JPS6143406B2 - - Google Patents

Info

Publication number
JPS6143406B2
JPS6143406B2 JP58249040A JP24904083A JPS6143406B2 JP S6143406 B2 JPS6143406 B2 JP S6143406B2 JP 58249040 A JP58249040 A JP 58249040A JP 24904083 A JP24904083 A JP 24904083A JP S6143406 B2 JPS6143406 B2 JP S6143406B2
Authority
JP
Japan
Prior art keywords
gas
furnace
reduction
preliminary
reduction furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58249040A
Other languages
Japanese (ja)
Other versions
JPS60145307A (en
Inventor
Masakazu Nakamura
Yoichi Hayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP58249040A priority Critical patent/JPS60145307A/en
Publication of JPS60145307A publication Critical patent/JPS60145307A/en
Publication of JPS6143406B2 publication Critical patent/JPS6143406B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B13/00Making spongy iron or liquid steel, by direct processes
    • C21B13/14Multi-stage processes processes carried out in different vessels or furnaces
    • C21B13/143Injection of partially reduced ore into a molten bath
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2100/00Handling of exhaust gases produced during the manufacture of iron or steel
    • C21B2100/60Process control or energy utilisation in the manufacture of iron or steel
    • C21B2100/66Heat exchange

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Iron (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、鉄鉱石を加熱溶解しながら還元し、
直接溶鉄を得る方法に関するものである。 (従来技術) 鉄鉱石を還元し、溶鉄を製造するには、通常高
炉による方法や、シヤフト炉によつて還元したの
ち電気炉に溶解する方法が行われているが、これ
らは基本的にはガス還元を行つたのちに溶解する
という方法に基いている。 一方、鉄鉱石を加熱溶解しながら還元しようと
する試みも溶融還元法として各種の手段が行われ
ている。その一つは加熱の手段とし電力を用いる
ものであり、アーク炉やプラズマ炉が利用されて
いる。しかし電力を用いる方法は、発電効率を考
慮すると、一次エネルギー所要量が高く、エネル
ギー源を海外に依存している我が国の現状では現
実的ではない。他方、一次エネルギー特に石炭な
ど炭材の燃焼熱を直接利用して製鉄を行う試みも
なされているが、溶融状態の酸化鉄の極めて高い
反応性により、耐火材料の侵食が著しく、そのた
め成功例がない。また炭材が持つ潜熱の利用効率
を上げるためには雰囲気の酸化度を上昇させるこ
とが必要であるが、これは鉄鉱石の還元という目
的に反する。 このように上記の各手段は、エネルギーの利用
効率が悪く、燃料原単位が高いことが、このプロ
セスの欠点と結論される。 また特開昭58―113307号公報には、本発明と同
様に鉄鉱石を予備還元した後溶融炉に装入して還
元する方法が示されている。しかしこの方法は、
溶融炉内にコークスが充填されており、還元およ
び溶解はコークス充填層内で行われる。これは高
炉の炉内下部で生じている現象と全く同じであ
る。また予備還元は、この溶融炉から発生した高
温回収ガスにより行うことになつているが、この
過程は高炉の上部で起きている現象と同一であ
る。すなわちこの方法は高炉を上下に分割したプ
ロセスと云える。 しかしこの方法では、溶解炉に充填すべきコー
クスが必要であり、コークス炉を省略することが
できない。また羽口部においてコークス充填層へ
燃料および酸素を吹込むことになつているが、コ
ークス充填層の通気性には限界があり、吹込量ひ
いては生産性に制約を受けることになる。 (発明の目的) 本発明は、上記のような炭材を直接用いた溶融
還元お問題点を解決し効率のよい操業を行うこと
を目的とするものである。 (発明の構成・作用) このような目的を達成するために本発明におい
ては、先ず溶融還元炉から排出される還元性ガス
の有効利用とはかるため、該ガスを利用して鉄鉱
石の予備還元を行うことを特徴とする。すなわち
これにより同時に溶融還元炉に装入される以前に
ある程度の還元を行い、溶融還元炉内内容物の酸
化鉄含有量を少くし、耐火物の侵食性を著しく減
少させることができるのである。また本発明の第
二の特徴は、エネルギーの利用効率を高めるため
に、溶融還元炉の上部に酸素または空気を導入し
鉄鉱石の還元および炭材の部分燃焼により発生し
た燃焼性ガス(このガスは同時に還元性を有す
る)を燃焼させ、発生した熱により還元生成され
た鉄浴の加熱を行うことである。 すなわち本発明は、鉄鉱石を予熱し、さらに予
備還元炉により予備還元したのち、炭材、酸素、
造滓剤とともに底吹きする溶融炉に吹込み、さら
に該溶融炉の上部に、酸素または空気を吹込み、
還元および炭材のガス化反応によつて生じた燃焼
性ガスの一部を燃焼させ、炉中の還元された鉄浴
を加熱するとともに、生成した高温ガスを、熱交
換機を通過させ熱回収したのち、予備還元炉から
回収したガスの一部と混合し、脱炭酸処理後、所
定温度に加熱し、該ガスの酸化度 〔(H2O+CO2)/(H2+H2O+CO+CO2)〕を0.07
〜0.15に調節して予備還元炉に導入し、かつ予備
還元炉における予備還元率を0.60乃至0.75とする
ことを特徴とするものである。 以下図面により本発明の要旨を説明する。第1
図は本発明方法の概要を示す説明図で、1は鉄鉱
石の予熱炉、2は予備還元炉、3は溶融還元炉
で、炭材,酸素,造滓剤等の吹込口4、予備還元
した鉄鉱石の吹込口5、部分燃焼用の二次酸素の
吹込口6、ガス排出口7等を設けてある。8は溶
融還元炉3から排出された高温ガスを熱交換する
廃熱ボイラー等の熱交換機、9はガスホルダー、
10は脱炭酸装置、11は加熱機、12はクーラ
ーである。 本発明方法により鉄鉱石の還元を行うには、先
ず鉄鉱石を予熱炉1に装入し予熱したのち予備還
元炉2に装入する。この予備還元炉2は流動層ま
たはシヤフト炉等を用い、鉄鉱石を部分的に還元
する。本発明は後述するように、この予備還元の
部分に特徴がある。予備還元された鉄鉱石は炭
材,酸素,造滓剤などとともに溶融還元炉3の底
部から炉内に吹込まれ還元が行われる。さらに該
溶融還元炉3の上部には酸素の吹込口6より酸素
または空気を吹込まれ、還元および吹込まれた炭
材の部分燃焼により発生した燃焼性ガスを燃焼さ
せ、発生した熱により還元された鉄浴を加熱す
る。一方該溶融還元炉3において生成された高温
ガスは排出口7から排出され、廃熱ボイラー等の
熱交換機8により熱交換され、予備還元炉2から
回収されたガスの一部と混合され、さらに混合さ
れたガスの一部は脱炭酸装置10により脱炭酸さ
れ、酸化度を0.07〜0.15の範囲に調節された後、
加熱機11により加熱されて予備還元炉2に導入
される。なお熱交換機8により高温ガスと熱交換
され発生した高圧蒸気は発電等に利用される。 本発明は、この予備還元炉に導入するガスの酸
化度を0.07〜0.15に調節することおよび予備還元
炉における予備還元率を0.60乃至0.75にすること
を特徴とするものであるが、以下その理由を説明
する。 第2図は鉄鉱石をガス還元した場合の、還元の
進行状況を時間の推移に対して表示したものであ
る。この図から明らかなように鉄鉱石のガス還元
速度は還元率60〜70%までは速いが、これを超え
ると速度が低下する。この事実は70%以下の還元
においてはガスの利用効率が高く、プロセスとし
て有利であることを示すものである。ところが現
在実用化されている直接製鉄法は還元鉄を電気炉
を用いて溶解するシステムを採用しており溶解部
分における電力原単位を低下させるために、予備
還元は100%に近い還元率を指向している。しか
し第2図から明らかなように特に90%を越える還
元には多大の時間を要し、ガス還元の観点から
は、このような高還元率が不利であることは云う
迄もない。さらに高価な電力を使用することは、
二重に不利な条件を負うことになる。 また第3図に装入鉱石の予備還元率を変えた場
合の溶融還元炉の所要石炭量の変化を示す。この
図から明らかなように、低予備還元率の場合に
は、溶融還元炉における還元率が高くなるため所
要熱量が多く、炭材原単位が高くなるが、一方発
生する還元性ガス量は多くなる。他方、予備還元
率が高くなると、溶融還元炉における炭材の消費
量は低下するが、同時に発生ガス量が低下する。
また予備還元炉における必要還元性ガス量を予備
還元率に対して表示すると第3図のようになる。
予備還元工程における還元性ガス所要量は、低還
元率では少いが、還元率の上昇とともに増加し、
100%に近い還元率では大量のガスを必要とす
る。 また、第4図は溶融還元炉により発生するガス
および予備還元用の還元ガスの酸化度が変化した
場合の発生ガス量および還元用ガス量の変化を示
すものである。 さて、溶融還元炉においては鉄浴に吹込まれた
炭材は酸素により通常次のような反応が行われて
部分的に酸化され熱を発生する。 C+1/2O2=CO+26kca/m しかし、ここで発生したCOガスは68kca/m
の潜熱を有しており、このCOガスは予備還元
のための還元性ガスとしは有用であるが、溶融還
元炉のエネルギー効率としては不利である。そこ
で第4図に示すように、発生ガスの酸化度を上昇
させることにより、COの一部をさらにCO2まで
燃焼させ、この燃焼熱を鉄浴の加熱に利用するこ
とがエネルギー効率を高める意味で有利である。
ただし、この酸化度を上げ過ぎるとCO2除去の工
程に負担がかかり、全体のコストアツプになるた
め、ここでの酸化度の上限は0.35程度である。 また予備還元工程においては、ガスの酸化度が
上昇すると、還元の駈動力が減少するためガスの
所要量が増加する。一方本発明のような溶融還元
炉において発生した石油由来のガスはCO成分が
多く、これを高温に加熱すると、 2CO→CO2+C の反応により炭素が析出して操業不能になること
が知られており、本発明の還元温度900℃におい
ては、その酸化度を10%以下にすることができな
い。 以上説明したように溶融還元炉のエネルギー効
率を高めめるためには排出ガスの酸化度を高める
ことが有利であり、また予備還元におけるガス所
要量を少くするためにはガスの酸化度を低くする
ことが望ましい。そこで本発明においてはこの二
つの工程の間に脱炭酸装置を設置して溶融還元炉
から排出された酸化度の高いガスからCO2および
H2Oを除去した後予備還元に用いるのである。す
なわち還元ガス所要量が急増する予備還元率75%
以上を避け、また溶融還元所要エネルギーが多く
なる(ガスが余剰となる)低予備還元率の範囲を
回避した操業条件により操業を行うことを特徴と
するものである。 (実施例) 次に本発明の実施例を示す。 第1表に示す性状の石炭および第2表に示す性
状の鉄鉱石を準備した。
(Industrial Application Field) The present invention reduces iron ore while heating and melting it,
It concerns a method of directly obtaining molten iron. (Prior art) In order to reduce iron ore and produce molten iron, there is usually a method using a blast furnace or a method in which iron ore is reduced in a shaft furnace and then melted in an electric furnace. It is based on the method of gas reduction followed by dissolution. On the other hand, various attempts have been made to reduce iron ore while heating it and melting it as a smelting reduction method. One of them uses electric power as a heating means, and arc furnaces and plasma furnaces are used. However, considering power generation efficiency, the method of using electricity requires a high amount of primary energy, and is not realistic in the current situation where Japan is dependent on overseas sources of energy. On the other hand, attempts have been made to make iron by directly using primary energy, especially the combustion heat of coal and other carbonaceous materials, but due to the extremely high reactivity of molten iron oxide, the refractory materials are severely eroded, and as a result, there have been no successful cases. do not have. Furthermore, in order to increase the utilization efficiency of the latent heat possessed by carbonaceous materials, it is necessary to increase the degree of oxidation of the atmosphere, but this is contrary to the purpose of reducing iron ore. As described above, it can be concluded that the disadvantages of this process are that the above-mentioned methods have poor energy utilization efficiency and high fuel consumption. Further, JP-A-58-113307 discloses a method in which iron ore is pre-reduced and then charged into a melting furnace for reduction, similar to the present invention. However, this method
The melting furnace is filled with coke, and reduction and melting are performed within the coke packed bed. This is exactly the same phenomenon that occurs in the lower part of a blast furnace. Preliminary reduction is supposed to be carried out using high-temperature recovered gas generated from the melting furnace, and this process is the same as the phenomenon occurring in the upper part of the blast furnace. In other words, this method can be said to be a process in which the blast furnace is divided into upper and lower parts. However, this method requires coke to be charged into a melting furnace, and the coke oven cannot be omitted. Furthermore, although fuel and oxygen are supposed to be blown into the coke-filled bed at the tuyeres, there is a limit to the permeability of the coke-filled bed, which limits the amount of injection and thus the productivity. (Objective of the Invention) The object of the present invention is to solve the above-mentioned problems of melting and reduction directly using carbonaceous materials and to perform efficient operations. (Structure and operation of the invention) In order to achieve the above object, the present invention first aims to effectively utilize the reducing gas discharged from the smelting reduction furnace, so that the gas is used to pre-reduce iron ore. It is characterized by doing the following. In other words, at the same time, it is possible to perform a certain degree of reduction before being charged into the smelting reduction furnace, to reduce the iron oxide content of the contents in the smelting reduction furnace, and to significantly reduce the corrosivity of the refractory. The second feature of the present invention is that, in order to increase the efficiency of energy use, oxygen or air is introduced into the upper part of the smelting reduction furnace, and the combustible gas (this gas (which also has reducing properties) is burned, and the generated heat heats the iron bath produced by reduction. That is, in the present invention, iron ore is preheated, further reduced in a preliminary reduction furnace, and then carbonaceous material, oxygen,
Blow it into a bottom-blowing melting furnace together with a slag-forming agent, and further blow oxygen or air into the top of the melting furnace,
A portion of the combustible gas produced by the reduction and gasification reactions of carbonaceous materials was combusted, the reduced iron bath in the furnace was heated, and the generated high-temperature gas was passed through a heat exchanger for heat recovery. Afterwards, it is mixed with a part of the gas recovered from the preliminary reduction furnace, and after decarboxylation treatment, it is heated to a predetermined temperature to determine the oxidation degree of the gas [(H 2 O + CO 2 )/(H 2 + H 2 O + CO + CO 2 )]. 0.07
It is characterized in that it is adjusted to 0.15 and then introduced into the preliminary reduction furnace, and the preliminary reduction rate in the preliminary reduction furnace is adjusted to 0.60 to 0.75. The gist of the present invention will be explained below with reference to the drawings. 1st
The figure is an explanatory diagram showing the outline of the method of the present invention, in which 1 is an iron ore preheating furnace, 2 is a preliminary reduction furnace, 3 is a smelting reduction furnace, and an injection port 4 for carbonaceous material, oxygen, slag forming agent, etc., is used for preliminary reduction. An inlet 5 for injecting iron ore, an inlet 6 for secondary oxygen for partial combustion, a gas outlet 7, etc. are provided. 8 is a heat exchanger such as a waste heat boiler that exchanges heat with the high temperature gas discharged from the melting reduction furnace 3; 9 is a gas holder;
10 is a decarboxylation device, 11 is a heating machine, and 12 is a cooler. To reduce iron ore according to the method of the present invention, iron ore is first charged into a preheating furnace 1 and preheated, and then charged into a prereduction furnace 2. This preliminary reduction furnace 2 uses a fluidized bed or a shaft furnace to partially reduce the iron ore. As will be described later, the present invention is characterized by this preliminary reduction. The pre-reduced iron ore is blown into the furnace from the bottom of the smelting reduction furnace 3 together with carbonaceous material, oxygen, slag-forming agent, etc., and reduction is performed. Furthermore, oxygen or air is blown into the upper part of the melting reduction furnace 3 from an oxygen inlet 6, and the combustible gas generated by partial combustion of the reduced and injected carbonaceous material is combusted, and the combustible gas is reduced by the generated heat. Heat an iron bath. On the other hand, the high temperature gas generated in the smelting reduction furnace 3 is discharged from the discharge port 7, heat exchanged with a heat exchanger 8 such as a waste heat boiler, mixed with a part of the gas recovered from the preliminary reduction furnace 2, and further A part of the mixed gas is decarboxylated by the decarboxylation device 10, and the degree of oxidation is adjusted to a range of 0.07 to 0.15.
It is heated by the heater 11 and introduced into the preliminary reduction furnace 2 . Note that the high-pressure steam generated by heat exchange with the high-temperature gas by the heat exchanger 8 is used for power generation and the like. The present invention is characterized by adjusting the degree of oxidation of the gas introduced into the pre-reduction furnace to 0.07-0.15 and setting the pre-reduction rate in the pre-reduction furnace to 0.60-0.75.The reason is as follows. Explain. FIG. 2 shows the progress of reduction over time when iron ore is gas-reduced. As is clear from this figure, the rate of gas reduction of iron ore is fast up to a reduction rate of 60 to 70%, but the rate decreases beyond this point. This fact shows that gas utilization efficiency is high when the reduction is 70% or less, which is advantageous as a process. However, the direct steel manufacturing method that is currently in practical use uses a system that melts reduced iron using an electric furnace, and in order to reduce the electricity consumption rate in the melting part, preliminary reduction is aimed at a reduction rate close to 100%. are doing. However, as is clear from FIG. 2, it takes a long time to achieve a reduction of more than 90%, and it goes without saying that such a high reduction rate is disadvantageous from the viewpoint of gas reduction. Using more expensive electricity
You will be doubly disadvantaged. Furthermore, Fig. 3 shows the change in the amount of coal required for the smelting reduction furnace when the preliminary reduction rate of the charged ore is changed. As is clear from this figure, when the preliminary reduction rate is low, the reduction rate in the smelting reduction furnace is high, so the required amount of heat is large and the carbon material consumption rate is high, but on the other hand, the amount of reducing gas generated is large. Become. On the other hand, when the preliminary reduction rate increases, the amount of carbon material consumed in the smelting reduction furnace decreases, but at the same time, the amount of generated gas decreases.
Further, when the required amount of reducing gas in the pre-reduction furnace is displayed with respect to the pre-reduction rate, it is as shown in FIG. 3.
The amount of reducing gas required in the preliminary reduction step is small at low reduction rates, but increases as the reduction rate increases;
A reduction rate close to 100% requires a large amount of gas. Further, FIG. 4 shows changes in the amount of gas generated and the amount of reducing gas when the degree of oxidation of the gas generated by the melting reduction furnace and the reducing gas for preliminary reduction changes. Now, in a melting reduction furnace, the carbonaceous material blown into the iron bath usually undergoes the following reaction with oxygen to be partially oxidized and generate heat. C+1/2O 2 =CO+26kca/m However, the CO gas generated here is 68kca/m
Although this CO gas is useful as a reducing gas for preliminary reduction, it is disadvantageous in terms of the energy efficiency of the smelting reduction furnace. Therefore, as shown in Figure 4, by increasing the degree of oxidation of the generated gas, a part of the CO is further combusted to CO 2 , and this combustion heat is used to heat the iron bath. This is the key to increasing energy efficiency. It is advantageous.
However, if the degree of oxidation is increased too much, it will put a burden on the CO 2 removal process and increase the overall cost, so the upper limit of the degree of oxidation here is about 0.35. Further, in the preliminary reduction step, when the degree of oxidation of the gas increases, the reduction force decreases, and the required amount of gas increases. On the other hand, the petroleum-derived gas generated in the smelting reduction furnace of the present invention has a high CO content, and it is known that when this is heated to high temperatures, carbon will precipitate due to the reaction of 2CO → CO 2 + C, making the furnace inoperable. Therefore, at the reduction temperature of 900° C. of the present invention, the degree of oxidation cannot be reduced to 10% or less. As explained above, in order to increase the energy efficiency of the smelting reduction furnace, it is advantageous to increase the degree of oxidation of the exhaust gas, and in order to reduce the amount of gas required for preliminary reduction, it is advantageous to reduce the degree of oxidation of the gas. It is desirable to do so. Therefore, in the present invention, a decarboxylation device is installed between these two steps to remove CO 2 and
After removing H 2 O, it is used for preliminary reduction. In other words, the preliminary reduction rate is 75%, which increases the required amount of reducing gas rapidly.
It is characterized by operating under operating conditions that avoid the above and also avoid a range of low preliminary reduction rates where the energy required for melting reduction increases (gas becomes surplus). (Example) Next, an example of the present invention will be shown. Coal having properties shown in Table 1 and iron ore having properties shown in Table 2 were prepared.

【表】【table】

【表】 定常運転においては、1時間当り、還元率65
%、予備還元した鉄鉱石1270Kgを、温度1500℃、
C濃度3%の鉄浴に、98%O2351N3、806Kgの石
炭および196Kgの石炭石とともに溶融炉の底部に
設けた羽口より吹込んだ。同時に二次燃焼用と
し、同じく98%酸素520Nm3を鉄浴の上部よりソ
フトブローしたところ、1700℃のガス1690Nm3
ガスが発生した。その組成はH2:11%,CO:58
%,CO2:16%,H2O:14%,N2:1%でありダ
スト量は84Kgであつた。 さらにこの高温ガスを炉頂に設置した排熱ボイ
ラーにより熱回収を行い冷却除湿した後、コンプ
レツサーにより3Kg/cm2の圧力に昇圧し、予備還
元工程からの循環ガス637Nm3と混合し、そのう
ち1525Nm3を分岐した上でさらに8Kg/cm2の圧力
に昇圧した上で脱炭酸ガス装置に送つて炭酸ガス
の除去および除湿を行つた後4.5Kg/cm2に圧力を落
し、先に分岐した残りのガスと混合したところ
H2:13%,CO:75%,CO2:8%,H2O:2
%,N2:2%のガス1590Nm3が得られた。この
酸化度0.102のガスをガス加熱炉において900℃に
加熱した後、予備還元炉に吹込んだ。この予備還
元炉には炉頂から850℃に予熱した1500Kgのヘマ
タイト鉱石(粒径2mm以下)が供給され、前記ガ
スと反応して流動還元が行われ、還元率65%の半
還元鉱1270Kgが得られた。なおこのとき予備還元
炉から排出されたガスのうち循環ガスとして還元
工程へリサイクルされる前記637Nm3を分岐した
残りは、鉄鉱石の予備用燃料および発電用燃料と
して系外に排出される。因みにこのときの排出ガ
ス量は860Nm3,発熱量は1840kca/Nm3であつ
た。 また溶融還元炉からは、C:3%の溶鉄が1時
間当り1030Kg生産された。このとき発生したスラ
グは237Kg,塩基度(CaO/SiO2)=1.3,スラグ中
のFeO濃度は5%であつた。また5時間の実験操
業における炉材の侵食は顕著ではなかつた。 なお比較のため予備還元炉入口ガスの酸化度を
0.06に設定したところ、運転開始後約15分で排出
ガスの除塵器に炭素が析出し始め、やがて運転不
能となつた。また酸化度を0.20に設定したとこ
ろ、還元速度の低下が著しくなつた。従つて、こ
のような条件で引続き運転すると単位当りの鉱石
を所定の還元率に還元するためには多大のガスを
要し、装置の大型化、ガス循環のための動力増な
ど、種々の不利な点が現われる。 (発明の効果) 以上説明したように本発明は、中程度の還元率
というガス還元におけるガス利用率の有利な予備
還元条件を用い、また底吹きによつて供給された
鉄浴中溶解炭素による半還元鉄鉱石の高速還元、
燃料の熱交率を向上するための鉄浴上での二次燃
料等の各プロセスを組合せ、さらに予備還元炉に
導入するガスの酸化度を0.07〜0.15の範囲に調節
し、かつ予備還元炉における予備還元率を0.60乃
至0.75とすることにより、極めて高い生産性を確
保することができる。
[Table] In steady operation, return rate is 65 per hour.
%, 1270Kg of pre-reduced iron ore, temperature 1500℃,
98% O 2 351N 3 , 806 kg of coal, and 196 kg of coal stone were injected into an iron bath with a C concentration of 3% through a tuyere provided at the bottom of the melting furnace. At the same time, when 520Nm 3 of 98% oxygen was soft blown from the top of the iron bath for secondary combustion, 1690Nm 3 of gas at 1700°C was generated. Its composition is H2 : 11%, CO: 58
%, CO 2 : 16%, H 2 O: 14%, N 2 : 1%, and the amount of dust was 84 kg. This high-temperature gas is further heat-recovered by an exhaust heat boiler installed at the top of the furnace, cooled and dehumidified, and then boosted to a pressure of 3Kg/cm 2 by a compressor and mixed with 637Nm 3 of circulating gas from the preliminary reduction process, of which 1525Nm After branching 3 , the pressure was further increased to 8Kg/cm 2 , sent to a decarbonizer to remove carbon dioxide and dehumidify, and then the pressure was reduced to 4.5Kg/cm 2 , and the remaining part that had been branched earlier was When mixed with the gas of
H 2 : 13%, CO: 75%, CO 2 : 8%, H 2 O: 2
%, N 2 :1590 Nm 3 of 2% gas was obtained. This gas with an oxidation degree of 0.102 was heated to 900°C in a gas heating furnace and then blown into a preliminary reduction furnace. 1,500 kg of hematite ore (particle size of 2 mm or less) preheated to 850°C is supplied to this pre-reduction furnace from the top of the furnace, and it reacts with the gas to undergo fluidized reduction, producing 1,270 kg of semi-reduced ore with a reduction rate of 65%. Obtained. At this time, of the gas discharged from the preliminary reduction furnace, the remainder after branching off the 637 Nm 3 which is recycled to the reduction process as circulating gas is discharged outside the system as preliminary fuel for iron ore and fuel for power generation. Incidentally, the amount of exhaust gas at this time was 860Nm 3 and the calorific value was 1840kca/Nm 3 . In addition, 1030 kg of 3% C molten iron was produced per hour from the smelting reduction furnace. The slag generated at this time was 237 kg, basicity (CaO/SiO 2 ) = 1.3, and FeO concentration in the slag was 5%. Furthermore, corrosion of the furnace material during the 5-hour experimental operation was not significant. For comparison, the oxidation degree of the pre-reducing furnace inlet gas was
When it was set to 0.06, carbon began to deposit on the exhaust gas dust remover about 15 minutes after the start of operation, and eventually the system became inoperable. Furthermore, when the degree of oxidation was set to 0.20, the reduction rate decreased significantly. Therefore, if the operation continues under these conditions, a large amount of gas will be required to reduce each unit of ore to the specified reduction rate, resulting in various disadvantages such as an increase in the size of the equipment and an increase in power for gas circulation. A point appears. (Effects of the Invention) As explained above, the present invention uses the pre-reduction conditions of a moderate reduction rate, which is advantageous in gas utilization rate in gas reduction, and also uses dissolved carbon in an iron bath supplied by bottom blowing. Fast reduction of semi-reduced iron ore,
In order to improve the heat exchange coefficient of the fuel, we combine various processes such as secondary fuel on an iron bath, and furthermore, adjust the oxidation degree of the gas introduced into the pre-reduction furnace to a range of 0.07 to 0.15, and By setting the preliminary reduction rate at 0.60 to 0.75, extremely high productivity can be ensured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法の実例を示す説明図、第2
図は鉄鉱石をガス還元したときの還元率と反応時
間との関係を示す図、第3図は鉄鉱石の予備還元
率の変化が石炭所要量、ガス発生量、予備還元ガ
ス量に及ぼす影響を示す図、第4図は溶融還元炉
発生ガスおよび予備還元ガスの酸化度と発生ガス
量および予備還元用ガスの変化を示す図である。 1……予熱炉、2……予備還元炉、3……溶融
還元炉、4……吹込口(炭材、酸素、造滓剤
等)、5……吹込口(鉄鉱石)、6……吹込口(二
次酸素)、7……ガス排出口、8……熱交換機、
9……ガスホルダー、10……脱炭酸装置、11
……加熱機、12……クーラー。
FIG. 1 is an explanatory diagram showing an example of the method of the present invention, and FIG.
The figure shows the relationship between the reduction rate and reaction time when iron ore is reduced to gas. Figure 3 shows the effect of changes in the preliminary reduction rate of iron ore on the required amount of coal, the amount of gas generated, and the amount of preliminary reduced gas. FIG. 4 is a diagram showing changes in the degree of oxidation of the smelting reduction furnace generated gas and preliminary reducing gas, the amount of generated gas, and the preliminary reducing gas. 1... Preheating furnace, 2... Pre-reduction furnace, 3... Melting reduction furnace, 4... Inlet (charcoal material, oxygen, slag forming agent, etc.), 5... Inlet (iron ore), 6... Inlet (secondary oxygen), 7... Gas outlet, 8... Heat exchanger,
9...Gas holder, 10...Decarboxylation device, 11
...Heating machine, 12...Cooler.

Claims (1)

【特許請求の範囲】 1 鉄鉱石を予熱し、さらに予備還元炉により予
備還元したのち、炭材,酸素,造滓剤とともに底
吹きする溶融還元炉に吹込み、さらに該溶融還元
炉の上部に、酸素または空気を吹込み、還元およ
び炭材のガス化反応によつて生じた燃焼性ガスの
一部を燃焼させ、炉中の還元された鉄浴を加熱す
るとともに、生成した高温ガスを、熱交換機を通
過させ熱回収したのち、予備還元炉から回収した
ガスの一部と混合し、脱炭酸処理後、所定温度に
加熱し、該ガス酸化度〔(H2O+CO2)/(H2
H2O+CO+CO2)〕を0.07〜0.15に調節して予備還
元炉に導入し、かつ予備還元炉における予備還元
率を0.60乃至0.75とすることを特徴とする鉄鉱石
の溶融還元方法。 2 予備還元炉が流動層またはシヤフト炉である
特許請求の範囲第1項記載の鉄鉱石の溶融還元方
法。
[Scope of Claims] 1. After preheating iron ore and further pre-reducing it in a pre-reduction furnace, it is blown into a bottom-blowing smelting reduction furnace together with carbonaceous material, oxygen, and a slag forming agent. , blowing oxygen or air to burn part of the combustible gas produced by the reduction and gasification reaction of carbonaceous materials, heat the reduced iron bath in the furnace, and use the generated high-temperature gas to After passing through a heat exchanger to recover heat, it is mixed with a part of the gas recovered from the preliminary reduction furnace, and after decarboxylation treatment, it is heated to a predetermined temperature, and the oxidation degree of the gas [(H 2 O + CO 2 )/(H 2 +
H 2 O + CO + CO 2 )] is adjusted to 0.07 to 0.15 and introduced into a preliminary reduction furnace, and the preliminary reduction rate in the preliminary reduction furnace is set to 0.60 to 0.75. 2. The method for melting and reducing iron ore according to claim 1, wherein the preliminary reduction furnace is a fluidized bed or a shaft furnace.
JP58249040A 1983-12-30 1983-12-30 Reducing method of iron ore by melting Granted JPS60145307A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58249040A JPS60145307A (en) 1983-12-30 1983-12-30 Reducing method of iron ore by melting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58249040A JPS60145307A (en) 1983-12-30 1983-12-30 Reducing method of iron ore by melting

Publications (2)

Publication Number Publication Date
JPS60145307A JPS60145307A (en) 1985-07-31
JPS6143406B2 true JPS6143406B2 (en) 1986-09-27

Family

ID=17187105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58249040A Granted JPS60145307A (en) 1983-12-30 1983-12-30 Reducing method of iron ore by melting

Country Status (1)

Country Link
JP (1) JPS60145307A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4685964A (en) * 1985-10-03 1987-08-11 Midrex International B.V. Rotterdam Method and apparatus for producing molten iron using coal
US4936908A (en) * 1987-09-25 1990-06-26 Nkk Corporation Method for smelting and reducing iron ores
AU633153B2 (en) * 1989-10-10 1993-01-21 Ausmelt Pty Ltd Recovery of ferro nickel from laterite and other oxide minerals
WO1991005879A1 (en) * 1989-10-10 1991-05-02 Ausmelt Pty. Ltd. Smelting of nickel laterite and other iron containing nickel oxide materials

Also Published As

Publication number Publication date
JPS60145307A (en) 1985-07-31

Similar Documents

Publication Publication Date Title
JP2635256B2 (en) Method for producing pig iron or sponge iron
JPH0635613B2 (en) Pig iron manufacturing method
JPH01195226A (en) Smelting reduction method
JPS6123245B2 (en)
JPS59150006A (en) Method and apparatus for melting scrap
JP2002509194A (en) Sustainable steelmaking process by effective direct reduction of iron oxide and solid waste
JPH0349964B2 (en)
JPS6143406B2 (en)
JPH01252714A (en) Mixed agglomerating briquette for smelting reduction furnace and smelting reduction method for mixed agglomerating briquette
JP3236737B2 (en) Operating method of vertical iron scrap melting furnace
JP2638861B2 (en) Melt reduction method
US4412862A (en) Method for the production of ferrochromium
JPH01162711A (en) Smelting reduction method
JPH06228623A (en) Steelmaking method having small energy consumption
JPH0826378B2 (en) Method for producing molten iron containing chromium
JPS63216908A (en) Bach type production for molten metal
JPS58199810A (en) Operating method of converter
JPS6342351A (en) Manufacture of chromium-containing molten iron
JPS63169310A (en) Blast furnace operation method
JPS61272346A (en) Melting-reducing refining method for high manganese ferrous alloy
CN116769995A (en) Iron-making process for preparing liquid metal by smelting iron ore with full hydrogen
JPH01104707A (en) Smelting reduction method
JPH01104709A (en) Smelting reduction method
JPH01215919A (en) Method for starting melting in reactor ironmaking
JPH0689384B2 (en) Smelting reduction of iron ore by the two-stage injection method