JPS582795A - Reheater control device for atomic power turbine plant - Google Patents

Reheater control device for atomic power turbine plant

Info

Publication number
JPS582795A
JPS582795A JP56102593A JP10259381A JPS582795A JP S582795 A JPS582795 A JP S582795A JP 56102593 A JP56102593 A JP 56102593A JP 10259381 A JP10259381 A JP 10259381A JP S582795 A JPS582795 A JP S582795A
Authority
JP
Japan
Prior art keywords
steam
reheater
control device
turbine plant
control valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP56102593A
Other languages
Japanese (ja)
Other versions
JPH0248880B2 (en
Inventor
大田原 康彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP56102593A priority Critical patent/JPS582795A/en
Publication of JPS582795A publication Critical patent/JPS582795A/en
Publication of JPH0248880B2 publication Critical patent/JPH0248880B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明はタービンに供給される蒸気の一部を用に、再熱
器への加熱用蒸気の供給を制御する原子力タービンプラ
ントの再熱器制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a reheater control device for a nuclear turbine plant that controls the supply of heating steam to a reheater using a portion of the steam supplied to the turbine.

従来例である特公昭55−38563号公報に示された
技術は、加熱蒸気の制御弁の出口圧を測定し、タービン
サイクルの圧力どの差を取って加熱蒸気の制御弁を制御
し、急速な・温度変化による熱応力を減少させるもので
ある。
The technology disclosed in Japanese Patent Publication No. 55-38563, which is a conventional example, measures the outlet pressure of a heating steam control valve and controls the heating steam control valve by taking the pressure difference in the turbine cycle.・It reduces thermal stress caused by temperature changes.

゛ これは、再熱器中のサイクル蒸気の温度が負荷運転
中に大きく変動するため、サイクル圧力をとることで、
再熱器中のサイクル蒸気の温度を代表させ、再熱器内の
サイクル蒸気と加熱蒸気の温度差を減少させようとする
ものである。
゛ This is because the temperature of the cycle steam in the reheater fluctuates greatly during load operation, so by taking the cycle pressure,
The purpose is to represent the temperature of the cycle steam in the reheater and reduce the temperature difference between the cycle steam and heating steam in the reheater.

しかしながら、上記従来例の再熱器制御装置においては
、高圧タービンからの流量に見合った加熱蒸気量の制御
が出来ないと七から、再熱器で再熱された蒸気の急激な
温度変化を防止することが出来ないという欠点がある。
However, in the conventional reheater control device described above, it is impossible to control the amount of heated steam commensurate with the flow rate from the high-pressure turbine, thereby preventing rapid temperature changes in the steam reheated in the reheater. The disadvantage is that it cannot be done.

本発明の目的は、゛再熱器及び低圧タービンの過冷却及
び大きな温度変化による過大な熱応力の発生を防止する
原子力タービンプラントの再熱器制御装置を提供するこ
とにある。
An object of the present invention is to provide a reheater control device for a nuclear power turbine plant that prevents overcooling of the reheater and low-pressure turbine and the generation of excessive thermal stress due to large temperature changes.

本発明の特徴とするとζろは、蒸気源から制御弁を有す
る配管を通じて加熱蒸気を導く再熱器を備えた原子力タ
ービンプラントの再熱器制御装置を、発電am出力を示
す検出器と、この検出器よシ得られた発電機出力に基づ
いて再熱器に供給される加熱蒸気量を演算する演算装置
と、該演算装置の出力に応じて制御弁の開閉を操作する
弁駆動製電とから構成させ、これによって常に最適な加
熱蒸気量を再熱器に供給出来るようにしたことにある。
A feature of the present invention is that a reheater control device for a nuclear turbine plant equipped with a reheater that guides heated steam from a steam source through a pipe having a control valve is equipped with a detector that indicates the power generation output, and a detector that indicates the power generation output. A calculation device that calculates the amount of heated steam to be supplied to the reheater based on the generator output obtained from the detector, and a valve drive electric generator that operates the opening and closing of the control valve according to the output of the calculation device. This makes it possible to always supply the optimum amount of heating steam to the reheater.

次に本発明の一実施例である原子力発電プラントの再熱
器制御装置を図面を用いて説明する。第1図は原子力タ
ービンプラ゛ントの蒸気サイクルを示すものである。図
において、蒸気発生器lで発生した蒸気は、主蒸気止め
弁2、蒸気加減弁3を通って、高圧タービン6に導かれ
る。主蒸気止め弁2・と蒸気加減弁3は、蒸気タービン
ローターの速度検出器4からの速度信号によシ、目標速
度となるよう制御装置5により開閉する。高圧タービン
6で仕事をり、J圧タービンを駆動した蒸気は、圧力・
温度ともに低下して、蒸気中の湿9分も増加しているの
で、湿分分離器7で湿分を分離した後、再熱器8に導か
れる。再熱器8の加熱源は、蒸気発生器1で発生した蒸
気を用い、主蒸気止め弁2の上流側から分岐する。再熱
器8で加熱蒸気と熱交換し、温度上昇した蒸気は、再熱
蒸気と呼ばれ、低圧タービン9に導かれる。高圧タービ
ン6と低圧タービン9は発電機10に結合され、発電機
10を駆動する。低圧タービン9内で仕事をし、駆動動
力を発生した蒸気は、復水器11へ導かれ、凝結して水
となって、給水加熱器12へ導かれる。この給水加熱器
12には、再熱器で熱交換した後の加熱蒸気も導かれ、
復水器からの水を加熱する。加熱された水は、蒸気発生
器1へ供給    “される。
Next, a reheater control device for a nuclear power plant, which is an embodiment of the present invention, will be described with reference to the drawings. FIG. 1 shows the steam cycle of a nuclear turbine plant. In the figure, steam generated in a steam generator 1 passes through a main steam stop valve 2 and a steam control valve 3, and is led to a high-pressure turbine 6. The main steam stop valve 2 and the steam control valve 3 are opened and closed by the control device 5 in response to a speed signal from a speed detector 4 of the steam turbine rotor so as to reach a target speed. The steam that did work in the high-pressure turbine 6 and drove the J-pressure turbine is
Since both the temperature has decreased and the humidity in the steam has also increased, the moisture is separated by the moisture separator 7 and then the steam is introduced to the reheater 8. The heat source of the reheater 8 uses steam generated by the steam generator 1 and branches from the upstream side of the main steam stop valve 2. The steam whose temperature has increased by exchanging heat with the heated steam in the reheater 8 is called reheated steam, and is led to the low pressure turbine 9. High pressure turbine 6 and low pressure turbine 9 are coupled to generator 10 and drive generator 10 . Steam that performs work in the low-pressure turbine 9 and generates driving power is led to a condenser 11, condenses to become water, and is led to a feed water heater 12. Heated steam after heat exchange with the reheater is also introduced to this feed water heater 12,
Heat the water from the condenser. The heated water is supplied to the steam generator 1.

再熱器8に導かれる加熱蒸気の配管には、加熱蒸気制御
弁14が設置され、制御装置16及び駆動装置115に
よシ開閉制御されるようになっている。
A heated steam control valve 14 is installed in the heated steam piping led to the reheater 8, and is controlled to open and close by a control device 16 and a drive device 115.

つまり、発電機出力(検出器1′7)の信号りが制御装
置16に入力し、弁開度信号となって制御弁駆動装置1
5に送られ、加熱蒸気制御弁14を開閉することによシ
加熱蒸気量が制御される。
In other words, the signal of the generator output (detector 1'7) is input to the control device 16, becomes the valve opening signal, and becomes the control valve drive device 1.
5, and the amount of heating steam is controlled by opening and closing the heating steam control valve 14.

発電機出力りはタービン負荷とはホ等シく、タービン蒸
気流量に比例する。低負荷では、タービン蒸気流量は少
なく、シたがって再熱器加熱蒸気量も少なくてよい。負
荷が減少したときに、加熱蒸気量をそのままにすると、
再熱器8の内部についてみると、負荷減少と共に、高圧
タービン6がら出る蒸気温度、即ち再熱器8へ流入する
被加熱側の温度は下p側内になシ、加熱側蒸気と被加熱
側蒸気温度差は大きくなり、゛再熱器内部に応力が発生
する。したがって負荷が減少すれば、加熱蒸気制御弁1
4の開度を絞シ、弁の出口圧を下げることによって加熱
蒸気の温度を下げるようにする。
The generator output is different from the turbine load and is proportional to the turbine steam flow rate. At low loads, the turbine steam flow rate is low and therefore the reheater heating steam amount may also be low. If the amount of heating steam is left unchanged when the load is reduced,
Looking at the inside of the reheater 8, as the load decreases, the temperature of the steam coming out of the high-pressure turbine 6, that is, the temperature of the heated side flowing into the reheater 8, is reduced to the lower p side, and the heating side steam and the heated side are The side steam temperature difference increases, and stress is generated inside the reheater. Therefore, if the load decreases, the heating steam control valve 1
The temperature of the heated steam is lowered by reducing the opening of No. 4 and lowering the outlet pressure of the valve.

また、低圧タービン90ローターの熱応力にりいて今る
と、低圧タービン90入口蒸気温度、即ち、再熱器出口
蒸気温度の変化が問題となる。負荷が大きく減少し、高
圧タービン6からの蒸気流量が減少しても、加熱側蒸気
流量をその11とすると、被加熱側流量が減少するが、
加熱側流量はそのままであるから、高圧タービンから町
る蒸気温度が若干減少しても、再熱器出口蒸気温度社加
熱側蒸気温度の方に近づき、温度は上り傾向となシ、低
圧タービンローターにとっては応力発生源となることが
ある。これらのことから、再熱器8への加熱蒸気量はタ
ービン負荷に応じて増減することが望ましい。ま庭、負
荷遮断時、タービンの蒸気制御弁3は、発電機負荷の急
減信号(図示せず)によシ、急閉して蒸気を絞る。この
とき、タービン流量が急減するから、再熱器加熱蒸気起
急減させ、被加熱側蒸気なしに加熱蒸気が流れることが
ないようにすることが望ましく、これは発電機出方を検
出して加熱蒸気制御弁14を開閉制御することで達成で
きる。
Further, when considering the thermal stress of the rotor of the low pressure turbine 90, a change in the steam temperature at the inlet of the low pressure turbine 90, that is, the steam temperature at the outlet of the reheater becomes a problem. Even if the load decreases significantly and the steam flow rate from the high-pressure turbine 6 decreases, if the heating side steam flow rate is set to 11, the heated side flow rate will decrease.
Since the heating side flow rate remains the same, even if the steam temperature from the high pressure turbine decreases slightly, the reheater outlet steam temperature approaches the heating side steam temperature, and the temperature does not tend to rise. It can be a source of stress for some people. For these reasons, it is desirable that the amount of heating steam supplied to the reheater 8 is increased or decreased depending on the turbine load. At the time of load cutoff, the steam control valve 3 of the turbine suddenly closes to throttle the steam in response to a sudden reduction signal (not shown) of the generator load. At this time, the turbine flow rate suddenly decreases, so it is desirable to reduce the reheater heating steam rise rapidly so that the heating steam does not flow without steam on the heated side. This can be achieved by controlling the opening and closing of the steam control valve 14.

第2図は、前述の再熱器の制御機構をプロック図で示し
たものである。検出された発電機出力の信号りは、加熱
蒸気制御弁140制御器内で次の演算によシ加熱蒸気制
御弁14の開閉信号Vに変換される。発電機出力信号り
には適当なバイアス信号Bがバイアス設定器16aによ
シかけられる。
FIG. 2 is a block diagram showing the control mechanism of the reheater described above. The detected generator output signal is converted into an opening/closing signal V for the heating steam control valve 14 by the following calculation within the heating steam control valve 140 controller. An appropriate bias signal B is applied to the generator output signal to the bias setter 16a.

これは、併入後の初負IR(5%程度)など、起動後の
低負荷では、再熱器8の内部及び低圧タービン9のロー
ター共温度が低いため、再熱器内に加熱蒸気を通すと大
きな温度差が発生するので、それを防止するため、一定
負荷以下では加熱蒸気の流入を止めるためのものである
。次にバイアス後の発電機出力信号に対し、加熱蒸気量
f1を関数発生器16bで求める。関数発生器16bの
例は、バイアスをさし引いた後の発電機出力信号と、加
減弁流量信号を比例されるもので、第3図に示す。
This is because the temperature inside the reheater 8 and the rotor of the low-pressure turbine 9 are low at low loads after startup, such as initial negative IR (about 5%) after merging. Since a large temperature difference occurs when passing through the tube, in order to prevent this, the inflow of heating steam is stopped when the load is below a certain level. Next, the heating steam amount f1 is determined by the function generator 16b for the biased generator output signal. An example of the function generator 16b is shown in FIG. 3, in which the generator output signal after the bias is subtracted is proportional to the control valve flow signal.

次に、加熱蒸気制御弁14の弁開度と弁流量の特性から
関数発生器16Cを用いて加熱蒸気量信号f+4hら、
加熱蒸気制御弁開度信号Vを出す。関数発生器16Cの
例を第4図に示す。この弁開度信号が、制御弁駆動装置
15に送られ、制御弁。
Next, from the characteristics of the valve opening degree and valve flow rate of the heating steam control valve 14, using the function generator 16C, a heating steam amount signal f+4h, etc.
Outputs heating steam control valve opening signal V. An example of the function generator 16C is shown in FIG. This valve opening signal is sent to the control valve drive device 15, which drives the control valve.

14が要求開度まで開閉制御されることになる。14 will be controlled to open and close to the required opening degree.

次に本発明の他の実施例である原子力タービンプラント
の再熱器制御装置を説明する。
Next, a reheater control device for a nuclear turbine plant, which is another embodiment of the present invention, will be described.

発電機出力に加え、加熱蒸気制御弁14の後流側の蒸気
圧力を検出して、加熱蒸気制御弁14の開度を制御する
ことも、本発明の一つの実施例である。この実施例を第
5図に示す。第1図との相違部分のみを説明すると、加
熱蒸気制御弁14の後流側の蒸気圧力検出器18にて蒸
気圧力Pを検出し、これから制御装置16にて加熱蒸気
流量を演算して弁開度を補正するようにしたものである
In one embodiment of the present invention, in addition to the generator output, the steam pressure on the downstream side of the heating steam control valve 14 is detected to control the opening degree of the heating steam control valve 14. This embodiment is shown in FIG. To explain only the differences from FIG. 1, the steam pressure detector 18 on the downstream side of the heated steam control valve 14 detects the steam pressure P, and from this, the control device 16 calculates the heated steam flow rate to control the valve. The opening degree is corrected.

第6図にその制御機構のブロック図を示す。第6図の例
では、第5図のものに加えて制御弁駆動装置15から実
際の弁開度信号v0を導き(蒸気圧力検出器18から導
かれたことによって流量演算器16dにて実流量信号f
Oを演算し、この信号foと関数発生器16bで演算し
た加熱蒸気の流量信号f、との偏差をとり、係数Kを乗
じて、流量補正を行ない、これによシ、制御弁14の弁
開度を捕虫ずるようにしたものである。
FIG. 6 shows a block diagram of the control mechanism. In the example shown in FIG. 6, in addition to that shown in FIG. signal f
O is calculated, the deviation between this signal fo and the heated steam flow rate signal f calculated by the function generator 16b is taken, and the flow rate is corrected by multiplying by a coefficient K. The opening angle is adjusted to catch insects.

また、実流量信号f、から関数発生器16Cにて弁開度
信号Vを演算し加熱蒸気流量信号f、から求めた弁開度
信号との偏差をとって制御4P14の開度を補正するよ
うにしても頁い。
Further, the function generator 16C calculates the valve opening signal V from the actual flow rate signal f, and corrects the opening of the control 4P14 by taking the deviation from the valve opening signal obtained from the heated steam flow rate signal f. Even so, the page is small.

本発明によれば、再熱器及び低圧タービンの過冷却及び
過大な熱応力の発生を防止しうる原子力タービンプラン
トの再熱器制御装置を実現出来るという効果を奏する。
According to the present invention, it is possible to realize a reheater control device for a nuclear turbine plant that can prevent overcooling of the reheater and the low-pressure turbine and generation of excessive thermal stress.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施壱である原子力タービンプラン
トの制御装置を表わす系統図、第2図は第1図の制御装
置の詳細を示す、ブロック図、第3図は第2図のブロッ
ク図に示す加熱蒸気流量を演算する関数発生器の特性図
、第4図は第2図のブロック図に示す制御弁開度を演算
する関数発生器の特性図、第5図は本発明の他の実施例
である原子力タービンプラントの制御装置を表わす系統
図、第6図は第5図の制御装置の詳細を示すブロック図
である。 1・・・蒸気発生器、2・・・主蒸気止め弁、3・・・
蒸気、加減弁1.4・・・速度検出器、5・・・制御装
置、6・・・高圧タービン、7・・・湿分分離器、訃・
・再熱器、9・・・低圧タービン、10・・・発電機、
14・・・加熱蒸気制御弁、15・・・駆動装置、16
・・・制御装置、16a・・・バイアス設定器、16b
、16C・・・関数発生器、16d・・・流量演算器、
17・・・負荷検出器、18・・・第2図 躬3図 九1439 第5図
Fig. 1 is a system diagram showing a control device for a nuclear turbine plant that is one embodiment of the present invention, Fig. 2 is a block diagram showing details of the control device in Fig. 1, and Fig. 3 is a block diagram of Fig. 2. Figure 4 is a characteristic diagram of a function generator that calculates the heating steam flow rate shown in the figure, Figure 4 is a characteristic diagram of a function generator that calculates the control valve opening shown in the block diagram of Figure 2, and Figure 5 is a characteristic diagram of a function generator that calculates the control valve opening shown in the block diagram of Figure 2. FIG. 6 is a block diagram showing details of the control device of FIG. 5. FIG. 1...Steam generator, 2...Main steam stop valve, 3...
Steam, regulating valve 1.4... Speed detector, 5... Control device, 6... High pressure turbine, 7... Moisture separator,
・Reheater, 9...Low pressure turbine, 10... Generator,
14... Heating steam control valve, 15... Drive device, 16
...Control device, 16a...Bias setting device, 16b
, 16C...function generator, 16d...flow rate calculator,
17...Load detector, 18...Figure 2 Figure 3 Figure 9 1439 Figure 5

Claims (1)

【特許請求の範囲】 1、蒸気源から制御弁を備えた配管を通じて加熱蒸気を
導く再熱器を有する原子力タービンプラントの再熱器制
御装置において、タービンプラントの発電機出力を検出
する出力検出器と、該検出器によシ得られた発電機出力
に応じた再熱器の加熱蒸気流量を演算する演算装置と、
該演算装置の出力に応じて制御弁を操作する弁駆動製蓋
とを備えた□ことを特徴染する原子力タービンプラント
の再熱器側−装装置。       □ 2、再熱器を経た加熱蒸気の状態量を検出する検出装置
を備え□、この検出装置の検出信号と発電機出力信号と
に基づいて前記演算装置によシ加熱蒸気流量を演算する
ようにしたことを特徴とする特許請求の1囲第1項記載
の一子カタービンプラントの再熱器制御装置。
[Claims] 1. In a reheater control device for a nuclear turbine plant having a reheater that guides heated steam from a steam source through piping equipped with a control valve, an output detector that detects the generator output of the turbine plant. and a calculation device that calculates the heating steam flow rate of the reheater according to the generator output obtained by the detector,
A reheater side installation device for a nuclear turbine plant, characterized in that it is equipped with a valve-driven lid that operates a control valve in accordance with the output of the arithmetic unit. □ 2. A detection device for detecting the state quantity of the heated steam that has passed through the reheater is provided, and the flow rate of the heated steam is calculated by the calculation device based on the detection signal of the detection device and the generator output signal. A reheater control device for a single turbine plant according to claim 1, characterized in that:
JP56102593A 1981-06-30 1981-06-30 Reheater control device for atomic power turbine plant Granted JPS582795A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56102593A JPS582795A (en) 1981-06-30 1981-06-30 Reheater control device for atomic power turbine plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56102593A JPS582795A (en) 1981-06-30 1981-06-30 Reheater control device for atomic power turbine plant

Publications (2)

Publication Number Publication Date
JPS582795A true JPS582795A (en) 1983-01-08
JPH0248880B2 JPH0248880B2 (en) 1990-10-26

Family

ID=14331529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56102593A Granted JPS582795A (en) 1981-06-30 1981-06-30 Reheater control device for atomic power turbine plant

Country Status (1)

Country Link
JP (1) JPS582795A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6234776A (en) * 1985-08-06 1987-02-14 Mitsubishi Heavy Ind Ltd Surface treatment of steel sheet

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5395492A (en) * 1976-12-03 1978-08-21 Gen Electric Method and device for following up load on nuclear reactor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5395492A (en) * 1976-12-03 1978-08-21 Gen Electric Method and device for following up load on nuclear reactor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6234776A (en) * 1985-08-06 1987-02-14 Mitsubishi Heavy Ind Ltd Surface treatment of steel sheet

Also Published As

Publication number Publication date
JPH0248880B2 (en) 1990-10-26

Similar Documents

Publication Publication Date Title
CA2264157C (en) Steam cooling apparatus for gas turbine
JPS582795A (en) Reheater control device for atomic power turbine plant
JPS61187503A (en) Temperature decreasing controller of turbine gland sealing steam
JP2651561B2 (en) Temperature control device for co-generation system
JP2758245B2 (en) Drain water level control device for feed water heater
JPH086891B2 (en) Boiler forced cooling control method
JPS6038509A (en) Controller for moisture separating reheater
JPH0454204A (en) Control device for gas-extraction and condensation type turbine
JPH0128202B2 (en)
JPS61143607A (en) Controller for reheater of nuclear power turbine plant
JP2542165B2 (en) Optimal temperature controller for cogeneration system
JPS6235002B2 (en)
JPS6239657B2 (en)
JPH09145004A (en) Emergency shutdown control of device pressurized fluidized bed boiler
JPS6229602Y2 (en)
JPH03199892A (en) Control of amount of supply gas for waste heat boiler
JPS5888505A (en) Temperature dropping controller for turbine bypass system
JPS6093205A (en) Method and device for controlling dry heater system of generating plant
JPS6198908A (en) Steam turbine device
JP2668143B2 (en) Steam turbine control device and control method therefor
JPH0116926Y2 (en)
JP2670059B2 (en) Drum level controller for waste heat recovery boiler
JPH0231765B2 (en) KONBAINDOSAIKURUPURANTONOSEIGYOSOCHI
JPS63100203A (en) Steam flow control method for steam turbine
JPH06129208A (en) Composite cycle plant