JPS6237285B2 - - Google Patents

Info

Publication number
JPS6237285B2
JPS6237285B2 JP18528581A JP18528581A JPS6237285B2 JP S6237285 B2 JPS6237285 B2 JP S6237285B2 JP 18528581 A JP18528581 A JP 18528581A JP 18528581 A JP18528581 A JP 18528581A JP S6237285 B2 JPS6237285 B2 JP S6237285B2
Authority
JP
Japan
Prior art keywords
temperature
turbine bypass
main steam
attemperator
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18528581A
Other languages
Japanese (ja)
Other versions
JPS5888505A (en
Inventor
Takeshi Minagawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP18528581A priority Critical patent/JPS5888505A/en
Publication of JPS5888505A publication Critical patent/JPS5888505A/en
Publication of JPS6237285B2 publication Critical patent/JPS6237285B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Control Of Turbines (AREA)

Description

【発明の詳細な説明】 本発明はタービンバイパス系の減温制御装置に
係り、特に主蒸気系から分岐されて復水器に到る
タービンバイパス路中に設けた減温器に対する注
水量を調節するようになされたタービンバイパス
系の減温制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a temperature reduction control device for a turbine bypass system, and in particular, controls the amount of water injected into a temperature reduction device installed in a turbine bypass path branched from a main steam system to a condenser. The present invention relates to a temperature reduction control device for a turbine bypass system.

複合サイクル発電プラントおよび一般火力発電
プラント等においては、通常タービンバイパス系
中に設けた減温器への複水器からの注水量を注水
調節弁で調節して温度制御が行なわれている。こ
のような場合、特に高効率および高負荷応答性を
有する複合発電プラント等においては、前記減温
器における温度制御を迅速かつ適確に行なうこと
が必要である。しかし従来方式の減温器の温度制
御は応答速度が必らずしも充分でなく、また復水
器への配管長を必要以上に長くとらねばならない
ことから限られたプラント敷地面積を有効に活用
できない欠点があつた。
In combined cycle power plants, general thermal power plants, and the like, temperature control is usually performed by adjusting the amount of water injected from a double water device into an attemperator provided in a turbine bypass system using a water injection control valve. In such a case, especially in a combined power generation plant or the like having high efficiency and high load responsiveness, it is necessary to quickly and accurately control the temperature in the attemperator. However, the response speed of conventional desuperheater temperature control is not necessarily sufficient, and the piping length to the condenser must be longer than necessary, making it difficult to use the limited plant area effectively. There were some drawbacks that made it difficult to utilize.

第1図に従来方式による代表的なタービンバイ
パス系の一例の概要を示す。ボイラ1からの主蒸
気流は主蒸気管2によつて蒸気タービンST(図
示せず)に送られる一方、主蒸気管2から分岐さ
れタービンバイパス弁3による流量調整下に減温
器4を介して復水器5に送られる。復水器5から
復水ポンプ6によつてドラム(図示せず)に循環
される給水の一部は注水調節弁7によつて減温器
4に注入されるようになされている。
FIG. 1 shows an overview of a typical conventional turbine bypass system. The main steam flow from the boiler 1 is sent to the steam turbine ST (not shown) through the main steam pipe 2, while being branched from the main steam pipe 2 and passing through the desuperheater 4 under the flow rate adjustment by the turbine bypass valve 3. and is sent to the condenser 5. A portion of the feed water circulated from the condenser 5 to a drum (not shown) by a condensate pump 6 is injected into the attemperator 4 by a water injection control valve 7.

ここで減温器4での温度制御を行なう際には、
減温器4を出て復水器5に到る配管10中の蒸気
温度を検出し変換信号を温度伝送器8によつて制
御装置9に送信する。制御装置9はこの信号を処
理して注水調節弁7に開度指令信号を送り配管1
0中の蒸気温度にしたがつて減温器4への注水量
を加減して復水器5に対して最適な温度を得るよ
うになされている。
When controlling the temperature using the desuperheater 4,
The steam temperature in the pipe 10 that exits the desuperheater 4 and reaches the condenser 5 is detected, and a converted signal is sent to the control device 9 via the temperature transmitter 8. The control device 9 processes this signal and sends an opening command signal to the water injection control valve 7
The optimum temperature for the condenser 5 is obtained by adjusting the amount of water injected into the attemperator 4 according to the steam temperature at zero.

このように第1図示の従来方式では減温器4を
出た蒸気の温度によつて減温器4を直接温度制御
するようになされているが、このようなフイード
バツク制御においては、いわゆる後追い制御に固
有な特性として応答性が迅速でない。またこのよ
うに応答が遅いことから高温蒸気が減温効果不充
分なままに復水器5に流入するおそれがあるた
め、配管10に余裕をもたせて大口径かつ長尺の
ものとせねばならず設置スペースに問題が生じ
る。また予め安全を見込んで必要以上の注水量を
設定すると熱効果が低下してエネルギー損失を招
くことになる。
In this way, in the conventional system shown in Figure 1, the temperature of the attemperator 4 is directly controlled based on the temperature of the steam exiting the attemperator 4, but in such feedback control, so-called follow-up control is used. As a characteristic inherent in , the response is not quick. In addition, due to this slow response, there is a risk that high-temperature steam may flow into the condenser 5 without sufficient temperature reduction effect, so the piping 10 must have a large diameter and a long length with enough room. Problems arise with installation space. Furthermore, if the amount of water injected is set higher than necessary with safety in mind, the thermal effect will be reduced and energy loss will result.

本発明の目的はこのような従来技術の欠点を解
消し、迅速かつ適確な温度制御の可能なタービン
バイパス系の減温制御装置を提供することにあ
る。
SUMMARY OF THE INVENTION An object of the present invention is to eliminate the drawbacks of the prior art and to provide a temperature reduction control device for a turbine bypass system that can quickly and accurately control the temperature.

本発明は、主蒸気系から分岐されて復水器に到
るタービンバイパス路中に設けた減温器に対する
温度制御のための注水量を調節するようになされ
たタービンバイパス系の減温制御装置において、
前記減温器の上流側における主蒸気の温度、圧力
およびエンタルピの各因子を含む情報の検知およ
び処理に基づいて得られる予測制御信号により前
記減温器に対する温度制御用の注水量を調節する
ようになされたことを特徴とする。
The present invention provides a temperature reduction control device for a turbine bypass system, which adjusts the amount of water injected for temperature control into an attemperator provided in a turbine bypass path branched from a main steam system to a condenser. In,
The amount of water injected for temperature control into the attemperator is adjusted by a predictive control signal obtained based on detection and processing of information including temperature, pressure, and enthalpy factors of main steam upstream of the attemperator. Characterized by what has been done.

以下本発明の一実施例を図面に基づいて詳細に
説明する。
An embodiment of the present invention will be described in detail below based on the drawings.

第2図は複合サイクル発電プラントに対して本
発明を適用した一実施例を示す。ガスタービン
(図示せず)排気によつて加熱されるボイラ1か
らの主蒸気流は主蒸気管2によつて蒸気タービン
ST(図示せず)に送られる。また主蒸気の一部
は起動時または蒸気タービン負荷変動時に分流さ
れて主蒸気圧力およびドラム内のレベルを許容値
以内にするようにタービンバイパス系に送られ
る。すなわち、タービンバイパス弁3および減温
器4を介して復水器5に回収される。減温器4へ
の主蒸気流入量はタービンバイパス弁3の開度に
より調節される。また減温器4の温度制御は復水
器5から復水ポンプ6を経て脱気器(図示せず)
に向う系路をバイパスする注水調節弁7による注
水器によつて行ない、配管10中の蒸気温度が復
水器5で回収可能な、必要充分なレベルまで低下
される。以上のプラント系統の各部は前記第1図
に示したものと基本的には同様であり対応する部
分は同一の符号で示してある。
FIG. 2 shows an embodiment in which the present invention is applied to a combined cycle power plant. The main steam flow from the boiler 1, which is heated by the exhaust gas of a gas turbine (not shown), is carried by a main steam pipe 2 to the steam turbine.
ST (not shown). In addition, a portion of the main steam is diverted at startup or when the steam turbine load fluctuates and is sent to the turbine bypass system to keep the main steam pressure and the level in the drum within acceptable values. That is, it is recovered to the condenser 5 via the turbine bypass valve 3 and the attemperator 4. The amount of main steam flowing into the attemperator 4 is adjusted by the opening degree of the turbine bypass valve 3. The temperature of the desuperheater 4 is controlled via a condenser 5, a condensate pump 6, and a deaerator (not shown).
This is done by means of a water injector using a water injection control valve 7 that bypasses the system going to the pipe 10, and the steam temperature in the pipe 10 is lowered to a necessary and sufficient level that can be recovered by the condenser 5. Each part of the plant system described above is basically the same as that shown in FIG. 1, and corresponding parts are designated by the same reference numerals.

ここで減温器4での温度制御を行なうための本
発明の構成について以下説明する。前記従来方式
においては温度制御のために調節される注水調節
弁7は減温器4からの蒸気温度を検知することに
よつてその開度が調節されるが、本発明の実施例
においては、減温度に到る以前の上流側の主蒸気
中に含まれる熱的諸因子の情報によつて減温器出
側の蒸気温度を予測しこの情報に基づいて前記注
水調節弁7を調節する先行制御方式がとられてい
る。
Here, the configuration of the present invention for controlling the temperature in the desuperheater 4 will be described below. In the conventional method, the opening degree of the water injection control valve 7, which is adjusted for temperature control, is adjusted by detecting the steam temperature from the desuperheater 4, but in the embodiment of the present invention, Predicting the steam temperature on the exit side of the desuperheater based on information on thermal factors contained in the main steam on the upstream side before the temperature decreases, and adjusting the water injection control valve 7 based on this information. A control method is adopted.

すなわち、主蒸気管2中の主蒸気の温度および
圧力を検知して変換された信号が温度伝送器11
および圧力伝送器12によつて制御装置9に送信
され、制御装置9はこのような信号により減温器
4出側の蒸気温度を予側してこれを最適値に制御
するような補正信号をタービンバイパス弁3なら
びに注水調節弁7に対して送信する。
That is, the temperature and pressure of the main steam in the main steam pipe 2 are detected and converted signals are sent to the temperature transmitter 11.
and is transmitted to the control device 9 by the pressure transmitter 12, and the control device 9 uses such a signal to predict the steam temperature on the outlet side of the desuperheater 4 and generate a correction signal to control it to an optimum value. It is transmitted to the turbine bypass valve 3 and the water injection control valve 7.

以下前記制御装置9で行なわれる信号処理の概
要を第3図に示すブロツク図によつて説明する。
An outline of the signal processing performed by the control device 9 will be explained below with reference to the block diagram shown in FIG.

まず温度伝送器11からの信号TMは関数F1
算器13中において温度補正係数K2に変換され
る: (但しAは定数) 一方圧力伝送器12からの信号PMは関数F2
算器14中において圧力補正係数K3に変換され
る: K3=P/B (但しBは定数) 前記各係数K2およびK3は乗算器X115中で乗
算されてタービンバイパスの流量補正係数K4
与える: K4=K2×K3 一方前記温度伝送器11および圧力伝送器12
からの信号は関数F3演算器16にも取込まれ、
ここで過熱主蒸気の有するエンタルピが算出され
てエンタルピ補正係数K5が得られる: K5=F3(PM,TM) このエンタルピ補正係数K5は前記流量補正係
数K4と乗算器X217中で乗算されてタービンバ
イパス蒸気補正係数K5が算出される: K6=K4×K5 さらにタービンバイパス調節計18からの制御
信号X5と前記タービンバイパス蒸気補正係数K6
とから関数F4演算器19中で演算を行なつてタ
ービンバイパス補正のための制御信号Y5を算出
する: Y5=F4(X5,X6) この制御信号Y5に基づいて関数F5演算器20
中で注水調節弁の開度補正のための演算を行ない
制御信号Y1を得る: Y1=F5(Y5) この制御信号Y1によつて注水調節弁7の制御
が行なわれる。
First, the signal T M from the temperature transmitter 11 is converted into a temperature correction coefficient K 2 in the function F 1 calculator 13: (However, A is a constant) On the other hand, the signal P M from the pressure transmitter 12 is converted into a pressure correction coefficient K 3 in the function F 2 calculator 14: K 3 = P M /B (However, B is a constant) Each of the above The coefficients K 2 and K 3 are multiplied in a multiplier X 1 15 to give the turbine bypass flow correction factor K 4 : K 4 = K 2 × K 3 while said temperature transmitter 11 and pressure transmitter 12
The signal from is also taken into the function F3 calculator 16,
Here, the enthalpy of the superheated main steam is calculated and the enthalpy correction coefficient K5 is obtained: K5 = F3 ( PM , TM ) This enthalpy correction coefficient K5 is calculated by combining the flow rate correction coefficient K4 and the multiplier X. 2 is multiplied in 17 to calculate the turbine bypass steam correction coefficient K 5 : K 6 = K 4 × K 5 Furthermore, the control signal X 5 from the turbine bypass controller 18 and the turbine bypass steam correction coefficient K 6
The function F 4 is calculated in the calculator 19 to calculate the control signal Y 5 for turbine bypass correction: Y 5 =F 4 (X 5 , X 6 ) Based on this control signal Y 5, the function F 4 is calculated. F5 computing unit 20
A calculation for correcting the opening degree of the water injection control valve is performed inside to obtain a control signal Y 1 : Y 1 =F 5 (Y 5 ) The water injection control valve 7 is controlled by this control signal Y 1 .

このように本発明の実施例によれば、主蒸気中
の熱、圧力およびエンタルピ等の諸条件に基づく
総合的な補正によつて減温器4への適正注水量を
算定するようになされているので、復水器5につ
いての温度制御が最適化されプラント熱効率を向
上させることができる。そして特にこの温度制御
は上流側の主蒸気の状態に基づいて先行予測制御
として行なわれるで、その応答性が極めて高くプ
ラント起動時や急激な負荷変動時に減温制御を適
確に追従させることができる。そして減温制御が
このように迅速かつ適確に行なわれる結果、減温
器4から復水器5への配管10の長さ、口径さら
には肉厚等を安全を考慮して必要以上に大きくし
なくてもすみ配管設備の減少、配置スペースの有
効活用等にも大きな効果が得られる。
As described above, according to the embodiment of the present invention, the appropriate amount of water to be injected into the attemperator 4 is calculated by comprehensive correction based on various conditions such as heat, pressure, and enthalpy in the main steam. Therefore, temperature control of the condenser 5 can be optimized and plant thermal efficiency can be improved. In particular, this temperature control is performed as advance predictive control based on the state of the main steam on the upstream side, and its responsiveness is extremely high, making it possible to accurately follow the temperature reduction control at the time of plant startup or sudden load changes. can. As a result of the rapid and accurate temperature reduction control, the length, diameter, and wall thickness of the piping 10 from the desuperheater 4 to the condenser 5 are made larger than necessary for safety reasons. There is no need to do this, and great effects can be achieved in terms of reducing piping equipment and making effective use of installation space.

尚、前記実施例では本発明を複合サイクル発電
プラントに適用した例について説明したが、本発
明は一般のタービンバイパス系における減温制御
に対しても広く適用することができる。
In the above embodiment, an example in which the present invention is applied to a combined cycle power plant has been described, but the present invention can also be widely applied to temperature reduction control in a general turbine bypass system.

叙上のように本発明のタービンバイパス系の減
温制御装置の応答性を適確かつ迅速なものとする
ことができる。
As described above, the responsiveness of the temperature reduction control device for a turbine bypass system of the present invention can be made appropriate and quick.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来装置を適用したタービンバイパス
系の系統図、第2図は本発明実施例のタービンバ
イパス系の系統図、第3図は第2図示の実施例の
要部のブロツク図である。 1……ボイラ、2……主蒸気管、3……タービ
ンバイパス弁、4……減温器、5……復水器、7
……注水調節弁、9……制御装置、10……配
管、11……温度伝送器、12……圧力伝送器。
Fig. 1 is a system diagram of a turbine bypass system to which a conventional device is applied, Fig. 2 is a system diagram of a turbine bypass system according to an embodiment of the present invention, and Fig. 3 is a block diagram of main parts of the embodiment shown in Fig. 2. . 1...Boiler, 2...Main steam pipe, 3...Turbine bypass valve, 4...Desuperheater, 5...Condenser, 7
... Water injection control valve, 9 ... Control device, 10 ... Piping, 11 ... Temperature transmitter, 12 ... Pressure transmitter.

Claims (1)

【特許請求の範囲】[Claims] 1 主蒸気系から分岐されて復水器に到るタービ
ンバイパス路中に設けた減温器に対する温度制御
のための注水量を調節するようになされたタービ
ンバイパス系の減温制御装置において、前記減温
器の上流側における主蒸気の温度、圧力およびエ
ンタルピの各因子を含む情報の検知および処理に
基づいて得られる予測制御信号により前記減温器
に対する温度制御用の注水量を調節するようにな
されたことを特徴とする前記タービンバイパス系
の減温制御装置。
1. A temperature reduction control device for a turbine bypass system, which is configured to adjust the amount of water injected for temperature control to a desuperheater provided in a turbine bypass path branched from the main steam system and leading to a condenser. The amount of water injected into the attemperator for temperature control is adjusted by a predictive control signal obtained based on the detection and processing of information including temperature, pressure, and enthalpy factors of main steam on the upstream side of the attemperator. The temperature reduction control device for the turbine bypass system, characterized in that:
JP18528581A 1981-11-20 1981-11-20 Temperature dropping controller for turbine bypass system Granted JPS5888505A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18528581A JPS5888505A (en) 1981-11-20 1981-11-20 Temperature dropping controller for turbine bypass system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18528581A JPS5888505A (en) 1981-11-20 1981-11-20 Temperature dropping controller for turbine bypass system

Publications (2)

Publication Number Publication Date
JPS5888505A JPS5888505A (en) 1983-05-26
JPS6237285B2 true JPS6237285B2 (en) 1987-08-12

Family

ID=16168162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18528581A Granted JPS5888505A (en) 1981-11-20 1981-11-20 Temperature dropping controller for turbine bypass system

Country Status (1)

Country Link
JP (1) JPS5888505A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58129103A (en) * 1982-01-28 1983-08-02 三井造船株式会社 Reducer for temperature of rankine cycle device
IN165703B (en) * 1984-11-07 1989-12-23 Babcock & Wilcox Co

Also Published As

Publication number Publication date
JPS5888505A (en) 1983-05-26

Similar Documents

Publication Publication Date Title
JPS6239648B2 (en)
US4402183A (en) Sliding pressure flash tank
JPS6237285B2 (en)
JP2758245B2 (en) Drain water level control device for feed water heater
JP3488021B2 (en) LNG decompression heating controller
JPS5822804A (en) Controller for temperature of steam in case of pressure change operation
JPH1054508A (en) Temperature control method and apparatus for main steam
JP2651561B2 (en) Temperature control device for co-generation system
JPS61187503A (en) Temperature decreasing controller of turbine gland sealing steam
JPH0861605A (en) Turbine bypass steam temperature controller
JPH0357363B2 (en)
JPH0368278B2 (en)
JPH0337084B2 (en)
JPH0555762B2 (en)
JPS58216773A (en) Coupling plant for nuclear power installation and sea water desalting device
SU676739A1 (en) Turbine heat load regulating device
JPH06129208A (en) Composite cycle plant
JPS6316193B2 (en)
JPS58145803A (en) Controller for drum level of waste-heat boiler
JPS6093205A (en) Method and device for controlling dry heater system of generating plant
JPS6235002B2 (en)
JPS60159312A (en) Control method for re-heater of turbine
JPH07332603A (en) Boiler starting control device
JPH10111392A (en) Controller for drain pump-up system
JPS582795A (en) Reheater control device for atomic power turbine plant