JPH01215919A - Method for starting melting in reactor ironmaking - Google Patents

Method for starting melting in reactor ironmaking

Info

Publication number
JPH01215919A
JPH01215919A JP63040296A JP4029688A JPH01215919A JP H01215919 A JPH01215919 A JP H01215919A JP 63040296 A JP63040296 A JP 63040296A JP 4029688 A JP4029688 A JP 4029688A JP H01215919 A JPH01215919 A JP H01215919A
Authority
JP
Japan
Prior art keywords
scrap
tuyere
reactor
molten
coke
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63040296A
Other languages
Japanese (ja)
Inventor
Senji Fujita
藤田 宣治
Noboru Demukai
登 出向井
Atsushi Ishii
敦 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP63040296A priority Critical patent/JPH01215919A/en
Publication of JPH01215919A publication Critical patent/JPH01215919A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Abstract

PURPOSE:To produce molten seed metal by itself without charging it from outside by charging scrap and carbonic material on coke bed in a furnace and blowing oxygen from furnace bottom tuyere at the time of producing molten iron melted by charging scrap into the converter, which the molten iron is used as the molten seed metal, and blowing the carbonic material and oxygen. CONSTITUTION:At the time of starting reactor steelmaking for producing the molten iron at low cost by charging the scrap at low cost into the converter, in which the molten iron as the molten seed metal exists, and blowing O2 and fine powdered coal from the bottom part tuyere 12 and the upper part tuyere 13 to melt the scrap, as the molten seed metal is nothing, the granular coke 3 is packed in the reactor 1 to form the bed 7, and on this, the mixing material of the scrap 4A and coke powder 5A is charged. Successively, the mixing material of the O2 and fine powdered coal is blown from the bottom part tuyere 12 and the upper part tuyere 13, and by combustion of the fine powdered coal, the coke bed 7 is burnt and the scrap 4A is melted, to produce the molten seed metal by itself. Further, a preheating chamber 21 is arranged at the upper part of converter 11 and exhaust gas of the converter is secondarily burnt in a combustion tower 22 to make high temp. exhaust gas, and the additional scrap 4B and coke 5B into the converter 1 is preheated, and heat efficiency of the apparatus is improved.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、リアクター製鉄における溶解開始方法に関す
る。 [従来の技術] 発明者らは、スクラップの溶解による鉄(銑鉄および鋼
を含む)の製造を、高価な電力を使用することなく炭素
質材料と酸素ガスとを使用して行なう「リアクター製鉄
」技術を確立し、基本的な方法の発表(特公昭59−4
4363号、特開昭60−181213号)に続いて、
リアクター製鉄装置を開示しく特開昭58−13330
9号、同58−199808号、同59=150005
号)、さらにいくつかの改良法を提案して来た(特開昭
60−181213@、同61−15907〜9@、同
61−201713号)。 リアクター製鉄法の原理は、種湯として炉内に収容した
溶融鉄中にCと02とを吹き込み、CのCOへの燃焼と
、炉内の上部空間にあける一部のGOのCO2への燃焼
による発熱で、装入したスクラップを溶解して溶融鉄の
量を増大させるものである。 リアクター製鉄で使用する種湯は、これまで、他の溶解
手段によって得た溶融鉄、たとえばアーク炉でスクラッ
プを溶解した溶湯、高炉からの溶銑、あるいは転炉の溶
鋼を予定していた。 このような種湯は、容易に入手で
きる場合が多いが、工場の環境によって、あるいはまた
操業の都合によって、常に確保できるとは限らず、その
ためにリアクター製鉄法の実施が制約を受りることかあ
る。
The present invention relates to a method for starting melting in reactor steel manufacturing. [Prior Art] The inventors have developed a method called "reactor iron manufacturing" in which iron (including pig iron and steel) is manufactured by melting scrap using carbonaceous materials and oxygen gas without using expensive electricity. Established the technology and announced the basic method
4363, JP-A No. 60-181213),
Japanese Patent Publication No. 58-13330 for Disclosing Reactor Steel Manufacturing Equipment
No. 9, No. 58-199808, No. 59 = 150005
JP-A-60-181213@, JP-A-61-15907-9@, and JP-A-61-201713). The principle of the reactor iron manufacturing method is that C and 02 are blown into molten iron stored in a furnace as seed water, and the C is combusted into CO, and some GO, which is provided in the upper space of the furnace, is combusted into CO2. The heat generated by this melts the charged scrap and increases the amount of molten iron. Until now, the seed metal used in reactor steelmaking has been intended to be molten iron obtained by other melting means, such as molten metal from scrap melted in an arc furnace, hot metal from a blast furnace, or molten steel from a converter. Although such seed water is often readily available, it is not always possible to secure it due to the factory environment or operational circumstances, which limits the implementation of the reactor steelmaking method. There is.

【発明が解決しようとする課題】[Problem to be solved by the invention]

本発明の目的は、上記したリアクター製鉄法に対する制
約を取り除き、他の溶解手段に頼ることなく、リアクタ
ー内においてその場で種湯を用意し、所望に応じてどこ
でも、またいつでもリアクター製鉄を実施できるように
した、リアクター製鉄における溶解開始方法を提供する
ことにある。 [課題を解決するための手段] 本発明のリアクター製鉄における溶解開始方法は、種湯
となる溶融鉄を収容した炉内にスクラップを投入し、炭
素質材料および酸素ガスを吹き込んでCを燃焼させ、そ
の燃焼熱でスクラップを溶解して溶融鉄の量を増大させ
ることからなるリアクター製鉄において、操業の開始に
当り、炉底に粒状の炭素質材料を充填してベッドを形成
しておき、その上に炭素質材料を混合したスクラップを
装入し、炉の底部羽口および上部羽口から酸素ガスを吹
き込んでCを燃焼させることによって、その場で種湯を
調製することを特徴とする。 ベッドを形成する炭素質材料は、コークスのような圧縮
強度の高いものが好ましい。 スクラップに混合するも
のと、羽口から吹き込むものは、低品質でもよい。 炭素質材料は、スクラップに混合したもので不足であれ
ば、炉の上部にスクラップ投入口と別に供給口を設けて
おき、それを通して投入することによって補給するとよ
い。 これには、塊状、または粗粒状の石炭が好適であ
る。 それに代えて、またはそれとともに、上部羽口−5= と底部羽口のいずれか一方または両方から、微粉炭を吹
き込んで燃焼させることも有利である。 とくに底部羽口からの微粉炭の吹き込みは、ベッドの炭
素の消耗を少なくして後記するベッドの役割を助けるか
ら、推奨すべき実施態様である。
The purpose of the present invention is to remove the above-mentioned restrictions on the reactor iron manufacturing method, to prepare a seed water on the spot in the reactor without relying on other melting means, and to perform reactor iron manufacturing anywhere and anytime as desired. An object of the present invention is to provide a method for starting melting in reactor steel manufacturing. [Means for Solving the Problems] The method for starting melting in reactor steelmaking of the present invention involves putting scrap into a furnace containing molten iron serving as a seed water, and blowing carbonaceous material and oxygen gas to burn C. In reactor steelmaking, which uses the heat of combustion to melt scrap and increase the amount of molten iron, at the start of operations, the bottom of the furnace is filled with granular carbonaceous material to form a bed. The furnace is characterized by preparing seed hot water on the spot by charging scrap mixed with carbonaceous material and burning carbon by blowing oxygen gas through the bottom and top tuyeres of the furnace. The carbonaceous material forming the bed is preferably one with high compressive strength, such as coke. What is mixed with the scrap and what is blown through the tuyere can be of low quality. If the carbonaceous material mixed with the scrap is insufficient, it is recommended to provide a supply port in the upper part of the furnace, separate from the scrap input port, and supply the carbonaceous material through the supply port. Lump-like or coarse-grained coal is suitable for this purpose. Alternatively or in addition thereto, it is also advantageous to inject and burn pulverized coal through one or both of the upper tuyere and the bottom tuyere. In particular, blowing pulverized coal through the bottom tuyere is a recommended practice because it reduces the consumption of carbon in the bed and helps the bed function as described below.

【作 用】[For use]

添付図面に示す、予熱装置2をそなえたリアクター1を
使用する場合について説明すれば、コークス3を充填し
て形成したベッド7の上に、スクラップ4Aと炭素質材
料5Aの混合物を装入し、底部羽口12および上部羽口
13から酸素ガスを吹き込む。 このとき、微粉炭も吹
き込み燃焼させるとよい。 つまり、酸素過剰な微粉炭
バーナーを動作させるわけである。 吹き込んだ微粉炭、ベッドのコークス、およびスクラッ
プに混合した炭素質材料を含めたCの燃焼とともに、ス
クラップの「eもまた多少は酸化されてFeOとなり、
大きな発熱が起ってスクラップの温度が上昇し、溶解が
はじまる。 上記のFeOは溶融状態でベッドコークス上に−〇 − 滴り落ち、そこでCによる直接還元を受(プてFeに戻
り、酸化されずに溶解したFeとともに、ベッドコーク
スの空隙をみたした溶融鉄8となる。 ベッドコークスの消耗をなるべく遅くして長時間存在さ
せることにより、上記したFeOの直接還元が有利に進
み、溶解歩留りが高くできる。 いずれの炭素源の酸化にせよ、生成したCOガスは充填
されたスクラップの層内で未反応の02によりCO2に
二次燃焼し、その発熱が溶解を促進する。 リアクターを出る高温の排ガスは、まだCOを含んでい
るから、いったん燃焼塔22にとり出し、空気を加えて
それを燃焼させ、いっそう温度を高めて予熱室21へ導
く。 予熱室21には、上部のfi23を開いて投入し
た連装スクラップ4Bと連装炭素質材料5Bとの混合物
があり、リアクターとの間を分けるダンパー24により
保持されている。 この室を上方から下方へ通って熱交
換した排ガスは、ダクト25により集塵装置へ導く。 予熱された混合物は、ダンパー24を開いてリアクター
内へ連装する。 炭素質材料の補給は、図に示すように炉の上部に設けた
供給口14を通して行なう。 この上部から補給する炭素質材料の意義は、とくにスク
ラップの溶断を促進することにある。 すなわち、スクラップを予熱して装入しても、その温度
は高々700’Cで、上部羽口からの02が触れても、
直ちに溶断するほどの温度にはならない。 補給した炭
素が存在すれば、これが02により容易に着火して局部
的な高温をもたらし、スクラップを溶断するに至る。 
このため、別に供給する炭素質材料は、比較的粒径の大
きいものが効果的である。 上記のようにして所要量の種湯が用意できれば、以後は
既知のリアクター製鉄法に従って溶融鉄の量を増大させ
て行く。 一定量に達したら、リアクターを傾動して出
湯口15から出湯し、次の操業サイクルに移る。 【実施例] 図面に示した構造のリアクターを使用して、底部にコー
クス150Kgを充填し、その上に5C)OKgのスク
ラップを装入した。 このスクラップには、50に9の
粒状炭を添加混合してあいた。 同様に、スクラップ5
00Kgに粒状炭35に!Jを混合したものを、予熱室
に入れておいた。 上部羽口から6Nm3/min 、底部羽口から2Nm
  /minの02ガスを吹き込んだ。 約10分後に第一次の連装を行ない、以後は8分間隔で
4回、合計5回の連装により3000Kyのスクラップ
を溶解した。 成績は次のとおりである。 溶解所要時間           55分間炭素原単
位(追加分とも>    95Kg/cht酸素原単位
    単位  147Nm3/chtFe歩留り  
         96.7%熱効率      53
% 【発明の効果] 本発明の溶解開始方法によれば、他の溶解手段の助けを
借りることなく、リアクター製鉄法の実施に必要な種湯
が用意できる。 従って、操業に関する人的、設備的制
約を免れ、所望のとき何時でもリアクター製鉄が行なえ
る。
To explain the case of using a reactor 1 equipped with a preheating device 2 shown in the attached drawings, a mixture of scrap 4A and carbonaceous material 5A is charged onto a bed 7 formed by filling coke 3, Oxygen gas is blown into the bottom tuyere 12 and the top tuyere 13. At this time, it is recommended that pulverized coal is also blown in and combusted. In other words, a pulverized coal burner with excess oxygen is operated. Along with the combustion of C, including the injected pulverized coal, coke in the bed, and carbonaceous materials mixed in the scrap, the "e" in the scrap is also oxidized to some extent to become FeO,
A large amount of heat is generated, the temperature of the scrap rises, and melting begins. The above FeO drips down onto the bed coke in a molten state, where it is directly reduced by C and returns to Fe, and together with the unoxidized and dissolved Fe, molten iron 8 fills the voids in the bed coke. By slowing the consumption of bed coke as much as possible and allowing it to exist for a long time, the above-mentioned direct reduction of FeO can proceed advantageously and the dissolution yield can be increased. Regardless of the oxidation of any carbon source, the generated CO gas In the packed scrap bed, unreacted 02 causes secondary combustion to produce CO2, and the heat generated promotes dissolution.The high-temperature exhaust gas leaving the reactor still contains CO, so it is once taken out to the combustion tower 22. , air is added to combust it, raise the temperature further, and guide it to the preheating chamber 21. In the preheating chamber 21, there is a mixture of the combined scrap 4B and the combined carbonaceous material 5B, which are introduced by opening the upper fi 23. The exhaust gas is held by a damper 24 that separates it from the reactor.The exhaust gas that has passed through this chamber from above to below for heat exchange is guided to the dust collector by a duct 25.The preheated mixture is transferred to the reactor by opening the damper 24. The carbonaceous material is supplied through the supply port 14 provided at the top of the furnace as shown in the figure.The significance of the carbonaceous material supplied from the top is that it particularly promotes the melting of scrap. In other words, even if the scrap is preheated and charged, its temperature is at most 700'C, and even if the 02 from the upper tuyere touches it,
The temperature will not reach such a level that it will melt immediately. If supplemented carbon is present, it is easily ignited by the 02, resulting in localized high temperatures and melting of the scrap.
For this reason, it is effective to use a separately supplied carbonaceous material with a relatively large particle size. Once the required amount of seed hot water has been prepared as described above, the amount of molten iron is increased in accordance with the known reactor iron manufacturing method. When a certain amount is reached, the reactor is tilted to discharge hot water from the tap 15, and the next operation cycle begins. [Example] A reactor having the structure shown in the drawings was used, and 150 kg of coke was filled in the bottom, and 5 C) OK g of scrap was charged on top. This scrap was mixed with 50:9 granular coal. Similarly, scrap 5
Granular charcoal 35 to 00Kg! A mixture of J was placed in a preheating chamber. 6Nm3/min from the top tuyere, 2Nm from the bottom tuyere
/min of 02 gas was blown. Approximately 10 minutes later, the first continuous loading was performed, and thereafter, 3000 Ky of scrap was melted by continuous loading 4 times at 8 minute intervals, a total of 5 times. The results are as follows. Required time for melting: 55 minutes Carbon consumption (including additional portion > 95Kg/cht Oxygen consumption Unit: 147Nm3/chtFe yield
96.7% thermal efficiency 53
% [Effects of the Invention] According to the melting start method of the present invention, the seed water necessary for carrying out the reactor iron manufacturing method can be prepared without the aid of other melting means. Therefore, reactor steel production can be carried out whenever desired without any restrictions on personnel or equipment regarding operation.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明のリアクター製鉄にお(プる溶解開始方法
を説明するための、装置の主要部の縦断面図である。 1・・・リアクター 11・・・炉 体 12・・・底部羽口    13・・・上部羽口14・
・・炭素質材料供給口 15・・・出湯口 2・・・予熱装置 21・・・予熱室     22・・・燃焼塔23・・
・M        24・・・ダンパー25・・・ダ
クト 3・・・コークス 4A、4B・・・スクラップ 5A、5B・・・炭素質材料
The drawing is a vertical cross-sectional view of the main parts of the apparatus for explaining the melting start method for reactor iron production of the present invention. 1...Reactor 11...Furnace body 12...Bottom tuyere 13... Upper tuyere 14.
... Carbonaceous material supply port 15 ... Tap water outlet 2 ... Preheating device 21 ... Preheating chamber 22 ... Combustion tower 23 ...
・M 24...Damper 25...Duct 3...Coke 4A, 4B...Scrap 5A, 5B...Carbonaceous material

Claims (4)

【特許請求の範囲】[Claims] (1)種湯となる溶融鉄を収容した炉内にスクラップを
装入し、炭素質材料および酸素ガスを吹き込んでCを燃
焼させ、その燃焼熱でスクラップを溶解して溶融鉄の量
を増大させることからなるリアクター製鉄において、操
業の開始に当り、炉底に粒状の炭素質材料を充填してベ
ッドを形成しておき、その上に炭素質材料を混合したス
クラップを装入し、炉の底部羽口および上部羽口から酸
素ガスを吹き込んでCを燃焼させることによって、その
場で種湯を調製することを特徴とするリアクター製鉄に
おける溶解開始方法。
(1) Scrap is charged into a furnace containing molten iron as seed water, carbonaceous material and oxygen gas are blown in to combust the C, and the heat of combustion melts the scrap to increase the amount of molten iron. In reactor steelmaking, which consists of the following steps, at the start of operation, the bottom of the furnace is filled with granular carbonaceous material to form a bed, and scrap mixed with carbonaceous material is charged on top of the bed. A method for starting melting in reactor iron making, characterized in that a seed water is prepared on the spot by blowing oxygen gas through a bottom tuyere and an upper tuyere to burn C.
(2)炉の上部から、スクラップ投入口とは別の供給口
を通して炭素質材料を供給して実施する請求項1の溶解
開始方法。
(2) The method for starting melting according to claim 1, wherein the carbonaceous material is supplied from the upper part of the furnace through a supply port different from the scrap input port.
(3)上部羽口および(または)底部羽口から微粉末状
の炭素質材料を吹き込んで実施する請求項1の溶解開始
方法。
(3) The method for starting melting according to claim 1, which is carried out by blowing a finely powdered carbonaceous material through the upper tuyere and/or the bottom tuyere.
(4)スクラップとして炭素鋼またはステンレス鋼のス
クラップを使用する請求項1の溶解開始方法。
(4) The method for starting melting according to claim 1, wherein carbon steel or stainless steel scrap is used as the scrap.
JP63040296A 1988-02-23 1988-02-23 Method for starting melting in reactor ironmaking Pending JPH01215919A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63040296A JPH01215919A (en) 1988-02-23 1988-02-23 Method for starting melting in reactor ironmaking

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63040296A JPH01215919A (en) 1988-02-23 1988-02-23 Method for starting melting in reactor ironmaking

Publications (1)

Publication Number Publication Date
JPH01215919A true JPH01215919A (en) 1989-08-29

Family

ID=12576647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63040296A Pending JPH01215919A (en) 1988-02-23 1988-02-23 Method for starting melting in reactor ironmaking

Country Status (1)

Country Link
JP (1) JPH01215919A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5888458A (en) * 1995-08-08 1999-03-30 Nippon Sanso Corporation Melting furnace of metals and melting method thereof
US6521017B1 (en) 1997-02-06 2003-02-18 Nippon Sanso Corporation Method for melting metals

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5888458A (en) * 1995-08-08 1999-03-30 Nippon Sanso Corporation Melting furnace of metals and melting method thereof
US6521017B1 (en) 1997-02-06 2003-02-18 Nippon Sanso Corporation Method for melting metals

Similar Documents

Publication Publication Date Title
US4089677A (en) Metal refining method and apparatus
US7914601B2 (en) Cold start-up method for a direct smelting process
JP4745731B2 (en) Method of melting hot metal with cupola
US4936908A (en) Method for smelting and reducing iron ores
JPS58133309A (en) Method and apparatus for iron manufacture employing twin reactor
JP6357104B2 (en) Starting the smelting process
US4531971A (en) Method of and apparatus for melting scrap
JP4212895B2 (en) Method for generating molten iron in electric furnace
JPS62290841A (en) Manufacture of chromium-containing iron
JPH01215919A (en) Method for starting melting in reactor ironmaking
CA1333662C (en) Process for melting cold iron material
US3832158A (en) Process for producing metal from metal oxide pellets in a cupola type vessel
JPS61221322A (en) Melting and refining method for metallic raw material
JPS62224619A (en) Method for supplying carbon material to melting reduction furnace
JP3629740B2 (en) Hot metal production method
US4772318A (en) Process for the production of steel from scrap
JPS609815A (en) Production of high chromium alloy by melt production
JPH02200713A (en) Device and method for producing molten iron
JPH01147009A (en) Melting and reducing method
JPH0524961B2 (en)
JPH01162711A (en) Smelting reduction method
JPH06228623A (en) Steelmaking method having small energy consumption
RU1827386C (en) Method of heating and fusion of solid metal charge in converter with combination oxygen-fuel blast
JPS6338506A (en) Adding method for powdery carbon material into smelting reduction furnace
JP2666385B2 (en) Hot metal production method