JPS6038510A - Controller for reheater - Google Patents

Controller for reheater

Info

Publication number
JPS6038510A
JPS6038510A JP14643983A JP14643983A JPS6038510A JP S6038510 A JPS6038510 A JP S6038510A JP 14643983 A JP14643983 A JP 14643983A JP 14643983 A JP14643983 A JP 14643983A JP S6038510 A JPS6038510 A JP S6038510A
Authority
JP
Japan
Prior art keywords
steam
temperature
pressure turbine
reheater
heating steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14643983A
Other languages
Japanese (ja)
Inventor
豊彦 増田
永井 洋次
啓 池田
水野 堅太郎
柏原 克人
辻 邦雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP14643983A priority Critical patent/JPS6038510A/en
Publication of JPS6038510A publication Critical patent/JPS6038510A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)
  • Valve Device For Special Equipments (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は発電プラントの再熱系統に係り、特に、タービ
/に供給される蒸気の一部を用いて、高圧タービン排気
を再熱する再熱器に安定した照気奮供給する制御装置に
関する。
Detailed Description of the Invention [Field of Application of the Invention] The present invention relates to a reheat system for a power generation plant, and in particular, to a reheat system for reheating high-pressure turbine exhaust gas using a part of steam supplied to a turbine. This invention relates to a control device that supplies stable stimulation to a device.

〔発明の背景〕[Background of the invention]

従来の発電プラント再熱器系統の1例を第1図に示す。 An example of a conventional power plant reheater system is shown in FIG.

本系統は、蒸気を発生する族7A器lとタービンへ流入
する蒸気量を加減し、タービンの速度、タービン入口蒸
気圧力、タービン出力を制御する蒸気加減弁11.蒸気
の熱エネルギを回転エネルギに変換する高圧タービン2
、高圧タービン2の排気を高圧タービンの人口蒸気の一
部を用いて再熱する再熱器3、再熱蒸気の熱工坏ルギ多
回転工坏ルギに変換する低圧ターピ/4、低圧タービ/
の排気を復水する復水器5、復水器に溜った復水を昇圧
して蒸発器lに送り出す復水ボ/プロ、復水器タービン
抽気と熱交換させて昇温する給水加熱器7,9、タービ
ンの回転エイルギを電気エネルギに変換する発颯機10
、再熱器への加熱蒸気のυ1シ意を制御する加熱蒸気制
御弁12、加熱蒸気制御弁のN度を制御し、加熱蒸気量
を加減する加熱蒸気制御装置14、再熱蒸気温度侠出器
13よ多構成はれる。本系統では、タービ/回転数と高
圧タービン入口圧力によシ蒸気加減弁開度を調整し、タ
ービン出力を制御する。蒸発器1を出た蒸気は蒸気加減
弁11により流量を制御され高圧タービンに流入する。
This system consists of a steam control valve 11 which adjusts the amount of steam flowing into the group 7A unit that generates steam and the turbine, and controls the turbine speed, turbine inlet steam pressure, and turbine output. High-pressure turbine 2 converts thermal energy of steam into rotational energy
, a reheater 3 that reheats the exhaust gas of the high-pressure turbine 2 using a part of the artificial steam of the high-pressure turbine, a low-pressure turbine/4 that converts the reheated steam into a thermal engine multi-rotation engine, and a low-pressure turbine/
A condenser 5 that condenses the exhaust gas, a condenser boiler/pro that boosts the pressure of the condensate accumulated in the condenser and sends it to the evaporator L, and a feed water heater that raises the temperature by exchanging heat with the condenser turbine bleed air. 7, 9, a power generator 10 that converts the rotating energy of the turbine into electrical energy
, a heating steam control valve 12 that controls the υ1 value of heating steam to the reheater, a heating steam control device 14 that controls the N degree of the heating steam control valve and adjusts the amount of heating steam, and a reheating steam temperature control device. Vessel 13 has many configurations. In this system, the opening degree of the steam control valve is adjusted based on the turbine/rotation speed and high-pressure turbine inlet pressure to control the turbine output. The steam exiting the evaporator 1 flows into the high-pressure turbine with its flow rate controlled by a steam control valve 11.

高圧タービンで仕事をした蒸気は、いわゆる、低温再熱
管18f、通シ、再熱器に導かれる。再熱器3で、高圧
タービン入口蒸気の一部によって加熱されたのち、再熱
蒸気は高温再熱官19を通って低圧タービン4へ導かれ
て仕事をする。低圧タービンを出た蒸気は復水器5で凝
縮して復水となる。一方、高圧クーピノ入口蒸気の一部
は蒸気加減弁ll前で分岐した加熱蒸気管を通り、加熱
蒸気制御弁12で流量を制御され、再熱器に流入し熱交
換した後、給水加熱器9へ熱回収される。この加熱蒸気
量は、規定の出力以上では一定であるが、部分出力時に
は、高圧排気温度が低いことにより、再熱器内及び低圧
クーピン4内に過度の熱応力が発生するのを防ぐために
、再熱器の加熱蒸気量を制御弁12により絞り込む必要
がある。また、低圧クービ/14では部分出力からの出
力上昇時に、タービンの静止部品を熱応力による変形か
ら防ぐため、低圧ターピノ4の温度上昇率を規定値以下
とする必要がある。
The steam that has done work in the high-pressure turbine is guided to a so-called low-temperature reheat pipe 18f, a through pipe, and a reheater. After being heated by a portion of the high-pressure turbine inlet steam in the reheater 3, the reheated steam is led to the low-pressure turbine 4 through a high-temperature reheater 19 to do work. The steam leaving the low pressure turbine is condensed in the condenser 5 and becomes condensed water. On the other hand, a part of the high-pressure cupino inlet steam passes through a heating steam pipe branched before the steam control valve ll, the flow rate is controlled by the heating steam control valve 12, and after flowing into the reheater and exchanging heat, it flows into the feed water heater 9. Heat is recovered to This amount of heating steam is constant above the specified output, but at partial output, in order to prevent excessive thermal stress from occurring in the reheater and the low-pressure coupin 4 due to the low high-pressure exhaust temperature, It is necessary to restrict the amount of heating steam in the reheater using the control valve 12. In addition, in the low-pressure Cubi/14, in order to prevent stationary parts of the turbine from being deformed due to thermal stress when the output increases from partial output, the temperature increase rate of the low-pressure turpino 4 must be kept below a specified value.

また、低出力運転を長時間持続する場合には、ターヒ/
の駆動蒸気が少ないため、タービンの最終段興付近では
攪拌作用により温度が上昇し、羽根が過熱される。この
温度上昇からタービンを保護するため、タービンを停止
する必要があり、プラント稼動率の低下となっていた。
In addition, when maintaining low output operation for a long time,
Because there is little driving steam, the temperature near the final stage of the turbine increases due to the stirring action, causing the blades to overheat. In order to protect the turbine from this temperature rise, it was necessary to stop the turbine, which resulted in a reduction in plant operating efficiency.

この不具合を回避するための再熱器加熱蒸気■の制伍の
一例として、低圧タービン入口の温度を検知して、加熱
蒸気制御装置14により制御弁12を制御し、蒸気量を
加減している。図中8はボ/プである。最も近い例とし
て、ウェスチングハウス社の特公昭55−21243が
ある。この方式は、負荷変化運転条件に対応させた数種
の温度上昇パターンを設定し、その運転パターンに応じ
て、低圧タービン入口の温度を管理している。この方式
では、制御装置が複雑とな9、計画外の運転状態に対し
て問題が残る。また、低圧タービン入口の温度で再熱器
加熱蒸気量を制御する方法では、タービン各部の温度変
化は制限されないため部分的な熱応力の発生と部品の変
形は防止出来ない。
As an example of controlling the reheater heating steam (■) to avoid this problem, the temperature at the inlet of the low-pressure turbine is detected, and the heating steam control device 14 controls the control valve 12 to adjust the amount of steam. . 8 in the figure is a bo/p. The closest example is the Westinghouse Company's Special Publication No. 55-21243. In this method, several types of temperature increase patterns are set corresponding to load change operating conditions, and the temperature at the low-pressure turbine inlet is managed according to the operating patterns. In this method, the control device is complicated9, and problems remain regarding unplanned operating conditions. Furthermore, in the method of controlling the amount of steam heated in the reheater by the temperature at the inlet of the low-pressure turbine, temperature changes in each part of the turbine are not restricted, and therefore generation of local thermal stress and deformation of parts cannot be prevented.

近年の社会的要求により、大型の発電プラントはベース
ロード運転のみならず、日間負荷追従運転等の出力変化
が多く、また、送電系統のトラブルによる所内単独負荷
運転時の低出力の連続運転に対する要求も強い。この様
な社会的環境で、プラ/トの計画外停止を回避するため
には、プラント構成機器の信頼性と、運転制御上の信頼
性をさらに向上させる必要がある。
Due to recent social demands, large-scale power generation plants have not only base load operation but also many changes in output such as daily load following operation, and there is also a demand for continuous low output operation during single load operation within the plant due to troubles in the power transmission system. Also strong. In order to avoid unplanned plant shutdowns in such a social environment, it is necessary to further improve the reliability of plant components and the reliability of operation control.

〔発明の目的〕[Purpose of the invention]

本究明の目的は、再熱器の加熱蒸気置割mの問題点をな
くし、信頼性の高い制御装置を提供するにある。
The purpose of this research is to eliminate the problem of the heating steam position of the reheater and to provide a highly reliable control device.

し発明の概要〕 本発明の要点は、低圧タービン内の1ケ所以上の温度を
検知して、その温度絶対値を出力に対応した基準温度に
制御し、かつ、その温度の変化率を規定値以下となる様
に再熱器加熱蒸気Mを制御するにある。
[Summary of the Invention] The main points of the present invention are to detect the temperature at one or more locations within the low-pressure turbine, control the absolute value of the temperature to a reference temperature corresponding to the output, and control the rate of change of the temperature to a specified value. The reheater heating steam M is controlled as follows.

〔発明の実施例〕[Embodiments of the invention]

第2図に本発明の一実施例を示す。従来の系統と異なる
点は、低圧ターピノ4内の温度検出器15、発1機の出
力噴出器を設け、温度検出器15と出力検出器20、演
算器20を114だ信号を取り込み、再熱器加熱蒸気制
御弁12を訓諭する加熱蒸気制御装置16を設けたこと
である。
FIG. 2 shows an embodiment of the present invention. The difference from the conventional system is that a temperature detector 15 in the low-pressure terpino 4 and one output injector are installed, and the temperature detector 15, output detector 20, and computing unit 20 are connected to 114. A heating steam control device 16 is provided to control the heating steam control valve 12.

蒸気発生器lで発生した蒸気は蒸気加減弁11により流
量を制御され、高圧ターピノ2に流入する。高圧タービ
ン2で仕事をした蒸気は、低温再熱′#18を通シ再熱
器3に導かれる。再熱器3では高圧タービン2の入口か
ら導かれた一部の加熱蒸気によシ加熱された後、再熱蒸
気は、高温再熱管19を通り、低圧タービン4に導かれ
る。低圧タービン4で仕事をした蒸気は復水器5へ入り
、復水器5の冷却水と熱交換して凝縮し復水となる。
The flow rate of the steam generated in the steam generator 1 is controlled by a steam control valve 11, and the steam flows into the high-pressure terpino 2. The steam that has done work in the high-pressure turbine 2 is guided to the reheater 3 through a low-temperature reheater #18. In the reheater 3 , the reheated steam is heated by a portion of the heated steam led from the inlet of the high-pressure turbine 2 , and then passed through a high-temperature reheat pipe 19 and led to the low-pressure turbine 4 . The steam that has done work in the low-pressure turbine 4 enters the condenser 5, exchanges heat with the cooling water of the condenser 5, and condenses to become condensed water.

一方、高圧タービン4の入口蒸気の一部は、再熱器加熱
蒸気として再熱器3に流入し熱交換した後、給水加熱器
9で熱回収される。復水器5に溜められた復水は復水ボ
アプロにより昇圧され、タービンの抽気蒸気を加熱源と
した給水加熱器7及び9によシ加熱され、蒸気発生器l
に送水される。
On the other hand, a part of the inlet steam of the high-pressure turbine 4 flows into the reheater 3 as reheater-heated steam, exchanges heat therewith, and then recovers the heat in the feed water heater 9. The condensate stored in the condenser 5 is pressurized by the condensate borer, heated by the feed water heaters 7 and 9 using the steam extracted from the turbine as the heating source, and then heated to the steam generator l.
Water is sent to

第3図に再熱器加熱蒸気装置16の内部ロジックの一例
を示す。発電機出力検出器15からの出力信号は、演算
装置21によシ出力に対応した低圧タービン内の設定温
度信号を発生する。低圧タービン内温度検出器14から
の信号と設定温度信号の偏差の大きさに対応して制御弁
12は調節される。温度変化率を制限するため、信号変
化率制限器26が制御弁12の操作信号の途中に設けら
れ、発電機出力が急激に変化した場合でも、低圧タービ
ン内に入る再熱蒸気の温度は急激に変化することはない
FIG. 3 shows an example of the internal logic of the reheater heating steam device 16. The output signal from the generator output detector 15 is used by the arithmetic unit 21 to generate a set temperature signal in the low pressure turbine corresponding to the output. The control valve 12 is adjusted in accordance with the magnitude of the deviation between the signal from the low pressure turbine internal temperature detector 14 and the set temperature signal. In order to limit the temperature change rate, a signal change rate limiter 26 is provided in the middle of the operation signal of the control valve 12, so that even if the generator output changes suddenly, the temperature of the reheated steam entering the low pressure turbine will not change rapidly. will not change.

なお、図中、22は変化率制限器、23は偏差器、24
は制御器、25はリミッタ、27は電空変換器である。
In addition, in the figure, 22 is a change rate limiter, 23 is a deviation device, and 24
25 is a limiter, and 27 is an electro-pneumatic converter.

本制御方式では通常の負荷運転で安定した再熱器加熱蒸
気量の制御が可能であり、また、急激な出力上昇や出力
降下でも、低圧タービン内での過大な熱応力の発生を防
止することができ、低圧タービ/の温度を管理すること
により、再熱器3自体の過大な熱応力の発生を防止する
ことができる。
This control method enables stable control of the reheater heating steam amount under normal load operation, and also prevents excessive thermal stress from occurring within the low-pressure turbine even when the output suddenly increases or decreases. By controlling the temperature of the low pressure turbine, it is possible to prevent excessive thermal stress from occurring in the reheater 3 itself.

また、熱応力的に最も厳しい低圧タービン内の温度を直
接検出するため、熱変形等のトラブルに対する信頼性が
向上し、かつ、制御装置は簡素である。
Furthermore, since the temperature inside the low-pressure turbine, which is the most severe in terms of thermal stress, is directly detected, reliability against problems such as thermal deformation is improved, and the control device is simple.

第4図に本発明の他の実施例を示す。第2図と異なる所
は、低圧ターピノ内の温度検出器15を複数個設けたこ
とである。この場合には、開開設定温度は各々異った値
とするため、演算装置It21も複数個必四となり、開
側1系は多少複雑となる。
FIG. 4 shows another embodiment of the invention. The difference from FIG. 2 is that a plurality of temperature detectors 15 are provided in the low-pressure terpino. In this case, since the opening and opening set temperatures are set to different values, a plurality of arithmetic units It21 are required, and the opening side 1 system becomes somewhat complicated.

しかし、複数個の検出温度の内、低圧タービンに対して
最も厳しい点での温度を再熱器加熱蒸気量の制御用信号
として使用する方式によシ、内部の温度が予測困難な低
負荷時にも低圧タービンの熱応力によるトラブルを容易
に回避出来る。
However, by using a method that uses the temperature at the most severe point for the low-pressure turbine among multiple detected temperatures as a signal for controlling the amount of steam heated in the reheater, it is difficult to predict the internal temperature at low loads. It is also possible to easily avoid troubles caused by thermal stress in the low pressure turbine.

第5図は本発明のさらに他の実施例を示す。第2図と異
なる所は、低圧タービン内の温度検出器15を、低圧タ
ーピノ内流路の途中から蒸気を抽出する抽気配管に設け
たことである。この様にすれば、低圧クーピン4自本は
従来と同じ構造で、容易にタービン内の温度を検出でき
るというメリットがある。検出点は数本の抽気管に複数
個設置して検出の信頼性を上げることも可能である。
FIG. 5 shows yet another embodiment of the invention. The difference from FIG. 2 is that the temperature detector 15 in the low pressure turbine is provided in the extraction pipe that extracts steam from the middle of the flow path in the low pressure turbine. In this way, the low-pressure coupin 4 itself has the same structure as the conventional one, and there is an advantage that the temperature inside the turbine can be easily detected. It is also possible to increase the reliability of detection by installing multiple detection points on several air bleed pipes.

通常、低圧タービンは複数個の単室で構成されるが、そ
の場合には、各「p室eこ温度検出器を設け、複数個の
検出温度の中で熱応力的に最も厳しい検出温IWを基準
にして、再熱器加熱蒸気量の制御を行なうことも可能で
ある。
Normally, a low-pressure turbine is composed of a plurality of single chambers, but in that case, a temperature detector is installed in each P chamber to detect the temperature IW, which is the most severe in terms of thermal stress among the plurality of detected temperatures. It is also possible to control the amount of reheater heating steam based on this.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、プラント起動時、停止時及び低負荷で
の連続運転中の熱応力が最も厳しい低圧タービンを防護
することが出来る。
According to the present invention, it is possible to protect a low-pressure turbine that is subject to the most severe thermal stress during plant startup, shutdown, and continuous operation at low load.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は再熱器を備えた従来の発電プラントの系統図、
第2図は本発明の一実施例の系統図、第3図は再熱器加
熱蒸気制御装置の内部ロジックの1例を示す本発明の制
御ブロック図、第4図、第5図は本発明の他の実施例の
系統図である。 4・・・低圧タービ/、12・・・再熱器加熱蒸気制御
弁、15・・・温度検出器、16・・・加熱蒸気制御装
置、内
Figure 1 is a system diagram of a conventional power plant equipped with a reheater.
FIG. 2 is a system diagram of an embodiment of the present invention, FIG. 3 is a control block diagram of the present invention showing an example of internal logic of a reheater heating steam control device, and FIGS. 4 and 5 are diagrams of the present invention. It is a system diagram of another Example. 4...Low pressure turbine/, 12...Reheater heating steam control valve, 15...Temperature detector, 16...Heating steam control device, inside

Claims (1)

【特許請求の範囲】 1、発電プラントの蒸気発生器からの主蒸気の持つ熱エ
ネルギを回転エネルギに変換する高圧タービン、この高
圧タービンの入口蒸気の一部を加熱源として前記高圧タ
ービンの排気を再熱する再熱器、再熱した蒸気の熱エネ
ルギを回転エネルギーに変換する低圧タービン、前記高
圧タービンおよび前記低圧タービンの回転エネルギを醒
気エネルギに変換する発電機、前記再熱器の加熱蒸気量
を加減する加熱蒸気制御弁より成る再熱弐発亀プラント
において、 前記低圧タービン内の温度を監視しこの温度の絶対値及
びこの温度の変化率を発「ヒ機出力に対応した規定の値
以下にするように前記加熱蒸気制御弁を調節する手段金
膜けたことを特徴とする再熱器制御装置。 2、特許請求の範囲第1項に2いて、前記低圧タービン
内の温度検出器と、前記発′亀磯の出力を検知して温度
の基準信号をつくる基準温度設定器とを設け、前記検出
温度の絶対値が前記基準温度以下となるか、または、前
記検出温度の変化率が他の規定1区以下となる様に、前
i己再熱器加熱蒸気制御弁を調節する加熱蒸気調節装置
を設けたことを特徴とする再熱器制御装置。
[Claims] 1. A high-pressure turbine that converts the thermal energy of main steam from a steam generator of a power plant into rotational energy; a part of the inlet steam of this high-pressure turbine is used as a heating source to heat the exhaust gas of the high-pressure turbine; A reheater that reheats, a low pressure turbine that converts the thermal energy of reheated steam into rotational energy, a generator that converts the rotational energy of the high pressure turbine and the low pressure turbine into draft energy, and heating steam of the reheater. In the reheating plant, which consists of a heating steam control valve that adjusts the amount of heating steam, the temperature within the low pressure turbine is monitored and the absolute value of this temperature and the rate of change of this temperature are output to a specified value corresponding to the output of the steam generator. A reheater control device characterized in that a means for adjusting the heating steam control valve is coated with a gold film. 2. A temperature sensor in the low pressure turbine; , a reference temperature setting device that detects the output of the generator to generate a temperature reference signal, and determines whether the absolute value of the detected temperature is less than or equal to the reference temperature or the rate of change of the detected temperature is different. 1. A reheater control device characterized by being provided with a heating steam adjustment device that adjusts a heating steam control valve of the reheater so that the temperature of the heating steam is within the specified 1 section.
JP14643983A 1983-08-12 1983-08-12 Controller for reheater Pending JPS6038510A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14643983A JPS6038510A (en) 1983-08-12 1983-08-12 Controller for reheater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14643983A JPS6038510A (en) 1983-08-12 1983-08-12 Controller for reheater

Publications (1)

Publication Number Publication Date
JPS6038510A true JPS6038510A (en) 1985-02-28

Family

ID=15407684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14643983A Pending JPS6038510A (en) 1983-08-12 1983-08-12 Controller for reheater

Country Status (1)

Country Link
JP (1) JPS6038510A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62131105A (en) * 1985-12-03 1987-06-13 株式会社日立製作所 Temperature controller for reheated steam

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62131105A (en) * 1985-12-03 1987-06-13 株式会社日立製作所 Temperature controller for reheated steam

Similar Documents

Publication Publication Date Title
US5109665A (en) Waste heat recovery boiler system
JP3800384B2 (en) Combined power generation equipment
JP2000161014A5 (en)
EP0079598B1 (en) Steam turbine bypass system
CA2262722C (en) Gas turbine combined plant, method of operating the same, and steam-cooling system for gas turbine hot section
US4274259A (en) Superheated steam power plant with steam to steam reheater
JP4415189B2 (en) Thermal power plant
JPH01318802A (en) Steam temperature control system for re-heating type combined plant
JPS6038510A (en) Controller for reheater
JP2823342B2 (en) Steam temperature controller for superheater / reheater in combined cycle power plant
JP3133183B2 (en) Combined cycle power plant
JP2999122B2 (en) Control equipment for complex plant
JPH0454204A (en) Control device for gas-extraction and condensation type turbine
JPH04252807A (en) Steam turbine power generation plant
JP3745419B2 (en) Waste heat recovery boiler
JP2863645B2 (en) Feedwater flow control system for an exhaust gas reburning combined cycle power plant
JPH10131721A (en) Gas turbine steam system
JPS59145307A (en) Control system of bleeder condensing turbine in thermal and power generation plant
JPH02163402A (en) Compound electric power plant and its operation
JPH06129208A (en) Composite cycle plant
JPH0297801A (en) Method for bleeding auxiliary steam from exhaust heat recovery boiler
JPH0475363B2 (en)
JPS61118508A (en) Control device for recirculating flow of feed pump
JPS6235002B2 (en)
JPH0128202B2 (en)