(AO reacts with C in the carbonaceous material again and is converted to Co and H2. Therefore, at this stage.

では底吹きノズル(3)および上吹きランス(5)から
の送酸量を増加させても排出ガス(11)の温度が過上
昇するのみで、排出されるガス中のC02、H2Oの増
加の度合が少なくなるので、底吹きノズル(3)および
上吹きランス(5)からの送酸量を低減させる。
In this case, even if the amount of oxygen sent from the bottom blowing nozzle (3) and the top blowing lance (5) is increased, the temperature of the exhaust gas (11) will only rise excessively, and the increase in CO2 and H2O in the exhausted gas will increase. Since the degree of oxygen decreases, the amount of oxygen sent from the bottom blowing nozzle (3) and the top blowing lance (5) is reduced.

この間、鉱石の溶解が進行し、スラグ中に残存する酸化
鉄は炭材中のCと下記11式の反応を生起して還元され
る(図d)。
During this time, the dissolution of the ore progresses, and the iron oxide remaining in the slag undergoes a reaction with C in the carbonaceous material as shown in Equation 11 below, and is reduced (Figure d).

FsO+C→Fs+co−33790Kcal/KmO
I FaO・=■その後、鉱石は全量溶解、還元され、
炉内には溶銑とスラグが生成する。さらに、原料装入時
点において、炭材を過剰に装入しておくことにより、炉
内には炭材も共存した状態となっている。鉱石の還元が
全量完了したか否かは、例えば送IMと排出されるガス
中の01量が一致したことで確認できるので、この時点
で送酸を停止し、炉内の溶銑(12)、および溶滓(1
3)を溶銑滓抽出口(4)から抽出する(図e)。ここ
で、炉内に残存する炭材は次回への繰り越し分としてそ
のまま残存させることが望ましい。
FsO+C→Fs+co-33790Kcal/KmO
I FaO・=■After that, the entire amount of ore is dissolved and reduced,
Hot metal and slag are produced in the furnace. Furthermore, by charging an excessive amount of carbon material at the time of charging the raw materials, carbon material also coexists in the furnace. Whether or not the reduction of the entire amount of ore has been completed can be confirmed, for example, by checking that the amount of 01 in the IM and the amount of 01 in the discharged gas match, so at this point the acid feed is stopped and the molten pig iron (12) and slag (1
3) is extracted from the hot metal slag extraction port (4) (Figure e). Here, it is desirable that the carbonaceous material remaining in the furnace be left as is as it is carried over to the next time.

上記この発明方法における0式の反応は、高炉における
0式の反応と同じである。また、■、@l。
The reaction of type 0 in the method of this invention described above is the same as the reaction of type 0 in a blast furnace. Also ■, @l.

0式の反応は高炉における■、■、■の反応式と同じで
おる。すなわち、高炉と同じ反応で構成されているとみ
なすことができる。ただし、高炉は連続式に運転される
のに対し、この発明は回分式に運転される。この回分式
を採用したことにより、高炉では使用できない劣質の炭
材や鉱石の使用が可能となる。
The reaction of Equation 0 is the same as the reaction equations (1), (2), and (2) in a blast furnace. In other words, it can be considered that it consists of the same reactions as a blast furnace. However, whereas the blast furnace is operated continuously, this invention is operated batchwise. By adopting this batch method, it is possible to use inferior quality carbon materials and ores that cannot be used in blast furnaces.

すなわち、炭材は高炉におけるコークスのように炉下部
において長時間の間コークス充填層を形成させる必要は
なく、運転の最終段階では大半が消失してしまうもので
おる。したがって、強度や厳格な粒度管理は不要となる
。一方、鉱石における被還元性も問わない。その理由は
、被還元性に優れた鉱石の場合には、炉下部で生成する
還元性ガスで鉱石を還元するとともに還元に寄与しない
ガスを燃焼させて鉱石を予熱する過程(図C)の段階で
0式の反応を強化させ、生成するCo、 H2ガスで■
、[株]式により鉱石を還元させることができる。
That is, unlike coke in a blast furnace, it is not necessary to form a coke-filled bed in the lower part of the furnace for a long time, and most of the carbonaceous material disappears at the final stage of operation. Therefore, strength and strict particle size control are not required. On the other hand, the reducibility of the ore does not matter. The reason for this is that in the case of ores with excellent reducibility, the ore is reduced with reducing gas generated in the lower part of the furnace, and gas that does not contribute to reduction is burned to preheat the ore (Figure C). The reaction of equation 0 is strengthened, and the generated Co and H2 gases
, Ore can be reduced by [stock] formula.

一方、被還元性の悪い鉱石の場合には前記図(C)の段
階で0式の反応を促道させて早期に溶解せしめ、予備還
元鉱石の溶解精錬過程(図d)に移行させて後、■式の
反応で還元させることができるためである。
On the other hand, in the case of ores with poor reducibility, the reaction of formula 0 is promoted at the stage shown in Figure (C) above to dissolve them at an early stage, and the process proceeds to the pre-reduced ore melting and refining process (Figure d). This is because it can be reduced by the reaction of formula (2).

ここで、被還元性の良好な鉱石の場合の反応形態は、主
に■、■、■式であり高炉法の■、■。
Here, in the case of ores with good reducibility, the reaction mode is mainly the formulas ■, ■, and ■, and the blast furnace method ■, ■.

■式と同じでおる。一方、被還元性の悪い鉱石の場合の
反応形態は、■、[株]式が主体でおり、これは溶融還
元法における■、■式と同じでおる。ただし、この場合
溶融還元法では同時的に■、■式を進行させるため、還
元能力の低下を引起こしていたが、この発明の場合は0
式と0式の反応を、回分式運転方式を採用したことによ
り時間的に鉱石の還元と予熱段階(図C)と予備還元鉱
石の溶解精錬段階(図d)とに区別しているため、還元
能力が低下することはない。勿論、■、■、[株]式の
反応の合計と、■、■式の反応の合計は全体とじて等価
であり、共に高炉法に匹敵する高いエネルギー効率(ガ
ス利用率)が期待できることになる。
■It is the same as the formula. On the other hand, in the case of ores with poor reducibility, the reaction mode is mainly ``■'' and ``stock'' formulas, which are the same as the ``2'' and ``2'' formulas in the smelting reduction method. However, in this case, in the smelting reduction method, formulas (1) and (2) proceed simultaneously, which caused a decrease in reducing ability, but in the case of this invention,
By adopting a batch operation system, the reactions of Equations and Equations 0 are temporally divided into the reduction and preheating stage of the ore (Figure C) and the melting and refining stage of the pre-reduced ore (Figure d). There is no loss of ability. Of course, the sum of the reactions of formulas ■, ■, [stock] and the sum of the reactions of formulas ■ and ■ are equivalent as a whole, and both can be expected to have high energy efficiency (gas utilization rate) comparable to the blast furnace method. Become.

発明の詳細 な説明したごとく、この発明は回分式の操作手順を取り
、炉内に鉱石と炭材の充填層を形成し、炉底部から支燃
性ガスを吹込み、炭材を燃焼させて生成する還元性ガス
を鉱石の還元に利用するとともに、鉱石の還元に利用さ
れなかったCo、 H2ガスを鉱石と炭材の充填層内に
OI!を吹込むことにより燃焼させ、顕然として利用す
ることにより、劣質の炭材と鉱石を使用して還元能力を
損うことなく高いエネルギー効率で溶銑を製造すること
が可能でおる。したがって、この発明によれば、大幅な
銑鉄製造コスト低減がはかられるという大なる効果を奏
するものである。
As described in detail, this invention uses a batch operation procedure, forming a packed bed of ore and carbonaceous material in the furnace, blowing combustion-supporting gas from the bottom of the furnace, and burning the carbonaceous material. The generated reducing gas is used to reduce the ore, and the Co and H2 gases that were not used to reduce the ore are OIed into the packed bed of ore and carbonaceous material! It is possible to produce hot metal with high energy efficiency without impairing reduction ability using inferior quality carbonaceous material and ore by injecting and combusting it and using it openly. Therefore, according to the present invention, the great effect of significantly reducing the cost of producing pig iron is achieved.

実施例 7t/チヤージの上底吹き転炉においてこの発明方法を
実施した。
EXAMPLE 7 The process of the invention was carried out in a t/charge top-bottom blown converter.

その際、鉱石としてF1120386%、脈石13.8
%。
At that time, as ore F1120386%, gangue 13.8
%.

脈石中5L0226%、 Al!20312%、 Ca
O49%2粒度2mm以上が100%のものを使用し、
炭材として炭素87.5%、灰分10%2粒度1101
T1以上のコークスを2使用した。
5L0226% in gangue, Al! 20312%, Ca
Use 100% O49%2 particle size of 2 mm or more,
Carbon material: 87.5% carbon, 10% ash, 2 particle size: 1101
Two cokes of T1 or higher were used.

まず、鉱石11.2tOnとコークス3.7tOrlを
十分に加熱した転炉内に装入して鉱石とコークスの充填
層を形成した。 ただし、炉底部にはコークス1℃On
を単味で装入し、その上にコークスと鉱石の混合物を装
入した。
First, 11.2 tons of ore and 3.7 tons of coke were charged into a sufficiently heated converter to form a packed bed of ore and coke. However, the coke at the bottom of the furnace is heated at 1°C.
was charged alone, and a mixture of coke and ore was charged on top of it.

次に、底吹きノズルから空気1000 Nm’A1を吹
込んだ。吹込み後、約5分で排出ガス中にCOが検出さ
れたため底吹きノズルからの空気量を386ONm34
に増加させるとともに、充i!x層内に装入した上吹き
ランスから排出ガス中のCoと02がゼロとなるように
吹込み量を調整して空気を吹込んだ。この間の所要時間
は約60分であり、充@層内へ吹込んだ空気量は60分
間の平均で650 Nm3+でめった。
Next, 1000 Nm'A1 of air was blown from the bottom blowing nozzle. About 5 minutes after blowing, CO was detected in the exhaust gas, so the amount of air from the bottom blowing nozzle was reduced to 386ONm34.
At the same time as increasing the amount of Air was blown from a top-blowing lance inserted into the x layer with the amount of air blown so that Co and 02 in the exhaust gas were zero. The time required during this period was approximately 60 minutes, and the amount of air blown into the filled layer was 650 Nm3+ on average over the 60 minutes.

上記過程の後半において、充填層内への空気吹込み量を
増加させても排ガス中のCoが消失しないようになった
ことにより、コークスが生成CO2と反応してcoに転
換されるほどの高温(1080″C以上)になったと判
断されたため、底吹きと充填層内への送風を02に切換
え送風を続行した。その後、約40分で吹き込み酸素量
と排出されるガス中の酸素量がほぼ一致してきたので、
送酸を停止した。
In the latter half of the above process, Co in the exhaust gas does not disappear even if the amount of air blown into the packed bed is increased, so the temperature reaches a high enough temperature that the coke reacts with the generated CO2 and is converted to co. (1080″C or higher), so we switched the bottom blowing and air blowing into the packed bed to 02 and continued air blowing.After that, in about 40 minutes, the amount of oxygen blown and the amount of oxygen in the discharged gas decreased. Since we are almost in agreement,
Oxidation was stopped.

この間の底吹きノズルからの送酸量の平均は1436N
m3+、充填層への送酸量平均は212Nm’+であっ
た。またこの間、排出されたガスの平均利用率CD/C
D+C02は約50%であり、4914Mdのガスが回
収された。
The average amount of oxygen sent from the bottom blowing nozzle during this period was 1436N.
m3+, the average amount of oxygen sent to the packed bed was 212 Nm'+. Also, during this period, the average utilization rate CD/C of the gas discharged
D+C02 was approximately 50% and 4914 Md of gas was recovered.

次に、送酸を停止し、炉内に蓄積した溶銑とスラグを抽
出したところ、溶銑7tとともにスラグ1.89tが回
収され、炉内には約o、 atonのコークスが残存し
た。
Next, when the oxygen supply was stopped and the hot metal and slag accumulated in the furnace were extracted, 7 tons of hot metal and 1.89 tons of slag were recovered, and approximately 1.8 tons of coke remained in the furnace.

得られた溶銑は温度1500℃、C3,5%、 SLは
ほぼゼロ、Sは0.1%未満にとどまった。またスラグ
はCaO約40%、  5LOt約31%、  M2O
315%。
The temperature of the obtained hot metal was 1500°C, C was 3.5%, SL was almost zero, and S remained below 0.1%. In addition, the slag contains approximately 40% CaO, approximately 31% 5LOt, and M2O.
315%.

FsOO,5%以下、So、8%であった。FsOO was 5% or less, So was 8%.

第1表には銑鉄1トン当りの原燃料使用量を示す。Table 1 shows the amount of raw fuel used per ton of pig iron.

第  1  表 また、精錬に要した時間は合計1時間45分であり、溶
銑滓抽出、装入に要する時間を含めると1チャージ当り
2時間程度となる。
Table 1 Also, the total time required for refining was 1 hour and 45 minutes, and including the time required for hot metal slag extraction and charging, it was about 2 hours per charge.

なお、炭材にコークスを使用した場合に限らず、成型炭
、塊石炭を使用だ場合においても、炭材使用量は多少増
加するものの、十分に操業可能であった。
In addition, not only when coke was used as the carbon material, but also when briquette coal and lump coal were used, although the amount of carbon material used increased somewhat, it was possible to operate satisfactorily.

上記の実施例から明らかなごとく、本発明法により高炉
法では使用できない細粒子径の原料を使用して高炉法に
匹敵するエネルギー原単位の下に溶銑を製造することが
できた。
As is clear from the above examples, the method of the present invention was able to produce hot metal using raw materials with fine particle diameters that cannot be used in the blast furnace method, and with an energy consumption rate comparable to that of the blast furnace method.

【図面の簡単な説明】[Brief explanation of the drawing]

図面はこの発明の一実施例を模式的に示す製造工程図で
ある。 1・・・筒型炉、  2・・・開口、  3・・・底吹
きノズル、4・・・溶銑滓抽出口、  5・・・上吹き
ランス、6・・・炭材、  7・・・鉱石、  9・・
・充填層、12・・・溶銑、 13・・・溶滓。
The drawings are manufacturing process diagrams schematically showing one embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Cylindrical furnace, 2... Opening, 3... Bottom blowing nozzle, 4... Hot metal slag extraction port, 5... Top blowing lance, 6... Charcoal material, 7... Ore, 9...
- Filled bed, 12... Hot metal, 13... Molten slag.

Claims (1)

【特許請求の範囲】[Claims] 上部に原料装入とガス回収のための開口を有し、炉底に
支燃性ガス吹込みノズルと溶銑滓抽出口を有する筒型炉
を用い、炉内に炭材と鉱石の充填層を形成し、底吹ノズ
ルより吹込む支燃性ガスにより炭材を燃焼させて高温の
還元性ガスを生成させるとともに、該還元性ガスにより
鉱石を予備還元し、さらに上吹ランスにて炭材と鉱石の
充填層内に支燃性ガスを吹込み鉱石の還元に寄与しない
ガスを燃焼させて鉱石を予熱し、炉内に炭材を残存させ
た状態で底吹ノズルおよび上吹きランスより炉底部およ
び鉱石と炭材の充填層部に支燃性ガスを吹込み、炭材を
燃焼させて前記予備還元鉱石を溶解精錬し、生成した溶
銑と溶滓を溶銑滓抽出口より抽出することを特徴とする
溶銑の回分式製造方法。
A cylindrical furnace with an opening for charging raw materials and gas recovery at the top, a combustion-supporting gas injection nozzle and a hot metal slag extraction port at the bottom of the furnace is used, and a packed bed of carbonaceous material and ore is placed inside the furnace. The carbonaceous material is combusted by the combustion-supporting gas blown in from the bottom blowing nozzle to generate high-temperature reducing gas, the ore is pre-reduced by the reducing gas, and the ore is further reduced with the top-blowing lance. The ore is preheated by injecting combustion-supporting gas into the packed bed of ore to combust the gas that does not contribute to the reduction of the ore, and with the carbonaceous material remaining in the furnace, the bottom of the furnace is blown through the bottom blowing nozzle and top blowing lance. A combustion-supporting gas is injected into a packed bed of ore and carbonaceous material, the carbonaceous material is combusted, the pre-reduced ore is melted and refined, and the generated hot metal and slag are extracted from a hot metal slag extraction port. A batch production method for hot metal.
JP5088787A 1987-03-04 1987-03-04 Batch production method of hot metal Expired - Lifetime JPH0723490B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5088787A JPH0723490B2 (en) 1987-03-04 1987-03-04 Batch production method of hot metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5088787A JPH0723490B2 (en) 1987-03-04 1987-03-04 Batch production method of hot metal

Publications (2)

Publication Number Publication Date
JPS63216908A true JPS63216908A (en) 1988-09-09
JPH0723490B2 JPH0723490B2 (en) 1995-03-15

Family

ID=12871243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5088787A Expired - Lifetime JPH0723490B2 (en) 1987-03-04 1987-03-04 Batch production method of hot metal

Country Status (1)

Country Link
JP (1) JPH0723490B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998021372A1 (en) * 1996-11-11 1998-05-22 Sumitomo Metal Industries, Ltd. Method and apparatus for manufacturing reduced iron
WO1998022626A1 (en) * 1996-11-20 1998-05-28 Sumitomo Metal Industries, Ltd. Reduced iron manufacturing method and apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998021372A1 (en) * 1996-11-11 1998-05-22 Sumitomo Metal Industries, Ltd. Method and apparatus for manufacturing reduced iron
US6015527A (en) * 1996-11-11 2000-01-18 Sumitomo Metal Industries, Ltd. Facility for producing reduced iron
US6284017B1 (en) 1996-11-11 2001-09-04 Sumitomo Metal Industries, Ltd. Method and facility for producing reduced iron
WO1998022626A1 (en) * 1996-11-20 1998-05-28 Sumitomo Metal Industries, Ltd. Reduced iron manufacturing method and apparatus
CN1055730C (en) * 1996-11-20 2000-08-23 住友金属工业株式会社 Reduced iron mfg. method and apparatus

Also Published As

Publication number Publication date
JPH0723490B2 (en) 1995-03-15

Similar Documents

Publication Publication Date Title
WO2010072043A1 (en) Smelting vessel, steel making plant and steel production method
JP2016526606A (en) Gas desulfurization in pig iron production
EP0326402A2 (en) Smelting reduction process
JPH0463215A (en) Method and apparatus for refining metal
US5558696A (en) Method of direct steel making from liquid iron
JPS63216908A (en) Bach type production for molten metal
CA1333662C (en) Process for melting cold iron material
JPH01252714A (en) Mixed agglomerating briquette for smelting reduction furnace and smelting reduction method for mixed agglomerating briquette
EP0950117B1 (en) A method for producing metals and metal alloys
JP2638861B2 (en) Melt reduction method
JPS6143406B2 (en)
JPS58174512A (en) Method and apparatus for manufacting molten pig iron
JPH01162711A (en) Smelting reduction method
Usachev et al. Modern Processes for the Coke-Less Production of Iron.
JPS63213613A (en) Combining type direct iron making method
JPS62188714A (en) Production of molten iron
JPS63195244A (en) Production of ferromanganese
JPH06228623A (en) Steelmaking method having small energy consumption
CN202509100U (en) Device for continuous iron making by smelting reduction
JPS58171515A (en) Method and device for production of pig iron
CN116426708A (en) Smelting-separating iron-smelting method using coal-based shaft furnace direct reduction-side blowing furnace
JPS63130707A (en) Production of molten iron
JPH01215919A (en) Method for starting melting in reactor ironmaking
JPS58174511A (en) Manufacture of pig iron and apparatus therefor
JPS58117852A (en) Method and apparatus for manufacturing ferrochromium

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term