JPH0368082B2 - - Google Patents

Info

Publication number
JPH0368082B2
JPH0368082B2 JP6473885A JP6473885A JPH0368082B2 JP H0368082 B2 JPH0368082 B2 JP H0368082B2 JP 6473885 A JP6473885 A JP 6473885A JP 6473885 A JP6473885 A JP 6473885A JP H0368082 B2 JPH0368082 B2 JP H0368082B2
Authority
JP
Japan
Prior art keywords
bath
gas
slag
oxygen
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6473885A
Other languages
Japanese (ja)
Other versions
JPS61221322A (en
Inventor
Takuya Maeda
Mitsuharu Kishimoto
Keikichi Murakami
Kenichi Yajima
Kosaku Higuchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP60064738A priority Critical patent/JPS61221322A/en
Publication of JPS61221322A publication Critical patent/JPS61221322A/en
Publication of JPH0368082B2 publication Critical patent/JPH0368082B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/30Regulating or controlling the blowing
    • C21C5/35Blowing from above and through the bath
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、酸化金属の溶融還元金属製造プロ
セス、還元金属およびスクラツプの溶解プロセス
等に適用される金属原料溶解精錬方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a metal raw material melting and refining method that is applied to a metal production process for smelting and reducing oxide metals, a process for melting reduced metals and scrap, and the like.

(従来技術) 鉄鋼生産方法としてかつては、多量のスクラツ
プを溶解できる平炉法が主流を占めていたが、生
産性が低いために衰退し、代わつて現在では純酸
素上吹き、または底吹き方式の転炉法が主流とな
つている。
(Prior art) In the past, the mainstream steel production method was the open hearth method, which could melt large amounts of scrap, but it declined due to low productivity, and now pure oxygen top-blowing or bottom-blowing methods are being used instead. The converter method has become mainstream.

ところが、これらの転炉法ではスクラツプ比
(スクラツプ混入割合)は平炉法ほど高くなく、
せいぜい20%である。従つて粗鋼原料の約40%を
占めるスクラツプ処理方法に関し、転炉法以外の
方法が非常に重要となつている。
However, in these converter methods, the scrap ratio (scrap content ratio) is not as high as in the open hearth method.
It is at most 20%. Therefore, methods other than the converter method are becoming extremely important for scrap processing, which accounts for about 40% of raw steel raw materials.

そして今日、原料としてのスクラツプは高炉−
転炉法による一貫製鉄所においてはむしろ電気炉
で多く消費されている。
And today, scrap as a raw material is used in blast furnaces.
In integrated steel mills using the converter method, much of it is consumed in electric furnaces.

電気炉法は設備費が安く従つて小規模工場でも
十分経済的に成立ち、更には近年注目されている
直接還元製鉄プラントにより生産された還元鉄を
溶解精錬するのに適していること等から今後とも
重要な位置を占めるものと考えられている。
The electric furnace method has low equipment costs, making it economically viable even in small-scale factories, and is also suitable for melting and refining reduced iron produced by direct reduction iron plants, which have been attracting attention in recent years. It is believed that it will continue to occupy an important position in the future.

しかし、電気炉法では高価な電力を熱源として
スクラツプを溶解精錬するため、経済性の面にお
いて極めて厳しい状況に置かれており、従つて電
力に頼らずに安価な石炭を熱源とする操業費の安
価なスクラツプ溶解精錬法に対するニーズが高く
なつている。
However, the electric furnace method uses expensive electricity as a heat source to melt and refine the scrap, which puts it in an extremely difficult economical situation. There is a growing need for inexpensive scrap melting and refining methods.

このような背景の下、製鉄業界においては新溶
解精錬法の開発が重要課題となつており、その中
で最も注目されているのが、金属浴内に石炭と酸
素ガスを吹込み、金属浴内で部分酸化反応を行わ
しめ、それに伴つて発生する熱によりスクラツプ
を溶解するいわゆる金属浴式プロセスである。
Against this background, the development of new melting and refining methods has become an important issue in the steel industry, and the one that is attracting the most attention is the method that involves blowing coal and oxygen gas into a metal bath. This is a so-called metal bath process in which a partial oxidation reaction is carried out inside the tank, and the resulting heat is used to melt the scrap.

下記は鉄系原料に適用したプロセスの例であ
る。然して、このプロセスに於ける鉄浴内主反応
は次式で示される。
The following is an example of a process applied to iron-based raw materials. However, the main reaction within the iron bath in this process is shown by the following equation.

C+1/2O2→CO (石炭中) (吹込みガス中等) (1400℃溶出ガス)
……1565Kcal/C−Kg(発熱) 更に石炭中に含まれている水素もH2ガスとな
つて溶出ガスとして鉄浴より排出される。
C+1/2O 2 →CO (in coal) (injected gas, etc.) (1400℃ elution gas)
...1565Kcal/C-Kg (heat generation) Furthermore, the hydrogen contained in the coal becomes H2 gas and is discharged from the iron bath as eluted gas.

(発明が解決しようとする問題点) ところで、基本的鉄浴式プロセスの最も大きい
欠点は、炉内に加えた熱の内、炉出ガスの持ち去
る熱量が極めて大きく、従つて石炭消費量が極め
て大きいことである。
(Problem to be solved by the invention) By the way, the biggest drawback of the basic iron bath process is that out of the heat added to the furnace, the amount of heat removed by the furnace gas is extremely large, and therefore the amount of coal consumed is extremely high. That's a big thing.

この原因は、鉄浴から出てくるガスの殆どが
COガスと、H2ガスであり、これらのガスが厖大
な量の化学熱(燃焼の潜熱)を保有していること
による。
The reason for this is that most of the gas coming out of the iron bath
These are CO gas and H2 gas, and this is because these gases possess a huge amount of chemical heat (latent heat of combustion).

即ち、炉内に加えた熱量(石炭の燃焼熱)の内
80〜90%が浴出ガスとして鉄浴から出ていき、炉
内に吸収される熱量は僅か10〜20%にしかならな
い。(この値は石炭の種類等によつて異なる) この欠点を補うべく従来の方法では、次の2つ
の対策を行つている。
In other words, out of the amount of heat added to the furnace (coal combustion heat),
80-90% of the heat leaves the iron bath as bath gas, and only 10-20% of the heat is absorbed into the furnace. (This value varies depending on the type of coal, etc.) In order to compensate for this drawback, conventional methods take the following two measures.

a 2次燃焼法 炉内上部ガス層部に酸素を吹込み、浴出ガス
の一部を炉内にて燃焼させ、その時発生した熱
を輻射伝熱方法等により鉄浴中に伝える。
a Secondary combustion method Oxygen is blown into the upper gas layer in the furnace, a part of the bath gas is combusted in the furnace, and the heat generated at that time is transferred to the iron bath by radiation heat transfer method.

即ち、排ガスとして逸散するエネルギーを浴
中へ還流させて、総合熱効率の向上を図る方法
である。
That is, this is a method of improving the overall thermal efficiency by circulating the energy dissipated as exhaust gas back into the bath.

b スクラツプ予熱方法 炉より出てきた可燃性ガス中に酸素、または
空気を吹込み、ガスの一部を燃焼させてガスの
温度を上げ、これをスクラツプに接触させてス
クラツプを予熱する方法。
b Scrap preheating method A method in which oxygen or air is blown into the flammable gas coming out of the furnace, a part of the gas is combusted to raise the temperature of the gas, and the gas is brought into contact with the scrap to preheat the scrap.

従来のこれらの方法には次のような欠点があ
る。
These conventional methods have the following drawbacks.

(a) 2次燃焼法の欠点 (1) 単純に2次燃焼を行つた場合、2次燃焼率
がある程度大きくなければ、2次燃焼発生熱
の鉄浴内吸収率は急速に低下し、2次燃焼に
よる発生熱の大部分が単に炉出ガスの温度を
高めるだけで終わり、熱損失となつて炉外へ
出ていく。
(a) Disadvantages of the secondary combustion method (1) If secondary combustion is simply carried out, unless the secondary combustion rate is large to some extent, the absorption rate of the heat generated by the secondary combustion within the iron bath will rapidly decrease. Most of the heat generated by the subsequent combustion merely increases the temperature of the furnace exit gas and exits outside the furnace as heat loss.

また、この方法は単に熱損失の増大を招く
だけでなく、上述のように排ガスをはじめ炉
上部空間部の温度が非常に高まるため、炉内
耐火物の損傷をひきおこす。
Moreover, this method not only causes an increase in heat loss, but also causes damage to the refractories in the furnace because the temperature of the exhaust gas and the upper space of the furnace increases significantly as described above.

従つて、この方法では、2次燃焼率は10〜
20%が限度であると言われている。
Therefore, in this method, the secondary combustion rate is 10~
It is said that the limit is 20%.

この欠点を補うべく、特開昭57−74390号
の発明に見られるように、ガス噴流を炉内上
部ガス層を通して浴面へ吹き付け、ガス層を
通過する際にガス噴流が炉内ガスを燃焼さ
せ、このガスの燃焼によつて発生した熱が鉄
浴へ伝達されるようにしたものも提案されて
いるが、この方式を採用しても2次燃焼率に
限度(約20〜30%)がある。
In order to compensate for this drawback, as seen in the invention of JP-A-57-74390, a gas jet is blown onto the bath surface through the upper gas layer in the furnace, and as it passes through the gas layer, the gas jet burns the gas in the furnace. A method has also been proposed in which the heat generated by combustion of this gas is transferred to the iron bath, but even if this method is adopted, the secondary combustion rate is limited (approximately 20 to 30%). There is.

この理由として、この方式は、2次吹込み
(酸素)ジエツト流により、炉内でガスを2
次燃焼させ、かつそれらの2次燃焼で発生し
た高温の燃焼ガスをインジエクター効果によ
り巻き込みながら、鉄浴中に侵入させて伝熱
を行うと云う機構であるため、金属浴中に侵
入する高温のガスの中には2次燃焼により新
たに発生したCO2ガスやH2Oガスの一部が鉄
浴中に溶解している炭素に接触し、下記反応
(1400℃の場合)により、再びCOガスやH2
ガスに戻るという現象を引き起こす。(この
時の反応は吸熱反応である) CO2+C→2CO
……3176Kcal/KgC(吸熱) H2O+C→H2+CO
……2583Kcal/KgC(吸熱) このことは2次燃焼の本来の目的に照らし
合わせると極めて不都合である。即ち、2次
燃焼は排ガス中の化学エネルギー(COやH2
として)を熱エネルギーに転換し(燃焼によ
つてCOやH2をCO2やH2Oに転換し、ガスの
温度を上昇させる)、その熱エネルギーを浴
に伝えることにより、排ガス保有エネルギー
を浴中へ還流させることが目的であるにもか
かわらず、上述の反応が生じれば、転換した
熱エネルギーが再び化学エネルギー(CO,
H2)に戻つてしまうという不都合を生じる
わけである。
The reason for this is that this method uses a secondary blow (oxygen) jet flow to generate two gases in the furnace.
The mechanism is that the high-temperature combustion gas generated by the secondary combustion is entrained by the injector effect and transferred into the iron bath to transfer heat. Some of the CO 2 gas and H 2 O gas newly generated by secondary combustion come into contact with the carbon dissolved in the iron bath, and the following reaction (at 1400°C) causes CO 2 gas and H 2 O gas to be generated again. Gas or H2
This causes the phenomenon of returning to gas. (The reaction at this time is an endothermic reaction) CO 2 +C → 2CO
...3176Kcal/KgC (endothermic) H 2 O + C → H 2 + CO
...2583Kcal/KgC (endothermic) This is extremely inconvenient in light of the original purpose of secondary combustion. In other words, secondary combustion uses chemical energy (CO and H2) in the exhaust gas.
) is converted into thermal energy (converts CO and H 2 to CO 2 and H 2 O through combustion, increasing the temperature of the gas) and transfers that thermal energy to the bath, thereby converting the energy held in the exhaust gas into thermal energy. Even though the purpose is to reflux the bath, if the above reaction occurs, the converted thermal energy is converted back into chemical energy (CO,
This results in the inconvenience of returning to H 2 ).

また、上述のように、2次燃焼が炉内浴面
上の空間部で行われるため、燃焼によつて発
生した熱のかなりの部分が、熱輻射により炉
上部壁や排ガス中に逸散する。
In addition, as mentioned above, since secondary combustion takes place in the space above the bath surface in the furnace, a considerable portion of the heat generated by combustion is dissipated into the upper furnace wall and exhaust gas by thermal radiation. .

これらの結果として2次燃焼の効果は著し
く弱められる。
As a result of these, the effect of secondary combustion is significantly weakened.

(2) ガス吹込みノズル数を極めて多くしなけれ
ばならず、炉構造が複雑になる。
(2) The number of gas injection nozzles must be extremely large, making the furnace structure complicated.

(b) スクラツプ予熱方法の欠点 スクラツプ予熱設備を必要とするところか
ら、膨大な設備費を必要とするだけでなく、操
業が複雑になる。またガスが高温となり、かつ
スクラツプとの機械的摩擦等により耐火材等の
摩耗が激しく、従つて運転費が高くつき、かつ
修理のために操業度も低下する。
(b) Disadvantages of the scrap preheating method Since it requires scrap preheating equipment, it not only requires huge equipment costs but also complicates operations. In addition, the gas becomes hot and mechanical friction with the scrap causes severe wear on the refractory materials, resulting in high operating costs and reduced operating efficiency due to repairs.

この発明は上記の点に鑑みなされたものであつ
て、従来冶金上必要とされるよりも多くのスラグ
を意図的に余分に金属浴上に保持し、これを金属
浴からの溶出ガスの燃焼媒体、およびその発生熱
の熱伝達媒体に有効利用し、熱効率を格段に向上
した金属原料溶解精錬方法を提供することを目的
とする。
This invention was made in view of the above points, and involves intentionally retaining an extra amount of slag on a metal bath than conventionally required for metallurgy, and burning the gas eluted from the metal bath. An object of the present invention is to provide a metal raw material melting and refining method that effectively utilizes a medium and the heat generated by the medium as a heat transfer medium, and has significantly improved thermal efficiency.

(問題点を解決するための手段) 上記の目的を達成するため、この発明の要旨と
するところは、金属浴内に炭素含有燃料と酸素含
有ガスを導入し、燃料を部分燃焼させて熱を発生
させると共に、可燃性ガスを金属浴から発生さ
せ、そのガスの一部を上記酸素含有ガスとは別の
系統から炉内に吹込まれた2次燃焼用酸素含有ガ
スにより燃焼させて熱を発生させ、それらの熱に
より金属原料を溶解精錬する方法において、冶金
上必要とするよりも十分に多量のスラグを意図的
に金属浴上に保持し、金属浴から発生する上記可
燃性ガス、またはその一部を、上記スラグ内に位
置するノズルを経由して吹込んだ2次燃焼用酸素
含有ガスによりスラグ内で燃焼させ、その結果発
生した高温の燃焼ガスを金属浴に接触させること
なくスラグに接触させ、燃焼発生熱をまずスラグ
に伝え、更に、上記スラグ中に吹込まれた2次燃
焼用酸素含有ガスがスラグ浴を撹拌するように吹
込まれているか、または別系統から酸素ガスを含
まないガスがスラグ浴を撹拌するように吹込まれ
ることによりスラグ保有熱が効率よく金属浴、も
しくは金属原料に伝わることを特徴とする金属原
料溶解精錬方法にある。
(Means for Solving the Problems) In order to achieve the above object, the gist of the present invention is to introduce a carbon-containing fuel and an oxygen-containing gas into a metal bath, partially burn the fuel, and generate heat. At the same time, a flammable gas is generated from a metal bath, and a part of the gas is combusted by a secondary combustion oxygen-containing gas that is blown into the furnace from a system different from the oxygen-containing gas mentioned above to generate heat. In the method of melting and refining metal raw materials using the heat generated by the metal bath, a sufficiently larger amount of slag than required for metallurgy is intentionally kept on the metal bath, and the above-mentioned flammable gas generated from the metal bath or its A portion of the slag is combusted within the slag by secondary combustion oxygen-containing gas injected through a nozzle located within the slag, and the resulting high-temperature combustion gas is burned into the slag without contacting the metal bath. The heat generated by combustion is first transferred to the slag, and then the oxygen-containing gas for secondary combustion is blown into the slag to stir the slag bath, or it does not contain oxygen gas from another system. A metal raw material melting and refining method characterized in that heat retained in the slag is efficiently transferred to the metal bath or metal raw material by blowing gas into the slag bath so as to stir it.

(実施例) 以下、この発明の実施例をスクラツプ溶解炉に
適用した場合について図面を参照しながら説明す
る。
(Example) Hereinafter, a case where an example of the present invention is applied to a scrap melting furnace will be described with reference to the drawings.

図において、1は内面に耐火レンガ2を張設し
てなるスクラツプ溶融炉で、炉内の鉄浴3に対応
しては炉底部に燃料吹込みノズル4と酸素吹込み
ノズル5を設け、また同じく炉内金属浴3に対応
しては炉側壁には出銃口6を設けている。炉内鉄
浴上のスラグ浴7に対応しては炉側壁に2次燃焼
用酸素吹込みノズル8と排滓口9を設け、炉頂部
開口に排ガスダクト10を連接し、この排ガスダ
クト10部位に炉内に対してスクラツプA、およ
び副燃料を装入するシユート11が設けてある。
In the figure, reference numeral 1 denotes a scrap melting furnace whose inner surface is covered with refractory bricks 2, and a fuel injection nozzle 4 and an oxygen injection nozzle 5 are provided at the bottom of the furnace corresponding to the iron bath 3 in the furnace. Similarly, a gun outlet 6 is provided on the side wall of the furnace corresponding to the metal bath 3 in the furnace. Corresponding to the slag bath 7 above the iron bath in the furnace, an oxygen injection nozzle 8 for secondary combustion and a slag exhaust port 9 are provided on the furnace side wall, and an exhaust gas duct 10 is connected to the opening at the top of the furnace. A chute 11 is provided for charging scrap A and auxiliary fuel into the furnace.

(作用) 上記構成において、次に作用を説明する。(effect) In the above configuration, the operation will be explained next.

(a) 鉄浴内作用 炉底の燃料吹込みノズル4より吹込まれた石
炭(微粉炭)中の炭素Cは、鉄浴3内に溶解す
る。
(a) Action in the iron bath Carbon C in the coal (pulverized coal) injected from the fuel injection nozzle 4 at the bottom of the furnace dissolves in the iron bath 3.

またここで吹込まれる石炭中の水素Hは水素
ガスとなつて鉄浴3よりスラグ浴7中へ出てく
る。
Further, the hydrogen H in the coal that is blown in here becomes hydrogen gas and comes out from the iron bath 3 into the slag bath 7.

一方、鉄浴3内に溶解している炭素は炉底の
酸素吹込みノズル5より吹込まれた酸素と反応
し、COガスとなつて水素ガスと共に鉄浴3よ
りスラグ浴7中へ出る。
On the other hand, carbon dissolved in the iron bath 3 reacts with oxygen blown in from the oxygen blowing nozzle 5 at the bottom of the furnace, becomes CO gas, and exits from the iron bath 3 into the slag bath 7 together with hydrogen gas.

一方、炉上方のシユート11を通じて炉内に
投入されたスクラツプAは、上記反応により、
発生した熱を受けて溶融していく。スクラツプ
Aが溶融して出来た溶銃は、炉下部にある出銃
口6から順次取り出される。
On the other hand, the scrap A fed into the furnace through the chute 11 above the furnace undergoes the above reaction.
It melts due to the heat generated. Molten guns formed by melting the scrap A are sequentially taken out from a gun outlet 6 located at the bottom of the furnace.

(b) スラグ浴内作用 上記のようにして鉄浴3からスラグ浴7内に
出てくるガス(COとH2が主成分)はスラグ浴
7中に気泡状になつて混入しながら上昇する
が、これはその上昇過程において炉側壁の2次
燃焼用酸素吹込みノズル8からスラグ浴7内に
吹込まれた2次燃焼用酸素と接触して一部が燃
焼して発熱する。またスラグ浴7は2次燃焼用
酸素の吹込みにより激しく撹拌、あるいは環流
されており、スラグ浴7内で発生した上述の熱
は、スラグ浴7と鉄浴3間の境界面を通じて鉄
浴3と鉄系原料に伝えられる。
(b) Action inside the slag bath The gas (mainly composed of CO and H 2 ) that comes out from the iron bath 3 into the slag bath 7 as described above rises as it mixes into the slag bath 7 in the form of bubbles. However, during the rising process, this comes into contact with the secondary combustion oxygen blown into the slag bath 7 from the secondary combustion oxygen injection nozzle 8 on the furnace side wall, and a part of the slag combusts to generate heat. In addition, the slag bath 7 is vigorously stirred or refluxed by blowing oxygen for secondary combustion, and the above-mentioned heat generated in the slag bath 7 is transferred to the iron bath 3 through the interface between the slag bath 7 and the iron bath 3. This is said to be the case with iron-based raw materials.

こうしてスラグ浴7内において2次燃焼後の
ガスはスラグ浴7を出て炉内空間を上昇し、排
ガスとなつて排ガスダクト10を経て炉外に排
出される。
In this way, the gas after secondary combustion in the slag bath 7 leaves the slag bath 7, rises in the furnace space, becomes exhaust gas, and is discharged to the outside of the furnace via the exhaust gas duct 10.

また上記の過程において、スラグ浴7に対応
して炉側壁に設けた排滓口9からは、炉内のス
ラグ量を規定量に保つべく適宜スラグの排出が
なされ、炉上部のシユート11からは、スクラ
ツプA、および石灰等の副原料が適宜装入され
る。
In addition, in the above process, slag is appropriately discharged from the slag discharge port 9 provided on the furnace side wall corresponding to the slag bath 7 in order to maintain the amount of slag in the furnace at a specified amount, and from the chute 11 at the upper part of the furnace. , scrap A, and auxiliary raw materials such as lime are charged as appropriate.

然して、この発明ではスラグ中に酸素含有ガス
を吹込み、これによつて鉄浴から出てくるガスを
燃焼させるものであるが、この2次燃焼用酸素含
有ガスの吹込みは、上記のようにスラグ浴に対応
しスラグ浴に接触する炉側壁を通しての吹込みに
限らず、炉上部より炉に挿入されたランスに2次
燃焼用酸素含有ガス吹込みノズルを付属させ、ラ
ンスを介して吹込むことも出来る。
However, in this invention, oxygen-containing gas is injected into the slag to combust the gas coming out of the iron bath, but this injection of oxygen-containing gas for secondary combustion is carried out as described above. In addition to blowing through the furnace side wall that corresponds to the slag bath and contacts the slag bath, it is also possible to attach a secondary combustion oxygen-containing gas blowing nozzle to a lance inserted into the furnace from the top of the furnace, and blow through the lance. It is also possible to enter.

また上記の2次燃焼用酸素含有ガス吹込みノズ
ルを複数個を設け、その一部は水平より上向き
に、他は下向きにしてスラグ浴内にガスを吹込む
ようにし、更にこれらの酸素含有ガス吹込みノズ
ルからのガス吹込み方向は炉中心に向けずに偏心
させることによつてスラグ浴の撹拌効果を向上さ
せるとか、スラグの定常的環流浴を形成させるこ
とが出来る。また上記スラグ浴中2次燃焼用酸素
含有ガスとは別のガスを吹込み、スラグ浴を撹拌
してもよい。
In addition, a plurality of the above-mentioned oxygen-containing gas blowing nozzles for secondary combustion are provided, some of which are oriented upwards from the horizontal level and others are oriented downwardly to blow gas into the slag bath, and these oxygen-containing gas blowing nozzles are By making the gas blowing direction from the filling nozzle eccentric rather than toward the center of the furnace, it is possible to improve the stirring effect of the slag bath or to form a steady reflux bath of the slag. Further, a gas other than the oxygen-containing gas for secondary combustion may be blown into the slag bath and the slag bath may be stirred.

また燃料としては石炭の代わりに重油等の液体
燃料も使用できる。
Furthermore, liquid fuel such as heavy oil can also be used instead of coal.

尚、上記実施例では酸化鉄の還元に関してのみ
説明したが、その他の金属、例えばCr,Ni,Mn
等についても鉄系原料と全く同じように適用でき
ることは勿論であり、実施例中のFeを、例えば
Crに変えればよい。
In the above example, only the reduction of iron oxide was explained, but other metals such as Cr, Ni, Mn
Of course, it can be applied to iron-based raw materials in exactly the same way as iron-based raw materials.
Just change it to Cr.

またこの発明のバリエーシヨンは次の通りであ
る。
Further, variations of this invention are as follows.

(1) 吹込み酸素含有ガスが空気である場合。(1) When the blown oxygen-containing gas is air.

(2) 吹込み酸素含有ガスを予熱する場合。(2) When preheating the blown oxygen-containing gas.

(3) 金属原料を炉内に装入する前に予熱する場
合。
(3) When preheating metal raw materials before charging them into the furnace.

(効果) 上記説明よりしてこの発明の効果は次のような
ものである。
(Effects) From the above explanation, the effects of this invention are as follows.

(1) 2次燃焼が主としてスラグ浴中で行われるた
め、2次燃焼発生熱の逸散量が少なく、従つて
2次燃焼により発生した熱の大部分がスラグ浴
内に吸収され、この熱がスラグ浴と接する金属
原料、もしくは金属浴の境界面を通じて金属浴
内に伝えられる。従つて炉出ガスの保有化学熱
が少なくなり、炉内熱吸収効率が高く、燃料消
費量が少ない。
(1) Since the secondary combustion mainly takes place in the slag bath, the amount of heat generated by the secondary combustion dissipates is small, and most of the heat generated by the secondary combustion is absorbed into the slag bath, and this heat is transmitted into the metal bath through the metal raw material in contact with the slag bath or the interface of the metal bath. Therefore, the amount of chemical heat retained in the furnace gas is reduced, the heat absorption efficiency within the furnace is high, and the amount of fuel consumed is low.

試算例によれば、鉄スクラツプ1屯(1000
Kg)を溶融するのに必要とする石炭量の比較に
おいて、従来の方法では200Kgを必要としたの
に対し、この発明の場合は160Kgであつた。
According to the example calculation, 1 ton of iron scrap (1000
In comparing the amount of coal required to melt 1 kg), the conventional method required 200 kg, while the present invention required 160 kg.

また酸化鉄1屯(1000Kg)を溶融還元するの
に必要とする石炭量の比較において、従来の方
法では1100Kgを必要としたのに対し、この発明
の方法では860Kgであつた。
Furthermore, in comparing the amount of coal required to melt and reduce 1 ton (1000 kg) of iron oxide, the conventional method required 1100 kg, while the method of the present invention required 860 kg.

(2) スラグ浴が物理的、化学的なバツフアーとな
るため、2次燃焼プロセスが極めて安定したも
のとなり、操業方法の変更による影響を受けに
くい。従つて操業性が向上する。
(2) The slag bath acts as a physical and chemical buffer, making the secondary combustion process extremely stable and less susceptible to changes in operating methods. Therefore, operability is improved.

例えば前述の特開57−74390号の発明の場合、
炉の上部に設けた2次燃焼用空気吹込みノズル
にスラグが付着したり、耐火レンガが消耗する
ことによつて吹込み方向が変化し、吹込みガス
量の変化、金属浴面の位置変化等により大きい
影響を受け安定した操業が出来ない場合が度々
生ずると考えられるが、この発明による方法で
はこのようなことは起こらない。
For example, in the case of the invention of JP-A No. 57-74390 mentioned above,
The blowing direction changes due to slag adhering to the secondary combustion air blowing nozzle installed at the top of the furnace or the refractory bricks being worn out, resulting in changes in the amount of blown gas and changes in the position of the metal bath surface. However, with the method of the present invention, such situations do not occur.

(3) 2次燃焼後のガスが金属浴に接触しないた
め、燃焼ガス中に含まれているCO2ガスやH2O
ガスが再びCOガスやH2ガスに変化することが
少ない。更に2次燃焼がスラグ内で行われるた
め、それにより発生する熱の炉上部や排ガス中
への逸散量が極めて少ない。以上の結果、高い
2次燃焼率を得ることができる。
(3) Since the gas after secondary combustion does not come into contact with the metal bath, CO 2 gas and H 2 O contained in the combustion gas are removed.
Gas rarely changes back to CO gas or H2 gas. Furthermore, since secondary combustion takes place within the slag, the amount of heat generated thereby is dissipated into the upper part of the furnace or into the exhaust gas is extremely small. As a result of the above, a high secondary combustion rate can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

図面はこの発明の実施例を示すスクラツプ溶解
炉の断面図である。 1……スクラツプ溶融炉、2……耐火レンガ、
3……金属浴、4……燃料吹込みノズル、5……
酸素吹込みノズル、6……出銑口、7……スラグ
浴、8……2次燃焼用酸素吹込みノズル、9……
排滓口、10……排ガスダクト、11……シユー
ト。
The drawing is a sectional view of a scrap melting furnace showing an embodiment of the present invention. 1... Scrap melting furnace, 2... Firebrick,
3...metal bath, 4...fuel injection nozzle, 5...
Oxygen injection nozzle, 6... Tapping port, 7... Slag bath, 8... Oxygen injection nozzle for secondary combustion, 9...
Slag outlet, 10...Exhaust gas duct, 11...Chute.

Claims (1)

【特許請求の範囲】 1 金属浴内に炭素含有燃料と酸素含有ガスを導
入し、燃料を部分燃焼させて熱を発生させると共
に、可燃性ガスを金属浴から発生させ、そのガス
またはそのガスの一部を上記酸素含有ガスとは別
の系統から炉内に吹込まれた2次燃焼用酸素含有
ガスにより燃焼させて熱を発生させ、それらの熱
により金属原料を溶解精錬する方法において、冶
金上必要とするよりも十分に多量のスラグを意図
的に金属浴上に保持し、金属浴から発生する上記
可燃性ガスの一部を、上記スラグ内に位置するノ
ズルを経由して吹込んだ上記2次燃焼用酸素含有
ガスにより上記スラグ内で燃焼させ、その結果発
生した高温の燃焼ガスを金属浴に接触させること
なくスラグに接触させ、燃焼発生熱をまずスラグ
に伝え、更に、上記2次燃焼用酸素含有ガスがス
ラグ浴を撹拌するように吹込まれているか、また
は別系統から酸素ガスを含まないガスがスラグ浴
を撹拌するように吹込まれることによりスラグ保
有熱が効率よく金属浴、もしくは金属原料に伝わ
ることを特徴とする金属原料溶解精錬方法。 2 上記ノズルが、スラグ浴に接触する炉側壁に
位置する特許請求の範囲第1項記載の金属原料溶
解精錬方法。 3 上記ノズルが、炉上部より炉内に挿入された
ランスに付属している特許請求の範囲第1項記載
の金属原料溶解精錬方法。 4 上記2次燃焼用酸素含有ガス吹込みノズルを
複数個設け、その一部は水平より上向き、他は下
向きにしてスラグ浴内にガスを吹込むようにした
特許請求の範囲第1項記載の金属原料溶解精錬方
法。 5 上記2次燃焼用酸素含有ガス吹込みノズルを
複数個設け、それらのガス吹込み方向が炉中心に
向いておらず偏心している特許請求の範囲第1項
記載の金属原料溶解精錬方法。 6 上記スラグ浴中、あるいはスラグ浴中と金属
浴中に不活性ガスを吹込み、スラグ浴、あるいは
スラグ浴と金属浴を撹拌、あるいは還流させる特
許請求の範囲第1項記載の金属原料溶解精錬方
法。
[Claims] 1. A carbon-containing fuel and an oxygen-containing gas are introduced into a metal bath, the fuel is partially combusted to generate heat, and a flammable gas is generated from the metal bath, and the gas or the gas is A method in which a part of the oxygen-containing gas is combusted with a secondary combustion oxygen-containing gas blown into the furnace from a system different from the above-mentioned oxygen-containing gas to generate heat, and the metal raw materials are melted and refined using the heat. A sufficiently larger amount of slag than required is intentionally kept above the metal bath, and a portion of the flammable gases emanating from the metal bath are blown through a nozzle located within the slag. The slag is combusted with an oxygen-containing gas for secondary combustion, and the resulting high-temperature combustion gas is brought into contact with the slag without contacting the metal bath, and the heat generated by combustion is first transferred to the slag, and then Oxygen-containing gas for combustion is blown into the slag bath to stir it, or oxygen-free gas is blown into the slag bath from another system to efficiently transfer the heat retained in the slag to the metal bath. Or a metal raw material melting and refining method characterized by being transmitted to the metal raw material. 2. The metal raw material melting and refining method according to claim 1, wherein the nozzle is located on a furnace side wall that contacts a slag bath. 3. The metal raw material melting and refining method according to claim 1, wherein the nozzle is attached to a lance inserted into the furnace from the upper part of the furnace. 4. The metal raw material according to claim 1, wherein a plurality of secondary combustion oxygen-containing gas injection nozzles are provided, some of which are directed upward from the horizontal and the others are directed downward to blow the gas into the slag bath. Melting and refining method. 5. The metal raw material melting and refining method according to claim 1, wherein a plurality of the secondary combustion oxygen-containing gas injection nozzles are provided, and the gas injection direction thereof is not directed toward the center of the furnace but is eccentric. 6 Metal raw material melting and refining according to claim 1, in which an inert gas is blown into the slag bath, or into the slag bath and the metal bath, and the slag bath, or the slag bath and the metal bath are stirred or refluxed. Method.
JP60064738A 1985-03-27 1985-03-27 Melting and refining method for metallic raw material Granted JPS61221322A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60064738A JPS61221322A (en) 1985-03-27 1985-03-27 Melting and refining method for metallic raw material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60064738A JPS61221322A (en) 1985-03-27 1985-03-27 Melting and refining method for metallic raw material

Publications (2)

Publication Number Publication Date
JPS61221322A JPS61221322A (en) 1986-10-01
JPH0368082B2 true JPH0368082B2 (en) 1991-10-25

Family

ID=13266788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60064738A Granted JPS61221322A (en) 1985-03-27 1985-03-27 Melting and refining method for metallic raw material

Country Status (1)

Country Link
JP (1) JPS61221322A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0136903Y2 (en) * 1985-07-30 1989-11-08
JPH0699735B2 (en) * 1985-10-03 1994-12-07 日本鋼管株式会社 Method and apparatus for adding heat to molten metal in smelting furnace
JPH0699736B2 (en) * 1985-10-14 1994-12-07 日本鋼管株式会社 Method for adding heat to molten metal in refining or smelting and steelmaking furnace therefor
ZA906892B (en) * 1989-09-04 1991-06-26 Nippon Steel Corp Method of operating in-bath smelting reduction furnace
JP2602573B2 (en) * 1990-06-29 1997-04-23 川崎重工業株式会社 Metal refining method
JP5411466B2 (en) * 2008-08-08 2014-02-12 株式会社神戸製鋼所 Iron bath melting furnace and method for producing molten iron using the same
DE102015105307A1 (en) * 2015-04-08 2016-10-13 Sms Group Gmbh converter

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59232207A (en) * 1983-06-14 1984-12-27 Kawasaki Steel Corp Producton of molten base metal for stainless steel by melt reduction of chromium ore

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59232207A (en) * 1983-06-14 1984-12-27 Kawasaki Steel Corp Producton of molten base metal for stainless steel by melt reduction of chromium ore

Also Published As

Publication number Publication date
JPS61221322A (en) 1986-10-01

Similar Documents

Publication Publication Date Title
KR0131266B1 (en) Process for the production of iron using converter
US5286277A (en) Method for producing steel
US4753677A (en) Process and apparatus for producing steel from scrap
US5632953A (en) Process and device for melting iron metallurgical materials in a coke-fired cupola
US3232748A (en) Process for the production of steel
JPH0368082B2 (en)
KR100187693B1 (en) Scrap melting method
CA1043575A (en) Method and device for melting metals
JP2007138207A (en) Smelting-reduction process
JP4479541B2 (en) Method for producing high chromium molten steel
EP0950117B1 (en) A method for producing metals and metal alloys
JP2983087B2 (en) Operation method of smelting reduction
JP7416043B2 (en) Molten iron refining method
JP3290844B2 (en) Scrap iron dissolution method
JP5526614B2 (en) Melting reduction method
JP3286114B2 (en) Method for producing high carbon molten iron from scrap iron
JP2666396B2 (en) Hot metal production method
SU901284A1 (en) Method of producing steel in oxygen converters
JPH06228623A (en) Steelmaking method having small energy consumption
SU1201322A1 (en) Method of producing steel from scrap
JP2560667B2 (en) Hot metal production method
JPS62116712A (en) Melting and smelting vessel having splash lance
JP3523720B2 (en) Scrap melting method
JPH07216425A (en) Production of molten iron alloy
JP2530932Y2 (en) Cylindrical furnace pulverized coal injection nozzle

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees