JPS5888505A - Temperature dropping controller for turbine bypass system - Google Patents

Temperature dropping controller for turbine bypass system

Info

Publication number
JPS5888505A
JPS5888505A JP18528581A JP18528581A JPS5888505A JP S5888505 A JPS5888505 A JP S5888505A JP 18528581 A JP18528581 A JP 18528581A JP 18528581 A JP18528581 A JP 18528581A JP S5888505 A JPS5888505 A JP S5888505A
Authority
JP
Japan
Prior art keywords
temperature
turbine bypass
bypass system
main steam
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18528581A
Other languages
Japanese (ja)
Other versions
JPS6237285B2 (en
Inventor
皆川 武司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP18528581A priority Critical patent/JPS5888505A/en
Publication of JPS5888505A publication Critical patent/JPS5888505A/en
Publication of JPS6237285B2 publication Critical patent/JPS6237285B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Control Of Turbines (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明はタービンバイパス系の減温制御装置に係り、特
に主蒸気系から分岐されて復水器に到るタービンバイパ
ス路中に設は九減温器に対する注水量を調節するように
なされたタービンバイパス系の減温制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a detemperature control device for a turbine bypass system, and in particular, a device is installed in a turbine bypass path branched from a main steam system to a condenser to control the amount of water injected into a desuperheater. The present invention relates to a cooling control device for a turbine bypass system.

複合サイクル発電プラントおよび一般火力発電プラント
・等においては、通常タービンバイパス系中に設は九減
温器への複水器からの注水量を注水調節弁で調節して温
度制御が行なわれている。このような場合、特に高効率
および高負荷応答性を有する複合発電プラント等におい
ては、前記減温器における温度制御を迅速かつ適確に行
なうことが必要である。しかし従来方式の減温器の温度
制御は応答速度が必らずしも充分でなく、まだ復水器へ
の配管長を必要以上に長くとらねばならないことから限
られたプラント敷地面積を有効に活用できない欠点があ
った。
In combined cycle power plants and general thermal power plants, etc., temperature control is usually performed by adjusting the amount of water injected from a double water device into a nine-temperature attemperator installed in the turbine bypass system using a water injection control valve. . In such a case, especially in a combined power generation plant or the like having high efficiency and high load responsiveness, it is necessary to quickly and accurately control the temperature in the attemperator. However, the response speed of conventional desuperheater temperature control is not always sufficient, and the piping length to the condenser must be longer than necessary, making it difficult to use the limited plant area effectively. There was a drawback that it could not be used effectively.

第1図に従来方式による代表的なタービンバイパス系の
一例の概要を示す。ボイラ1からの主蒸気流は主蒸気管
2によって蒸気タービンST(図示せず)に送られる一
方、主蒸気管2から分岐されタービンバイパス弁3によ
る流量調整下に減温器4を介して復水器5に送られ゛る
。復水器5から復水ポンプ6によってドラム(図示せず
)K循環される給水の一部は注水調節弁7によって減温
器4に注入されるようになされている。
FIG. 1 shows an overview of a typical conventional turbine bypass system. The main steam flow from the boiler 1 is sent to the steam turbine ST (not shown) through the main steam pipe 2, while being branched from the main steam pipe 2 and returned via the attemperator 4 under the flow rate adjustment by the turbine bypass valve 3. It is sent to water container 5. A portion of the water supplied from the condenser 5 and circulated through a drum (not shown) by a condensate pump 6 is injected into the attemperator 4 by a water injection control valve 7.

ここで減温器4での温度制御を五人う際には。Here, when five people control the temperature using desuperheater 4.

減温器4を出て復水器5に到る配管10中の蒸気温度を
検出し変換信号を温度伝送器8によって制御装置9に送
信する。制御装置9はこの信号を処理して注水調節弁7
に開度指令信号を送シ配管10中の蒸気温度にしたがっ
て減温器4への注水量を加減して復水器5に対して最適
な温度を得るようになされている。
The steam temperature in the pipe 10 that exits the desuperheater 4 and reaches the condenser 5 is detected, and a converted signal is sent to the control device 9 by the temperature transmitter 8. The control device 9 processes this signal and controls the water injection control valve 7.
An opening command signal is sent to the condenser 5, and the amount of water injected into the desuperheater 4 is adjusted according to the steam temperature in the piping 10 to obtain the optimum temperature for the condenser 5.

このように第1図示の従来方式では減温器4を出た蒸気
の温度によって減温器4を直接温度制御するようになさ
れているが、このようなフィードバック制御においては
、いわゆる後追い制御に固有な特性として応答性が迅速
でない。またこのように応答が遅いことから高温蒸気が
減温効果不充分なままに復水器5に流入するおそれがあ
るため、配管10に余裕をもたせて大口径かつ長尺のも
のとせねばならず設置スペースに問題嬢生じる。また予
め安全を見込んで必要以上の門水量を設定すると熱効果
が低下してエネルギー損失を招くこと本発明の目的はこ
のような従来技術の欠点を解消し、迅速かつ適確な温度
制御の可能なタービンバイパス系の減温制御装置を提供
することにある。
In this way, in the conventional system shown in Figure 1, the temperature of the desuperheater 4 is directly controlled based on the temperature of the steam that exits the desuperheater 4, but in such feedback control, there are As a characteristic, the response is not quick. In addition, due to this slow response, there is a risk that high-temperature steam may flow into the condenser 5 without sufficient temperature reduction effect, so the piping 10 must have a large diameter and a long length with enough room. Problems arise with the installation space. Furthermore, if the flow rate of the gate water is set higher than necessary in consideration of safety in advance, the thermal effect will be reduced and energy loss will result.The purpose of the present invention is to eliminate these drawbacks of the conventional technology and to enable quick and accurate temperature control. An object of the present invention is to provide a temperature reduction control device for a turbine bypass system.

本発明は、主蒸気系から分岐されて復水器に到るタービ
ンバイパス路中に設けだ減温器に対する温度制御のため
の注水量を調節するようになされたタービンバイパス系
の減温制御装置において、前記減温器の上流側における
主蒸気の温度、圧力およびエンタルピの各因子を含む情
報の検知および処理に基いて得られる予測制御信号によ
り前記減温器に対する温度制御用の注水量を調節するよ
うになされたことを特徴とする。
The present invention provides a temperature reduction control device for a turbine bypass system, which is configured to adjust the amount of water injected for temperature control into an attemperator provided in a turbine bypass path branched from a main steam system to a condenser. In this step, the amount of water injected for temperature control into the attemperator is adjusted by a predictive control signal obtained based on detection and processing of information including factors of temperature, pressure, and enthalpy of main steam on the upstream side of the attemperator. It is characterized by being made to do.

以下本発明の一実施例を図面に基づいて詳細に説明する
An embodiment of the present invention will be described in detail below based on the drawings.

第2図は複合サイクル発電プラントに対して本発明鷺適
用した一実施例を示す。ガスタービン(図示せず)排気
によって加熱されるボイラ1からの主蒸気流は主蒸気管
2によって蒸気タービンkT (・図示せず)に送られ
る。また主蒸気の一部は起動時まだは蒸気タービン負荷
変動時に分流されて主蒸気圧力およびドラム内のレベル
を許容値以内にするようにタービンバイパス系に送られ
る。
FIG. 2 shows an embodiment in which the present invention is applied to a combined cycle power plant. The main steam flow from the boiler 1 heated by the exhaust gas of a gas turbine (not shown) is sent by a main steam pipe 2 to a steam turbine kT (not shown). Also, a part of the main steam is diverted at startup and during steam turbine load fluctuations and sent to the turbine bypass system so as to keep the main steam pressure and the level in the drum within acceptable values.

すなわち、タービンバイパス弁3および減温器4を介し
て復水器5に回収される。減温器4への主蒸気流入量は
タービンバイパス弁3の開度により調節される。また減
温器4の温度制御は復水器5から復水ぜンブ6を経て脱
気器(図示せず)に向う糸路をバイパスする注水調節弁
7による注水器によって行ない、配管10中の蒸気温度
が復水器5で回収可能な、必要充分なレベルまで低下さ
れる。以上のプラント系統の各部は前記第1図に示した
ものと基本的には同様であり対応する部分は同一の符号
で示しである。
That is, it is recovered to the condenser 5 via the turbine bypass valve 3 and the attemperator 4. The amount of main steam flowing into the attemperator 4 is adjusted by the opening degree of the turbine bypass valve 3. The temperature of the desuperheater 4 is controlled by a water injector using a water injection control valve 7 that bypasses the thread from the condenser 5 to the deaerator (not shown) via the condensing membrane 6. The steam temperature is lowered to a necessary and sufficient level so that it can be recovered in the condenser 5. Each part of the plant system described above is basically the same as that shown in FIG. 1, and corresponding parts are designated by the same reference numerals.

ここで減温器4での温度制御を行なうための本発明の構
成について以下説明す−る。前記従来方式においては温
度制御のために調節される注水調節弁7は減温器4から
の蒸気温度を検知することによってその開度が調節され
るが、本発明の実施例においては、減温室に到る以前の
上流側の主蒸気中に含まれる熱的諸因子の情報によって
減温器出側の蒸気温度を予測しこの情報に基づいて前記
注水調節弁7を調節する先行制御方式がとられている。
Hereinafter, the configuration of the present invention for controlling the temperature in the desuperheater 4 will be explained. In the conventional method, the opening degree of the water injection control valve 7, which is adjusted for temperature control, is adjusted by detecting the steam temperature from the attemperator 4, but in the embodiment of the present invention, There is an advance control method in which the steam temperature at the exit side of the desuperheater is predicted based on information on thermal factors contained in the main steam on the upstream side before reaching the temperature, and the water injection control valve 7 is adjusted based on this information. It is being

すなわち、主蒸気管2中の主蒸気の温度および圧力を検
知して変換された信号が温度伝送器11および圧力伝送
器12によって制御装置9に送信され、制御装置9はこ
のような信号により減温器4出側の蒸気温度を予測して
これを最適値に制御するような補正信号をタービンバイ
パス弁3ならびに注水調節弁7に対して送信する。
That is, signals obtained by detecting and converting the temperature and pressure of main steam in the main steam pipe 2 are sent to the control device 9 by the temperature transmitter 11 and the pressure transmitter 12, and the control device 9 uses these signals to A correction signal is sent to the turbine bypass valve 3 and the water injection control valve 7 to predict the steam temperature on the outlet side of the warmer 4 and control it to an optimum value.

以下前記制御装置9で行なわれる信号処理の概要を第3
図に示すブロック図によって説明する。
The outline of the signal processing performed by the control device 9 will be explained in the third section below.
This will be explained using the block diagram shown in the figure.

まず温度伝送器11からの信号TMは関数(F、 )演
算器13中において温度補正係数に、に変換される: (但しAは定数) 一方圧力伝送器12からの信号PMは関数(F、)演算
器14中において圧力補正係数に、に変換される: M K3−□ (但しBは定数) 前記各係数に2およびに3は乗算器(X、) 15中で
乗算されてタービンバイパスの流量補正係数に4を与え
る: に4二に2XK。
First, the signal TM from the temperature transmitter 11 is converted into a temperature correction coefficient in the function (F, ) calculator 13 as follows: (A is a constant) On the other hand, the signal PM from the pressure transmitter 12 is converted into a temperature correction coefficient by the function (F, ). ) is converted into a pressure correction coefficient in the computing unit 14: M K3-□ (where B is a constant) Each of the above coefficients is multiplied by 2 and 3 in the multiplier (X,) 15 to calculate the turbine bypass. Give 4 to the flow rate correction factor: to 4 to 2 to 2XK.

一方前記温度伝送器11および圧力伝送器12からの信
号は関数(F3)演算器16にも取込まれ、ここで過熱
主蒸気の有するエンタルピが算出されてエンタルピ補正
係数に、が得られる:に5=F3 (Pw 、TM ) このエンタルピ補正係数に、は前記流量補正係数に4と
乗算器(X2)17中で乗算されてタービンバイパス蒸
気補正係数に6が算出される:に、=に、XK。
On the other hand, the signals from the temperature transmitter 11 and pressure transmitter 12 are also taken into the function (F3) calculator 16, where the enthalpy of the superheated main steam is calculated and the enthalpy correction coefficient is obtained: 5=F3 (Pw, TM) This enthalpy correction coefficient is multiplied by the flow rate correction coefficient by 4 in a multiplier (X2) 17 to calculate a turbine bypass steam correction coefficient of 6: to, = to, XK.

さらにタービンバイパス調節計18からの制御4号X、
と前記タービンバイパス蒸気補正係数4とから関数(F
4 )演算器19中で演算を行なってタービンバイパス
補正のための制御信号Y、を算出する。: Yll=F’4 (X5 、 x、 >この制御信号Y
、に基づいて関数(F、)演算器20中で注水調節弁の
開度補正のだめの演算を行ない制御信号Y、ft得る: y、=l;’、  (Y6  ) この制御信号Y、によって注水調節弁7の制御が行なわ
れる。
Furthermore, control No. 4 X from the turbine bypass controller 18,
and the turbine bypass steam correction coefficient 4, a function (F
4) Perform calculations in the calculator 19 to calculate the control signal Y for turbine bypass correction. : Yll=F'4 (X5, x, > this control signal Y
The function (F,) calculation unit 20 calculates the opening degree correction of the water injection control valve based on Control valve 7 is controlled.

このように本発明の実施例によれば、主蒸気中の熱、圧
力およびエンタルピ等の諸条件に基づく総合的な補正に
よって、減温器4への適正注水量を算定するようになさ
れているので、復水器5についての温度制御が最適化さ
れプラント熱効率を向上させることができる。そして特
にこの温度制御は上流側の主蒸気の状態に基づいて先行
予測制御として行なおれるめで、その応答性が極めて高
くプラント起動時や急激な負荷変動時に減温制御を適確
に追従させることができる。そして減温制御がこのよう
に迅速かつ適確に行なわれる結果、減温、器4から復水
器5への配管1oの長さ1口径さらには肉厚等を安全を
考慮して必要以上に大きくしなくてもすみ配管設備の減
少、配置スペースの有効活用等にも大きな効果が得られ
る。
As described above, according to the embodiment of the present invention, the appropriate amount of water to be injected into the attemperator 4 is calculated by comprehensive correction based on various conditions such as heat, pressure, and enthalpy in the main steam. Therefore, temperature control of the condenser 5 can be optimized and plant thermal efficiency can be improved. In particular, this temperature control is performed as advance predictive control based on the state of the main steam on the upstream side, and its responsiveness is extremely high, making it possible to accurately follow the temperature reduction control at the time of plant startup or sudden load changes. I can do it. As a result of the rapid and accurate temperature reduction control, the length and diameter of the piping 1o from the vessel 4 to the condenser 5, as well as the wall thickness, are increased more than necessary for safety reasons. There is no need to make it large, and great effects can be achieved in reducing the number of piping equipment and making effective use of the installation space.

尚、前記実施例では本発明を複合サイクル発電プラント
に適用した例について説明したが1本発明は一般のター
ビンバイパス系における減温制御に対しても広く適用す
ることができる。
In the above embodiment, an example in which the present invention is applied to a combined cycle power plant has been described, but the present invention can also be widely applied to temperature reduction control in a general turbine bypass system.

叙上のように本発明のタービンバイパス系の減温制御装
置の応答性を適確かつ迅速なものとすることができる。
As described above, the responsiveness of the temperature reduction control device for a turbine bypass system of the present invention can be made appropriate and quick.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来装置を適用したタービンバイパス系の系統
図、第2図は本発明実施例のタービンバイパス系の系統
図、第3図は第2図示の実施例の要部のブロック図であ
る。
Fig. 1 is a system diagram of a turbine bypass system to which a conventional device is applied, Fig. 2 is a system diagram of a turbine bypass system according to an embodiment of the present invention, and Fig. 3 is a block diagram of main parts of the embodiment shown in Fig. 2. .

Claims (1)

【特許請求の範囲】[Claims] 1、主蒸、気系から分岐されて復水器に到るタービンバ
イパス路中に設けた減温器に対する温度制御のための注
水量を調節するようになされたタービンバイパス系の減
温制御装置において5前記減温器の上流側における主蒸
気の温度、圧力およびエンタルピの各因子を含む情報の
検知および処理に基づいて得られる予測制御信号によシ
前記減温器に対する温度制御用の注水量を調節するよう
になされたことを特徴とする前記タービンバイパス系の
減温制御装置。
1. Temperature control device for a turbine bypass system, which adjusts the amount of water injected for temperature control into a desuperheater installed in a turbine bypass path branched from the main steam and gas system to the condenser. 5. Water injection amount for temperature control to the attemperator based on a predictive control signal obtained based on detection and processing of information including temperature, pressure, and enthalpy factors of main steam on the upstream side of the attemperator. The temperature reduction control device for the turbine bypass system, characterized in that the device is configured to adjust the temperature reduction control device for the turbine bypass system.
JP18528581A 1981-11-20 1981-11-20 Temperature dropping controller for turbine bypass system Granted JPS5888505A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18528581A JPS5888505A (en) 1981-11-20 1981-11-20 Temperature dropping controller for turbine bypass system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18528581A JPS5888505A (en) 1981-11-20 1981-11-20 Temperature dropping controller for turbine bypass system

Publications (2)

Publication Number Publication Date
JPS5888505A true JPS5888505A (en) 1983-05-26
JPS6237285B2 JPS6237285B2 (en) 1987-08-12

Family

ID=16168162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18528581A Granted JPS5888505A (en) 1981-11-20 1981-11-20 Temperature dropping controller for turbine bypass system

Country Status (1)

Country Link
JP (1) JPS5888505A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58129103A (en) * 1982-01-28 1983-08-02 三井造船株式会社 Reducer for temperature of rankine cycle device
JPS61153303A (en) * 1984-11-07 1986-07-12 ザ・バブコツク・アンド・ウイルコツクス・カンパニ− Method and device for obtaining maximum atomizing-quantity limit of superheating reducer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58129103A (en) * 1982-01-28 1983-08-02 三井造船株式会社 Reducer for temperature of rankine cycle device
JPH0235202B2 (en) * 1982-01-28 1990-08-09 Mitsui Zosen Kk
JPS61153303A (en) * 1984-11-07 1986-07-12 ザ・バブコツク・アンド・ウイルコツクス・カンパニ− Method and device for obtaining maximum atomizing-quantity limit of superheating reducer

Also Published As

Publication number Publication date
JPS6237285B2 (en) 1987-08-12

Similar Documents

Publication Publication Date Title
JPH0353525B2 (en)
US4402183A (en) Sliding pressure flash tank
JPH05222906A (en) Controller for power plant utilizing exhaust heat
JPS5888505A (en) Temperature dropping controller for turbine bypass system
JPS61145305A (en) Control device for turbine plant using hot water
JP2758245B2 (en) Drain water level control device for feed water heater
JP3488021B2 (en) LNG decompression heating controller
JP2651561B2 (en) Temperature control device for co-generation system
JPS61187503A (en) Temperature decreasing controller of turbine gland sealing steam
JPH06159603A (en) Control device for waste heat steam generator
JP2504939Y2 (en) Boiler level controller
JP2721508B2 (en) Warm-up separation heater control device
JPS61138007A (en) Controller for water level and pressure of deaerator
JPH05272306A (en) Exhaust heat utilizing power generation control device
JP2523153B2 (en) Feed water heater Drain water level control device
JPH0368278B2 (en)
JPH0337084B2 (en)
JPH0861605A (en) Turbine bypass steam temperature controller
JPS6093205A (en) Method and device for controlling dry heater system of generating plant
JPS6235002B2 (en)
JPH10111392A (en) Controller for drain pump-up system
JPS58216773A (en) Coupling plant for nuclear power installation and sea water desalting device
JPS62237012A (en) Heated steam pressure controller of heater for steam turbine
JPS582795A (en) Reheater control device for atomic power turbine plant
JPS6038510A (en) Controller for reheater