JPH08291311A - Steel scrap melting method excellent in heat conductive efficiency - Google Patents

Steel scrap melting method excellent in heat conductive efficiency

Info

Publication number
JPH08291311A
JPH08291311A JP9394295A JP9394295A JPH08291311A JP H08291311 A JPH08291311 A JP H08291311A JP 9394295 A JP9394295 A JP 9394295A JP 9394295 A JP9394295 A JP 9394295A JP H08291311 A JPH08291311 A JP H08291311A
Authority
JP
Japan
Prior art keywords
slag
blowing
blown
tuyeres
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9394295A
Other languages
Japanese (ja)
Inventor
Kyoji Okumura
恭司 奥村
Akio Kasama
昭夫 笠間
Yoshihiro Hatsuta
好弘 八太
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP9394295A priority Critical patent/JPH08291311A/en
Publication of JPH08291311A publication Critical patent/JPH08291311A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

PURPOSE: To transfer the heat at a firing point on the upper surface of a slag to a metal by the shortest distance and the shortest time, by combining a top-blowing lance with plural steps of side-blowing tuyeres in a refining furnace at the optimum condition and developing circulating flow in the slag from the center point of the furnace to a furnace wall side. CONSTITUTION: In a top-blowing or a top-bottom combined blowing converter 1, carbonaceous material as heat source is charged and oxygen is blown onto the molten slag 4 from the top-blowing lance 6 to melt a steel scrap with the combustion heat of this carbonaceous material. Further, in the side-blowing tuyeres 5, 7 arranged in two steps in the furnace wall, the gaseous oxygen from the tuyeres 5 at the upper side is blown in an almost horizontal direction, and the gaseous oxygen from the tuyeres 7 at the lower side is blown into the slag layer toward the tuyeres 5 at the upper side while increasing gas flow rate. Further, inert gas, etc., are blown in from bottom blowing tuyeres 2 to stir the molten iron 3. By this method, the slag 4 is turned from the furnace wall side of the slag surface layer to the center side to develop the circulating flow, and the heat of the firing point obtd. from the top-blowing lance 6 is transferred to the molten iron 3 and the heat conductive efficiency is improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、炉壁側に設けられた羽
口から吹錬ガスをスラグ層中に吹込むようにした横吹き
と上吹き又は上底吹きによる鋼スクラップの溶解方法に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for melting steel scrap by side blowing and top blowing or top bottom blowing in which blowing gas is blown into a slag layer from tuyere provided on the furnace wall side. is there.

【0002】[0002]

【従来の技術】近年、資源、環境問題から、スクラップ
などの固体金属原料をリサイクル使用して、効率的に溶
融金属を製造することが技術課題となって来ている。そ
の金属スクラップの種類は種々のものがあるが、発生量
の多い鉄鋼スクラップを用いて溶融鉄を得る方法とし
て、従来は殆ど電気炉で行われて来た。しかし電気炉の
場合は、スクラップの溶解・精錬に多くの電力を消費す
るため、わが国のように電力価格が著しく高い国ではコ
ストアップとして好ましくない。そこで、電気炉によら
ずに経済的にスクラップを溶解・精錬する方法として、
高送酸能力を有する転炉の余剰生産能力を利用して安価
な炭材を用いたスクラップの溶解・精錬方法が検討され
るようになって来た。
2. Description of the Related Art In recent years, it has become a technical subject to efficiently produce molten metal by recycling solid metal raw materials such as scrap due to resource and environmental problems. There are various kinds of metal scraps, but as a method for obtaining molten iron by using steel scrap, which has a large amount of generation, conventionally, most has been carried out in an electric furnace. However, in the case of an electric furnace, a large amount of electric power is consumed for scrap melting and refining, so it is not preferable as a cost increase in a country such as Japan where the electric power price is extremely high. Therefore, as a method of melting and refining scrap economically without using an electric furnace,
A method for melting and refining scrap using inexpensive carbonaceous materials has been studied by utilizing the surplus production capacity of a converter having a high acid transfer capacity.

【0003】このような状況下で、一般的には既存の上
底吹きの複合吹錬転炉を利用することで設備増を控える
と共に、スクラップと一緒に炉内に装入した火種に着火
した後、上底吹き吹錬の際に炉上方から熱源としての炭
材を投入しながら溶解・精錬する方法が提案されてい
る。また、スラグ層中へガスを横向きに吹く横吹き転炉
吹錬方法として、特開昭57−60009号公報や特開
平2−166212号公報、さらには、特公平6−99
735号公報や特公平6−99736号公報が知られて
いる。また、横吹き羽口を2段に設けた転炉吹錬方法と
しては特公昭61−51605号公報が知られている。
すなわち、特開昭57−60009号公報は転炉の炉側
部の溶銑中に浸漬される部分に上下に間隔を置いて上部
羽口および下部羽口をそれぞれ適当数設けておき、吹錬
開始時には上部羽口へ供給する吹錬ガスの流量を下部羽
口へ供給する吹錬ガスよりも大流量に設定し、吹錬途中
において下部羽口へ供給するガス流量が上部流量へ供給
するガス流量よりも大流量となるように上部羽口および
下部羽口のガス流量を変更し、その状態で吹錬終了まで
行う横吹き転炉吹錬方法である。
Under such circumstances, generally, the existing upper-bottom blown composite blowing furnace is used to suppress the increase in equipment and to ignite the seeds charged in the furnace together with the scrap. After that, a method of melting and refining while charging carbonaceous material as a heat source from above the furnace at the time of blowing from the top and bottom has been proposed. Further, as a lateral blowing converter blowing method for laterally blowing a gas into a slag layer, Japanese Patent Laid-Open No. 57-60009, Japanese Patent Laid-Open No. 2-166212, and Japanese Patent Publication No. 6-99.
Japanese Patent Publication No. 735 and Japanese Patent Publication No. 6-99736 are known. Japanese Patent Publication No. 61-51605 is known as a converter blowing method in which horizontal blowing tuyere is provided in two stages.
That is, in JP-A-57-60009, an appropriate number of upper tuyeres and lower tuyere are provided at intervals above and below the portion of the converter side of the furnace to be immersed in the hot metal, and blowing is started. Sometimes the flow rate of the blowing gas supplied to the upper tuyere is set to be larger than that of the blowing gas supplied to the lower tuyere, and the gas flow rate supplied to the lower tuyere during the blowing is the gas flow rate supplied to the upper flow rate. It is a lateral blowing converter blowing method in which the gas flow rates of the upper tuyeres and the lower tuyere are changed so that the flow rate is larger than that, and the blowing is completed in that state until the blowing is completed.

【0004】また、特開平2−166212号公報はス
ラグ層中へ攪拌用ガスとして横吹き羽口を設けた溶融還
元において、スロッピングを、正確かつ十分な時間的余
裕をもって予知し得る方法である。さらに、特公平6−
99735号公報は製錬炉において溶湯中で発生し、ス
ラグ中を浮上する一酸化炭素ガスをスラグ中に酸化性ガ
スを傾斜して吹込むことにより燃焼させると共に燃焼し
て昇温するスラグを旋回させて、スラグの熱を溶湯へ付
加する際に、一定の条件を与えて酸化性ガスを吹込む方
法であり、特公平6−99736号公報はスラグ層で一
酸化炭素を燃焼させて発生する高温の燃焼熱を、スラグ
層を攪拌循環させることにより溶湯へ伝熱する際に、炉
芯に対して点対象で、かつスラグ層の範囲に相当する炉
壁に設けられた水平方向に対する傾斜角を0〜60°の
範囲とした上向きの羽口と、水平方向に対する傾斜角を
−60°〜0の範囲とした下向きの羽口とから酸化性ガ
スを吹込む方法がある。
Further, Japanese Patent Laid-Open No. 2-166212 is a method capable of predicting sloping accurately and with a sufficient time margin in smelting reduction in which a side blowing tuyere is provided as a stirring gas in a slag layer. . In addition,
No. 99735 discloses that a carbon monoxide gas that is generated in a molten metal in a smelting furnace and floats in the slag is combusted by injecting an oxidizing gas into the slag while inclining the slag, and the slag that burns and rises in temperature is swirled. Then, when adding the heat of the slag to the molten metal, it is a method of injecting an oxidizing gas under given conditions. Japanese Patent Publication No. 6-99736 discloses a method of burning carbon monoxide in a slag layer. When the high-temperature combustion heat is transferred to the molten metal by stirring and circulating the slag layer, the inclination angle with respect to the horizontal direction is point-symmetrical with respect to the furnace core and provided on the furnace wall corresponding to the range of the slag layer. There is a method in which the oxidizing gas is blown from the upward tuyere in the range of 0 to 60 ° and the downward tuyere in the range of −60 ° to 0 with respect to the horizontal direction.

【0005】また、特公昭61−51605号公報は転
炉の炉側部の溶鉄中に浸漬される部分に上下に間隔を置
いて上部羽口および下部羽口をそれぞれ適当数設けてお
き、吹錬開始時には上部羽口へ供給する吹錬ガスの流量
を下部羽口へ供給する吹錬ガスよりも大流量に設定し、
吹錬途中において下部羽口へ供給するガス流量が上部流
量へ供給するガス流量よりも大流量となるように上部羽
口および下部羽口のガス流量を変更して、その状態で吹
錬終了まで至らせることを特徴とする横吹き転炉吹錬方
法、すなわち、炉側部に設けられた羽口から吹錬ガスを
溶鉄中に吹込むようにした横吹き転炉吹錬方法である。
In Japanese Patent Publication No. 61-51605, an appropriate number of upper and lower tuyeres are provided at intervals above and below the portion of the side of the converter to be immersed in molten iron, and blown. At the start of smelting, the flow rate of the blowing gas supplied to the upper tuyere is set to be larger than that of the blowing gas supplied to the lower tuyere,
Change the gas flow rate of the upper tuyere and the lower tuyere so that the gas flow rate supplied to the lower tuyere is higher than the gas flow rate supplied to the upper flow rate during the blowing, and in that state until the end of blowing The method is a side-blown converter blowing method, which is a side-blown converter blowing method in which blowing gas is blown into molten iron from tuyere provided on the side of the furnace.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上述し
た特開昭57−60009号公報及び特公昭61−51
605号公報は転炉の溶銑中に2段の上下羽口を設けて
いるもので、スラグの攪拌を目的としたものではない。
また、特開平2−166212号公報は横吹き羽口を設
けてはいるが溶融還元であって、上記同様スラグの攪拌
は何ら目的としていない。さらに、特公平6−9973
5号公報および特公平6−99736号公報はスラグを
旋回させて、スラグの熱を溶湯へ付加することは本発明
と同じであるが、しかし、スラグの攪拌に当って、特公
平6−99735号公報は第2図に示すように、スラグ
の攪拌が炉全体に水平回転流が行われており、しかも、
炉壁への流動が行われている。また、特公平6−997
36号公報も同様で、第1図に示すように炉全体に水平
回転流が行われている。このような水平回転流では、ス
ラグ上面の火点(熱発生場所)からそのスラグの下にあ
る溶湯への熱伝導が最短距離でもなく最短時間でもない
し、スラグの水平移動中にスラグ上面から空間あるいは
耐火物壁に熱が輻射放散される可能性が高いという問題
がある。
However, the above-mentioned Japanese Patent Application Laid-Open No. 57-60009 and Japanese Patent Publication No. 61-51.
Japanese Patent No. 605 has two stages of upper and lower tuyeres provided in the hot metal of the converter, and is not intended to stir the slag.
Further, Japanese Patent Laid-Open No. 166212/1990 provides a side blowing tuyere, but it is a smelting reduction, and the stirring of the slag is not intended at all as in the above. In addition, Japanese Patent Publication No. 6-9973
In Japanese Patent Publication No. 5 and Japanese Patent Publication No. 6-99736, the slag is swirled and the heat of the slag is added to the molten metal, which is the same as the present invention. However, in stirring the slag, Japanese Patent Publication No. 6-99735 is used. According to the publication, as shown in FIG. 2, the slag is agitated by a horizontal rotary flow over the entire furnace, and
Flowing to the furnace wall. In addition, Japanese Patent Publication 6-997
The same is true of Japanese Patent No. 36, in which a horizontal rotary flow is performed in the entire furnace as shown in FIG. In such a horizontal rotating flow, the heat conduction from the fire point (heat generation place) on the slag upper surface to the molten metal under the slag is not the shortest distance nor the shortest time, and the space from the slag upper surface is not moving during the horizontal movement of the slag. Alternatively, there is a problem that heat is likely to be radiated and radiated to the refractory wall.

【0007】[0007]

【課題を解決するための手段】本発明は、上述したよう
な問題を解消し、上吹きランスと少なくとも2段の横吹
き羽口とを最適条件に組合せることにより、スラグ上層
は炉壁から炉中心点に、スラグ下層は炉中心点から炉壁
方向に、また炉壁との接触部では上方に移動するような
上下循環流を起こさせ、スラグ上面火点の熱を最短距
離、かつ最短時間でメタルに熱を伝達させる鋼スクラッ
プの溶解方法を提供することにある。その発明の要旨と
するところは、 (1)上吹き又は上底吹き精錬炉により炭材を投入しス
ラグを生成させながら鋼スクラップを溶解する方法にお
いて、炉壁の上下方向に少なくとも2段設けた横吹き羽
口により、下側の羽口から上側の羽口に向かって、ガス
流量を増加させながらスラグ層中にガスを吹き込み該ス
ラグをスラグ表層炉壁側からスラグ表層中心側へ回転さ
せることを特徴とする着熱効率の優れた鋼スクラップの
溶解方法。 (2)炉壁の上下方向に設けた横吹き羽口が3段以上で
ある場合に、ガス流量を下側の羽口から上側の羽口に向
かって増加させる代わりに、隣接する上下方向の羽口の
一部から吹き込むガス流量を同一とすることを特徴とす
る(1)記載の着熱効率の優れた鋼スクラップの溶解方
法にある。
SUMMARY OF THE INVENTION The present invention solves the above-mentioned problems and combines the upper blowing lance and at least two stages of side blowing tuyeres under optimum conditions so that the upper slag layer is removed from the furnace wall. At the center of the furnace, the lower slag layer causes a vertical circulation flow that moves in the direction from the center of the furnace to the furnace wall, and upward in the contact area with the furnace wall. It is to provide a method for melting steel scrap that transfers heat to metal in time. The gist of the invention is (1) In a method of melting steel scrap while generating slag by introducing carbonaceous material in a top-blown or bottom-blown refining furnace, at least two stages are provided in the vertical direction of the furnace wall. With the side blowing tuyeres, gas is blown into the slag layer from the lower tuyeres toward the upper tuyeres while increasing the gas flow rate, and the slag is rotated from the slag surface layer furnace wall side to the slag surface layer center side. A method for melting steel scrap with excellent heat deposition efficiency, characterized by: (2) Instead of increasing the gas flow rate from the lower tuyere to the upper tuyere, when the horizontal blowing tuyers provided in the vertical direction of the furnace wall have three or more stages, The method for melting steel scrap with excellent heat deposition efficiency described in (1) is characterized in that the gas flow rate blown from a part of the tuyere is the same.

【0008】[0008]

【作用】以下、本発明について図面に従って詳細に説明
する。図1は本発明に係る上底吹き転炉による少なくと
も2段の横吹き羽口を用いたスクラップ溶解炉の側断面
図である。図1に示すように、転炉炉体1は耐火物で内
張りされ、例えば上底吹き転炉で酸素下吹き羽口2およ
び酸素上吹きランス6を備えている。酸素上吹きランス
6から酸素ガスを溶融鉄金属3上の溶融スラグ4に吹き
付ける。石炭やコークスなどの炭材およびスクラップを
上方から投入して炉内の溶融スラグ4上に装入される。
これらの炭材の燃焼発生ガスを有効に溶融スラグに伝え
るために、炉底から底吹きガス、例えばN2 ,CO,C
2 ,O2,LPGおよび不活性ガスなど,によりスラ
グを攪拌してスラグと溶融鉄を攪拌混合して良好な伝熱
を行う。
The present invention will be described in detail below with reference to the drawings. FIG. 1 is a side sectional view of a scrap melting furnace using at least two stages of side blowing tuyere according to the present invention. As shown in FIG. 1, a converter furnace body 1 is lined with a refractory material, and is provided with an oxygen-down blowing tuyere 2 and an oxygen-up blowing lance 6 in, for example, an upper-bottom blowing converter. Oxygen gas is blown onto the molten slag 4 on the molten ferrous metal 3 from the oxygen top blowing lance 6. Carbon materials such as coal and coke and scrap are charged from above and charged on the molten slag 4 in the furnace.
In order to effectively convey the combustion generated gas of these carbon materials to the molten slag, bottom blowing gas such as N 2 , CO, C from the furnace bottom is used.
Good heat transfer is carried out by stirring the slag with O 2 , O 2 , LPG, an inert gas, etc. and stirring and mixing the slag and molten iron.

【0009】一方、スラグ中に浸漬する炉壁の上段に設
けた2次燃焼用酸素を吹き込むための1段横吹き羽口5
はスラグ表層から0〜1/2の範囲内にガスを0.01
Nm 3 /min/スラグトン〜2000.0Nm3 /m
in/スラグトンの範囲で水平に吹き込み、下段横吹き
羽口7はスラグ層の1/2の位置より下部の範囲内に設
ける。酸素上吹きランス6から吹込むガスとの相互作用
によりスラグ上側は炉壁周辺のスラグ層から上昇するC
Oガスを火点に集めると共に、空間ガスを炉壁から中心
に移動させることでスラグ表層をスラグ表面層炉壁側か
らスラグ表層中心側へ上下回転させるものである。ま
た、下側羽口からのガスは強制的にスラグ下層を炉中心
から炉壁へ移動させる。このようにスラグ表層炉壁側か
らスラグ表層中心側へスラグを上下回転させることによ
って、上吹きランス直下での火点下の溶融鉄に最短距
離、かつ最短時間で伝達することが出来、着熱効率を高
めることが出来る。しかも、このスラグ回転が図で示す
矢印とは反対の回転であると火点で生成した熱が空間に
輻射放散され熱損失となるからである。
On the other hand, the upper part of the furnace wall immersed in the slag is installed.
Single-stage side-blown tuyere 5 for blowing oxygen for secondary combustion
Is 0.01% gas within the range of 0 to 1/2 from the surface layer of the slag.
Nm 3/Min/Slagton-2000.0Nm3/ M
Horizontally blown in the range of in / slag tons, lower side blow
The tuyere 7 is installed in the range below the half position of the slag layer.
Kick Interaction with the gas blown from the oxygen top blowing lance 6
Causes the upper side of the slag to rise from the slag layer around the furnace wall C
While collecting O gas at the fire point, center the space gas from the furnace wall
By moving the slag surface layer to the slag surface layer furnace wall side
The slag is rotated vertically toward the center of the surface layer. Well
Also, the gas from the lower tuyere is forcibly centered on the lower slag layer.
To the furnace wall. In this way, whether the slag surface layer wall side
By rotating the slag up and down to the center of the slag surface
The shortest distance to the molten iron below the flash point directly below the top blowing lance.
The heat transfer efficiency can be improved by separating and transmitting in the shortest time.
You can Moreover, this slag rotation is shown in the figure
If the rotation is opposite to the arrow, the heat generated at the fire point will
This is because radiation is dissipated and heat is lost.

【0010】また、転炉の上方から酸素上吹きランスを
通して吹き込まれるのは酸素ガスである。この酸素ガス
は高純度の酸素含有ガスであり、純酸素ガスあるいは7
0%以上の酸素を含む比較的純度の低い酸素ガスあるい
は純酸素ガスと空気、窒素のような希釈ガスの混合物
で、酸素濃度を70%以上のものを言う。そして酸素ガ
スは炭材および発生COなどの可燃ガス成分を燃焼させ
て発生し、スクラップに溶解熱を供給する。一方、底吹
きガスには溶融物を攪拌する効果があり、伝熱進行に必
要である。この底吹きガスとしては、O2 ,N2 ,C
O,CO2 ,アルゴン、LPGなどの1種ないしは2種
以上の混合ガスを用いる。
Further, it is oxygen gas that is blown from above the converter through the oxygen top blowing lance. This oxygen gas is a high-purity oxygen-containing gas, and is pure oxygen gas or 7
A mixture of a relatively low-purity oxygen gas or pure oxygen gas containing 0% or more oxygen and a diluent gas such as air or nitrogen, and having an oxygen concentration of 70% or more. Oxygen gas is generated by burning combustible gas components such as carbonaceous material and generated CO, and supplies heat of melting to scrap. On the other hand, the bottom-blown gas has the effect of stirring the melt and is necessary for the progress of heat transfer. As the bottom blowing gas, O 2 , N 2 , C
A mixed gas of one or more kinds of O, CO 2 , argon, LPG and the like is used.

【0011】図2は本発明に係る他の実施例を示す3段
の横吹き羽口を用いたスクラップ溶解炉の側断面図であ
る。図2に示すように上から1段目の横吹き羽口5をス
ラグ表層から0〜1/2の範囲内に浸漬させ、上から2
段目の横吹き羽口7をスラグ層から1/2の位置に配設
すると共に、上から3段目の横吹き羽口8を斜め上方に
向かって吹き込み、しかも隣接する上下方向の一部の羽
口から吹き込むガス流量を同一とするものである。例え
ば、1段羽口を大きく、2段及び3段羽口からの吹き込
むガス流量を同一小流量とするか、1段及び2段羽口の
ガス流量を大きく、3段羽口よりのガス流量を小さくす
るというものである。このように横吹き羽口の制御を行
うと共に、この上吹きランスとの相互作用により効率良
くスラグ4をスラグ表層炉壁側からスラグ表層中心側へ
上下回転させるものである。横吹きランスの上方斜め吹
き込み角度θは水平に対して0<θ≦90°、望ましく
は30<θ≦75°とする。
FIG. 2 is a side sectional view of a scrap melting furnace using a three-stage side blowing tuyere according to another embodiment of the present invention. As shown in FIG. 2, the horizontal blown tuyere 5 at the first stage from the top is immersed in the range of 0 to 1/2 from the surface layer of the slag, and 2 from the top.
The horizontal blowing tuyeres 7 of the first stage are arranged at a position 1/2 from the slag layer, and the lateral blowing tuyeres 8 of the third stage from the top are blown diagonally upward, and a part of the adjacent vertical direction. The gas flow rates blown from the tuyere are the same. For example, the first stage tuyeres should be large and the gas flow rates from the second and third stage tuyeres should be the same small flow rates, or the gas flow rates of the first and second stage tuyeres should be large and the gas flow rates from the third stage tuyeres should be large. Is to reduce. In this way, the side blowing tuyere is controlled, and the slag 4 is efficiently rotated vertically from the slag surface layer furnace wall side to the slag surface layer center side by the interaction with the upper blowing lance. The upper oblique blowing angle θ of the lateral blowing lance is 0 <θ ≦ 90 ° with respect to the horizontal, and preferably 30 <θ ≦ 75 °.

【0012】[0012]

【実施例】上吹きランスよりスラグ層面に酸素ガスを1
000Nm3 /hrで吹込み、2段の横吹き羽口を用い
て上段の羽口位置をスラグ表層から50mmの位置に、
また、下段の羽口位置をスラグ下層から50mmの位置
に配した。各々純酸素を100Nm3 /hr吹き込ん
だ。スラグ層中炭材と酸素は燃焼しながらスラグ表層を
炉中心軸に向かって移動し、火点に至り、火点では36
0°同様に集まる流れが衝突してスラグ層下方に移動
し、熱が火点直下の溶融鉄金属に伝熱できた。この結果
着熱効率は100%になった。これに対して、比較例と
して上吹きランス及び溶融鉄金属中への横吹きを行った
結果は溶融鉄金属の攪拌は良いが、2次燃焼率50%の
時、着熱効率は90%のままで改善が見られなかった。
[Example] Oxygen gas was applied to the slag layer surface from the top blowing lance by 1
Blowing at 000 Nm 3 / hr, the upper tuyere position was set to 50 mm from the surface layer of the slag using the two-stage lateral blowing tuyere.
Further, the tuyere position of the lower stage was arranged at a position of 50 mm from the lower layer of the slag. Pure oxygen was blown into each at 100 Nm 3 / hr. While burning the carbonaceous material and oxygen in the slag layer, the surface layer of the slag moves toward the central axis of the furnace and reaches the fire point.
Similar to 0 °, the gathered flows collided and moved to the lower side of the slag layer, and heat could be transferred to the molten iron metal just below the fire point. As a result, the heat deposition efficiency became 100%. On the other hand, as a comparative example, the result of performing the upper blowing lance and the horizontal blowing into the molten ferrous metal shows that the molten ferrous metal can be stirred well, but the heat deposition efficiency remains 90% at the secondary combustion rate of 50%. Did not show any improvement.

【0013】[0013]

【発明の効果】以上述べたように、本発明による、少な
くとも2段の横吹き羽口よりガス量を変化させて吹き込
むことにより、スラグ層上層では炉壁から炉の中心点に
移動させ、スラグ下層は炉壁方向に、炉壁との接触部に
おいては上方に移動するような上下循環流を起こさせる
スラグ旋回により、燃焼熱を高効率に溶湯に着熱でき、
多量の熱を必要とするスクラップ溶解における反応効率
を高めることが出来る等々工業上極めて優れた効果を奏
するものである。
As described above, according to the present invention, the amount of gas is changed and blown from at least two stages of horizontal blowing tuyere to move the gas from the furnace wall to the center point of the furnace in the upper layer of the slag layer, and the slag. The lower layer is in the direction of the furnace wall, and the slag swirl that causes an up-and-down circulation flow that moves upward at the contact portion with the furnace wall allows the combustion heat to be applied to the molten metal with high efficiency,
This is an industrially excellent effect in that the reaction efficiency in scrap melting that requires a large amount of heat can be increased.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る上底吹き転炉による少なくとも2
段の横吹き羽口を用いたスクラップ溶解炉の側断面図、
FIG. 1 is a top-bottom blow converter of at least 2 according to the present invention.
Side sectional view of a scrap melting furnace using horizontal blowing tuyeres,

【図2】本発明に係る他の実施例を示す3段の横吹き羽
口を用いたスクラップ溶解炉の側断面図である。
FIG. 2 is a side sectional view of a scrap melting furnace using a three-stage side blowing tuyere according to another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 転炉炉体 2 酸素下吹き羽口 3 溶融鉄金属 4 溶融スラグ 5 1段目の横吹き羽口 6 酸素上吹きランス 7 2段目の横吹き羽口 8 3段目の横吹き羽口 1 Converter furnace body 2 Oxygen-blown tuyeres 3 Molten iron metal 4 Molten slag 5 1st-stage side-blown tuyeres 6 Oxygen top-blown lance 7 2nd-stage laterally-blown tuyeres 8 3rd-stage horizontally-blown tuyeres

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 上吹き又は上底吹き精錬炉により炭材を
投入しスラグを生成させながら鋼スクラップを溶解する
方法において、炉壁の上下方向に少なくとも2段設けた
横吹き羽口により、下側の羽口から上側の羽口に向かっ
て、ガス流量を増加させながらスラグ層中にガスを吹き
込み、該スラグをスラグ表層炉壁側からスラグ表層中心
側へ回転させることを特徴とする着熱効率の優れた鋼ス
クラップの溶解方法。
1. In a method for melting steel scrap while introducing carbonaceous material in a top-blown or top-bottom-blown refining furnace to generate slag, a horizontal blowing tuyer provided at least two stages vertically in the furnace wall From the side tuyere to the upper tuyere, gas is blown into the slag layer while increasing the gas flow rate, and the slag is rotated from the slag surface layer furnace wall side to the slag surface layer center side. Excellent steel scrap melting method.
【請求項2】 炉壁の上下方向に設けた横吹き羽口が3
段以上である場合に、ガス流量を下側の羽口から上側の
羽口に向かって増加させる代わりに、隣接する上下方向
の一部の羽口から吹き込むガス流量を同一とすることを
特徴とする請求項1記載の着熱効率の優れた鋼スクラッ
プの溶解方法。
2. A horizontal blowing tuyer provided in the vertical direction of the furnace wall is 3
In the case of a step or more, instead of increasing the gas flow rate from the lower tuyere to the upper tuyere, the gas flow rate blown from a part of the adjacent vertical tuyere is the same. The method for melting steel scrap according to claim 1, which is excellent in heat deposition efficiency.
JP9394295A 1995-04-19 1995-04-19 Steel scrap melting method excellent in heat conductive efficiency Withdrawn JPH08291311A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9394295A JPH08291311A (en) 1995-04-19 1995-04-19 Steel scrap melting method excellent in heat conductive efficiency

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9394295A JPH08291311A (en) 1995-04-19 1995-04-19 Steel scrap melting method excellent in heat conductive efficiency

Publications (1)

Publication Number Publication Date
JPH08291311A true JPH08291311A (en) 1996-11-05

Family

ID=14096497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9394295A Withdrawn JPH08291311A (en) 1995-04-19 1995-04-19 Steel scrap melting method excellent in heat conductive efficiency

Country Status (1)

Country Link
JP (1) JPH08291311A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008119329A2 (en) * 2007-03-30 2008-10-09 Solmic Gmbh Method and device for purifying melts, especially silicon melts
CN102732669A (en) * 2012-06-21 2012-10-17 莱芜钢铁集团有限公司 Auxiliary device for removal of dephosphorization residues in converter, and method for auxiliary removal of dephosphorization residues through air blowing
CN110982988A (en) * 2019-12-25 2020-04-10 河钢股份有限公司承德分公司 Desulfurization method for promoting contact of steel slag in LF refining furnace and steel-making method
CN111485043A (en) * 2020-06-01 2020-08-04 上海驰春节能科技有限公司 Dephosphorization process and device for liquid steel slag
CN114686641A (en) * 2020-12-28 2022-07-01 河北龙凤山铸业有限公司 Top-bottom side multi-point oxygen blowing purification converter and method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008119329A2 (en) * 2007-03-30 2008-10-09 Solmic Gmbh Method and device for purifying melts, especially silicon melts
WO2008119329A3 (en) * 2007-03-30 2009-04-02 Solmic Gmbh Method and device for purifying melts, especially silicon melts
CN102732669A (en) * 2012-06-21 2012-10-17 莱芜钢铁集团有限公司 Auxiliary device for removal of dephosphorization residues in converter, and method for auxiliary removal of dephosphorization residues through air blowing
CN110982988A (en) * 2019-12-25 2020-04-10 河钢股份有限公司承德分公司 Desulfurization method for promoting contact of steel slag in LF refining furnace and steel-making method
CN110982988B (en) * 2019-12-25 2021-08-13 河钢股份有限公司承德分公司 Desulfurization method for promoting contact of steel slag in LF refining furnace and steel-making method
CN111485043A (en) * 2020-06-01 2020-08-04 上海驰春节能科技有限公司 Dephosphorization process and device for liquid steel slag
CN114686641A (en) * 2020-12-28 2022-07-01 河北龙凤山铸业有限公司 Top-bottom side multi-point oxygen blowing purification converter and method
CN114686641B (en) * 2020-12-28 2024-02-09 河北龙凤山铸业有限公司 Top-bottom side multipoint oxygen blowing purification converter and method

Similar Documents

Publication Publication Date Title
EP0693561B1 (en) Electric arc furnace post-combustion method
KR910006037B1 (en) Method for smelting reduction of iron ore
US6289034B1 (en) Process and an apparatus for producing metals and metal alloys
US4504307A (en) Method for carrying out melting, melt-metallurgical and/or reduction-metallurgical processes in a plasma melting furnace as well as an arrangement for carrying out the method
JPH073323A (en) Converter for steel production
JP4342104B2 (en) Direct smelting method
JPH08291311A (en) Steel scrap melting method excellent in heat conductive efficiency
JPH0368082B2 (en)
JPH0136903Y2 (en)
JP3286114B2 (en) Method for producing high carbon molten iron from scrap iron
JP3290844B2 (en) Scrap iron dissolution method
JPH02200713A (en) Device and method for producing molten iron
WO2023054345A1 (en) Molten iron production method
JP2560669B2 (en) Method of manufacturing hot metal
JP2022117935A (en) Molten iron refining method
JPH08277410A (en) Method for melting steel scrap
JPH07207325A (en) Method for melting scrap using carbonaceous material as fuel
JPH01162711A (en) Smelting reduction method
JPH06228623A (en) Steelmaking method having small energy consumption
JP2666396B2 (en) Hot metal production method
JP2002003917A (en) Method for supplying oxygen in vertical melting furnace
JPH08311518A (en) Method for melting steel scrap excellent in heat conductive efficiency
JP2666385B2 (en) Hot metal production method
JPH01195211A (en) Method for melting and reducing iron oxide
JPS62247013A (en) Apparatus for producing molten ferrous metal

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020702