JPH04252807A - Steam turbine power generation plant - Google Patents

Steam turbine power generation plant

Info

Publication number
JPH04252807A
JPH04252807A JP784091A JP784091A JPH04252807A JP H04252807 A JPH04252807 A JP H04252807A JP 784091 A JP784091 A JP 784091A JP 784091 A JP784091 A JP 784091A JP H04252807 A JPH04252807 A JP H04252807A
Authority
JP
Japan
Prior art keywords
steam
pressure
turbine section
amount
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP784091A
Other languages
Japanese (ja)
Other versions
JP2737884B2 (en
Inventor
Sadao Watanabe
渡辺 貞夫
Takeshi Nishimoto
西本 武
Youichi Fujinobu
藤信 洋一
Yoshiyuki Fujii
藤井 芳之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP784091A priority Critical patent/JP2737884B2/en
Publication of JPH04252807A publication Critical patent/JPH04252807A/en
Application granted granted Critical
Publication of JP2737884B2 publication Critical patent/JP2737884B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Control Of Turbines (AREA)

Abstract

PURPOSE:To operate a steam turbine with a proper load varying velocity without varying load of a boiler when electric load is abruptly increased or decreased, that is, without varying steam amount which flows into a high pressure turbine. CONSTITUTION:When an electric load required by a generator 3 is abruptly increased, a feed water control valve 9 is abruptly closed or opened by means of an electric control means 41 based on a command of an opening/closing speed control means 42, to abruptly decrease or increase a feed water amount to be fed to a deaerator 11. In addition, a low pressure governing valve 20 is abruptly opened or closed to abruptly increase or decrease steam amount flowing into a low pressure turbine part 2b, that is, steam amount extracted from a high pressure turbine part 2a is abruptly decreased or increased. Generating ability is thereby set correspondently to an electric load abruptly increased or decreased.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本願発明は、ボイラーからの蒸気
により駆動される蒸気タービンと、該蒸気タービンによ
り駆動される発電機とを備えた蒸気タービン発電装置に
関し、さらに詳しくは電力負荷の急増減に対して適切な
運転のできる蒸気タービン発電装置に関するものである
[Industrial Field of Application] The present invention relates to a steam turbine power generation device equipped with a steam turbine driven by steam from a boiler and a generator driven by the steam turbine, and more specifically to a rapid reduction in electric power load. This invention relates to a steam turbine power generation system that can be operated appropriately.

【0002】0002

【従来の技術】ボイラーからの蒸気が主蒸気系を経て供
給される蒸気タービンと、該蒸気タービンで発生する動
力を電力に変換して電力負荷に供給する発電機とを備え
た蒸気タービン発電装置は、従来から良く知られている
[Prior Art] A steam turbine power generation system equipped with a steam turbine to which steam from a boiler is supplied via a main steam system, and a generator that converts the power generated by the steam turbine into electric power and supplies it to an electric load. has been well known for a long time.

【0003】上記蒸気タービンとして、抽気復水タービ
ンを用いる場合、高圧タービン部と低圧タービン部とを
備えた蒸気タービンに、該蒸気タービンからの排気を冷
却凝縮することにより復水となして大気圧以下の所定圧
力に保持する復水器が付設されており、前記高圧タービ
ン部の入口には高圧蒸気加減弁(所謂、主蒸気加減弁)
が、低圧タービン部の入口には低圧蒸気加減弁(所謂、
抽気加減弁)が設けられている。
[0003] When an extraction condensation turbine is used as the steam turbine, the exhaust gas from the steam turbine is cooled and condensed in a steam turbine equipped with a high-pressure turbine section and a low-pressure turbine section, and is converted into condensate and reduced to atmospheric pressure. A condenser is attached to maintain the pressure at the following predetermined pressure, and a high-pressure steam control valve (so-called main steam control valve) is installed at the inlet of the high-pressure turbine section.
However, there is a low pressure steam control valve (so-called,
A bleed air adjustment valve) is provided.

【0004】上記構成の蒸気タービンにおいては、ター
ビン負荷に応じた量の蒸気がボイラーから高圧蒸気加減
弁を経て高圧タービン部に供給され、該高圧タービン部
の排気の一部を抽気した抽気蒸気は抽気系に供給される
こととなっており、該抽気蒸気の圧力を低圧蒸気加減弁
により制御することにより抽気蒸気圧力を所定の圧力に
制御しつつ、発電機から電力を電力負荷に供給するよう
にされている。
In the steam turbine configured as described above, steam in an amount corresponding to the turbine load is supplied from the boiler to the high-pressure turbine section via the high-pressure steam control valve, and the extracted steam obtained by extracting a part of the exhaust gas from the high-pressure turbine section is The pressure of the extracted steam is controlled by a low-pressure steam regulating valve to control the extracted steam pressure to a predetermined pressure, and power is supplied from the generator to the electric power load. is being used.

【0005】上記の如き構成の蒸気タービン発電装置の
場合、電力負荷に変動が起こると、該電力負荷変動に対
応させて発電機から出力される電力を制御する必要があ
るところから、特開平2ー149703号公報に開示さ
れているように、高圧タービン部入口の高圧蒸気加減弁
を制御することにより、高圧タービン部へ供給される蒸
気量を調節し、以って電力負荷変動に対応する技術が提
案されている。
[0005] In the case of a steam turbine power generator having the above configuration, when a fluctuation occurs in the power load, it is necessary to control the power output from the generator in response to the power load fluctuation. As disclosed in Japanese Patent Application No. 149703, a technology that adjusts the amount of steam supplied to the high-pressure turbine section by controlling a high-pressure steam control valve at the inlet of the high-pressure turbine section, thereby responding to power load fluctuations. is proposed.

【0006】[0006]

【発明が解決しようとする課題】上記した如く、高圧蒸
気加減弁の制御により、蒸気タービンに供給される蒸気
量を制御する方式の場合、例えば電力負荷が急減した際
には、高圧蒸気加減弁の開度を急激に小さくして高圧タ
ービン部が通常許容できない負荷変化速度で高圧タービ
ン部に流入する蒸気量を急減させなければならない。す
ると、急減する蒸気量に追随して高圧タービン部におけ
る温度変化が大きくなってケーシングやロータの熱応力
が大きくなり、高圧タービン部の寿命が短くなるおそれ
がある。一方、ボイラーにおいても、負荷急減に応じて
発生蒸気量を低減させてやる必要が生じ、ボイラーの許
容負荷降下速度を超えた運転を余儀なくされるという問
題が生じるおそれがある。
[Problems to be Solved by the Invention] As mentioned above, in the case of a system in which the amount of steam supplied to the steam turbine is controlled by controlling the high-pressure steam regulating valve, for example, when the power load suddenly decreases, the high-pressure steam regulating valve The amount of steam flowing into the high-pressure turbine section must be rapidly reduced by rapidly reducing the opening degree of the high-pressure turbine section at a load change rate that the high-pressure turbine section cannot normally tolerate. As a result, the temperature change in the high-pressure turbine section increases as the amount of steam rapidly decreases, increasing thermal stress on the casing and rotor, which may shorten the life of the high-pressure turbine section. On the other hand, in the boiler as well, it becomes necessary to reduce the amount of steam generated in response to a sudden load drop, and there is a risk that the boiler will be forced to operate at a rate exceeding the allowable load drop rate.

【0007】また、電力負荷が急増した際には、高圧蒸
気加減弁の開度を急激に大きくして高圧タービン部が通
常許容できない負荷変化速度で高圧タービン部に流入す
る蒸気量を急増させなければならない。すると、急増す
る蒸気量に追随して高圧タービン部における温度変化が
大きくなってケーシングやロータの熱応力が大きくなり
、高圧タービン部の寿命が短くなるおそれがある。一方
、ボイラーにおいても、負荷急増に応じて発生蒸気量を
増加させてやる必要が生じ、ボイラーの許容負荷上昇速
度を超えた運転を余儀なくされるばかりでなく、タービ
ンの負荷急増に追随できない場合があるという問題が生
じるおそれがある。
[0007] Furthermore, when the power load suddenly increases, the opening degree of the high-pressure steam control valve must be suddenly increased to rapidly increase the amount of steam flowing into the high-pressure turbine section at a load change rate that the high-pressure turbine section cannot normally tolerate. Must be. Then, following the rapidly increasing amount of steam, the temperature change in the high-pressure turbine section increases, increasing thermal stress on the casing and rotor, and there is a risk that the life of the high-pressure turbine section will be shortened. On the other hand, boilers also need to increase the amount of steam generated in response to a sudden increase in load, which not only forces the boiler to operate at a speed that exceeds the allowable load increase rate, but also may not be able to keep up with the sudden increase in turbine load. There is a possibility that a problem may arise.

【0008】本願発明は、上記の点に鑑みてなされたも
ので、電力負荷の急増減時に、ボイラーの負荷を変える
ことなく(即ち、高圧タービン部への流入蒸気量を変え
ることなく)、蒸気タービンを適切な負荷変化速度で運
転できるようにし、且つ負荷急増減時に発生する余剰蒸
気の有効利用を図ることを目的とするものである。
The present invention has been made in view of the above points, and is capable of generating steam without changing the load on the boiler (that is, without changing the amount of steam flowing into the high-pressure turbine section) when the power load suddenly decreases. The purpose is to enable the turbine to operate at an appropriate load change rate and to effectively utilize surplus steam generated when the load suddenly increases or decreases.

【0009】[0009]

【課題を解決するための手段】本願発明では、上記課題
を解決するための手段として、ボイラーからの蒸気が供
給される高圧タービン部と該高圧タービン部を経て蒸気
が供給される低圧タービン部とからなる蒸気タービンと
、該蒸気タービンにより駆動される発電機と、前記高圧
タービン部の排気から抽気される抽気蒸気が流れる中圧
抽気系と、前記高圧タービン部の入口に設けられ、高圧
タービン部へ流れる蒸気量を制御する高圧蒸気加減弁と
、前記高圧タービン部の排気から抽気して前記中圧抽気
系に供給する抽気蒸気の圧力を制御すべく高圧タービン
部からの抽気蒸気以外の排気が流れる低圧ボイラー部の
入口に設けられた低圧蒸気加減弁と、前記ボイラーへ給
水するための給水系と、該給水系に設けられ、前記中圧
抽気系を介して供給される余剰蒸気の熱を回収するため
の脱気器と、該脱気器へ供給される給水量を制御する給
水流量調整弁とを備えた蒸気タービン発電装置において
、前記発電機に要求される電力負荷の変化に応じて前記
給水流量調整弁および低圧蒸気加減弁を所定速度で開閉
制御する電力制御手段と、前記発電機に要求される電力
負荷の急増減時において前記給水流量調整弁および低圧
蒸気加減弁の開閉速度を速める開閉速度制御手段とを付
設している。
[Means for Solving the Problems] In the present invention, as a means for solving the above problems, there is provided a high-pressure turbine section to which steam from a boiler is supplied, and a low-pressure turbine section to which steam is supplied via the high-pressure turbine section. a generator driven by the steam turbine; an intermediate-pressure extraction system through which extracted steam extracted from the exhaust gas of the high-pressure turbine section flows; a high-pressure steam control valve for controlling the amount of steam flowing into the high-pressure turbine section; A low-pressure steam control valve provided at the inlet of the low-pressure boiler section, a water supply system for supplying water to the boiler, and a water supply system installed in the water supply system to absorb the heat of surplus steam supplied via the medium-pressure extraction system. In a steam turbine power generation device equipped with a deaerator for recovery and a water supply flow rate adjustment valve that controls the amount of water supplied to the deaerator, the power generator is configured to A power control means for controlling the opening and closing of the water supply flow rate adjustment valve and the low pressure steam adjustment valve at a predetermined speed; It is equipped with an opening/closing speed control means for increasing the opening/closing speed.

【0010】0010

【作用】本願発明では、上記手段によって次のような作
用が得られる即ち、発電機に要求される電力負荷が通常
の変化を示す場合には、電力制御手段により高圧蒸気加
減弁および低圧蒸気加減弁が通常速度で開閉制御される
が、発電機に要求される電力負荷が急増減した場合には
、開閉速度制御手段からの指令をうけた電力制御手段に
より給水流量調整弁を急閉あるいは急開して脱気器に供
給される給水量を急減あるいは急増せしめた後、低圧蒸
気加減弁を急開あるいは急閉して低圧タービン部へ流れ
る蒸気量を急増あるいは急減(即ち、高圧タービン部か
ら抽気される蒸気量を急減あるいは急増)させることに
より、急増減した電力負荷に発電機の発電能力が対応せ
しめられることとなる。この際、低圧タービン部に流れ
る蒸気量を急増減させたとしても、低圧タービン部は高
圧タービン部に比べて低温であるので、温度変化は小さ
くなる。
[Function] In the present invention, the following effects are obtained by the above means. That is, when the power load required for the generator shows a normal change, the power control means controls the high-pressure steam control valve and the low-pressure steam control valve. The valve is controlled to open and close at a normal speed, but if the power load required for the generator suddenly decreases, the power control means receives a command from the opening/closing speed control means to close or suddenly close the water supply flow rate regulating valve. After opening the valve to suddenly reduce or increase the amount of water supplied to the deaerator, the low-pressure steam control valve is suddenly opened or closed to suddenly reduce or reduce the amount of steam flowing to the low-pressure turbine section (i.e., the amount of water flowing from the high-pressure turbine section to By rapidly reducing or rapidly increasing the amount of steam extracted, the power generation capacity of the generator can be adapted to the rapidly reduced power load. At this time, even if the amount of steam flowing into the low-pressure turbine section is rapidly reduced, the temperature change will be small because the low-pressure turbine section is lower in temperature than the high-pressure turbine section.

【0011】また、上記制御において脱気器に供給され
る給水量が急減あるいは急増するが、それと対応して高
圧タービン部から抽気されて脱気器に供給される抽気蒸
気量も急減あるいは急増されることとなっているため、
脱気器が有効に作用することとなる。
[0011] Furthermore, in the above control, the amount of water supplied to the deaerator suddenly decreases or increases rapidly, but correspondingly, the amount of extracted steam extracted from the high pressure turbine section and supplied to the deaerator also decreases or rapidly increases. Because it is supposed to be
The deaerator will work effectively.

【0012】0012

【発明の効果】本願発明によれば、ボイラーからの蒸気
が供給される高圧タービン部と該高圧タービン部を経て
蒸気が供給される低圧タービン部とからなる蒸気タービ
ンと、該蒸気タービンにより駆動される発電機と、前記
高圧タービン部の排気から抽気される抽気蒸気が流れる
中圧抽気系と、前記高圧タービン部の入口に設けられ、
高圧タービン部へ流れる蒸気量を制御する高圧蒸気加減
弁と、前記高圧タービン部の排気から抽気して前記中圧
抽気系に供給する抽気蒸気の圧力を制御すべく高圧ター
ビン部からの抽気蒸気以外の排気が流れる低圧ボイラー
部の入口に設けられた低圧蒸気加減弁と、前記ボイラー
へ給水するための給水系と、該給水系に設けられ、前記
中圧抽気系を介して供給される余剰蒸気の熱を回収する
ための脱気器と、該脱気器へ供給される給水量を制御す
る給水流量調整弁とを備えた蒸気タービン発電装置にお
いて、前記発電機に要求される電力負荷の変化に応じて
前記給水流量調整弁および低圧蒸気加減弁を所定速度で
開閉制御する電力制御手段と、前記発電機に要求される
電力負荷の急増減時において前記給水流量調整弁および
低圧蒸気加減弁の開閉速度を速める開閉速度制御手段と
を付設して、発電機に要求される電力負荷が通常の変化
を示す場合には、電力制御手段により高圧蒸気加減弁お
よび低圧蒸気加減弁が通常速度で開閉制御されるが、発
電機に要求される電力負荷が急増減した場合には、開閉
速度制御手段からの指令をうけた電力制御手段により給
水流量調整弁を急閉あるいは急開して脱気器に供給され
る給水量を急減あるいは急増せしめた後、低圧蒸気加減
弁を急開あるいは急閉して低圧タービン部へ流れる蒸気
量を急増あるいは急減(即ち、高圧タービン部から抽気
される蒸気量を急減あるいは急増)させることにより、
急増減した電力負荷に発電機の発電能力を、低圧タービ
ン部に流れる蒸気量制御により対応せしめるようにした
ので、低圧タービン部に流れる蒸気量を急増あるいは急
減させたとしても、低圧タービン部は高圧タービン部に
比べて低温であるため、温度変化が小さく抑えられるこ
ととなり、蒸気タービンの耐久性を確保しつつ電力負荷
の急変に対処することができるという優れた効果がある
According to the present invention, there is provided a steam turbine including a high-pressure turbine section to which steam from a boiler is supplied and a low-pressure turbine section to which steam is supplied via the high-pressure turbine section, and a steam turbine driven by the steam turbine. an intermediate-pressure extraction system through which extracted steam extracted from the exhaust gas of the high-pressure turbine section flows, and an inlet of the high-pressure turbine section,
A high-pressure steam control valve that controls the amount of steam flowing to the high-pressure turbine section, and a high-pressure steam control valve that controls the pressure of the extracted steam extracted from the exhaust gas of the high-pressure turbine section and supplied to the intermediate-pressure extraction system, other than the extracted steam from the high-pressure turbine section. a low-pressure steam regulating valve provided at the inlet of the low-pressure boiler section through which the exhaust gas flows; a water supply system for supplying water to the boiler; and surplus steam provided in the water supply system and supplied via the medium-pressure extraction system. In a steam turbine power generation device equipped with a deaerator for recovering the heat of the deaerator and a water supply flow rate adjustment valve that controls the amount of water supplied to the deaerator, a change in the power load required for the generator power control means for controlling the opening and closing of the water supply flow rate adjustment valve and the low pressure steam control valve at a predetermined speed in response to a sudden decrease in the power load required for the generator; The high-pressure steam regulating valve and the low-pressure steam regulating valve are opened and closed at the normal speed by the power control means when the power load required for the generator shows a normal change. However, if the power load required for the generator suddenly decreases, the power control means receives a command from the opening/closing speed control means to quickly close or open the water supply flow rate regulating valve to shut down the deaerator. After suddenly decreasing or rapidly increasing the amount of water supplied to the high-pressure turbine section, the low-pressure steam control valve is suddenly opened or closed to suddenly reduce or suddenly reduce the amount of steam flowing to the low-pressure turbine section (in other words, the amount of steam extracted from the high-pressure turbine section is suddenly reduced or decreased). By causing a sudden decrease or rapid increase in
Since the power generation capacity of the generator is made to respond to the sharply reduced power load by controlling the amount of steam flowing to the low-pressure turbine section, even if the amount of steam flowing to the low-pressure turbine section is suddenly or suddenly reduced, the low-pressure turbine section will still maintain high pressure. Since the temperature is lower than that of the turbine section, temperature changes can be suppressed to a small extent, which has the excellent effect of being able to cope with sudden changes in power load while ensuring the durability of the steam turbine.

【0013】また、上記制御において脱気器に供給され
る給水量が急増減するが、それと対応して高圧タービン
部から抽気されて脱気器に供給される抽気蒸気量も急増
減されることとなっているので、脱気器が有効に作用す
ることとなり、電力負荷急変時に生ずる余剰蒸気の有効
利用が図れるという効果もある。
[0013] Furthermore, in the above control, the amount of water supplied to the deaerator is rapidly reduced, but correspondingly, the amount of extracted steam extracted from the high-pressure turbine section and supplied to the deaerator is also rapidly reduced. Therefore, the deaerator works effectively, and there is also the effect that surplus steam generated when the power load suddenly changes can be used effectively.

【0014】[0014]

【実施例】以下、添付の図面を参照して本願発明の好適
な実施例を説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below with reference to the accompanying drawings.

【0015】図1には、本願発明の実施例にかかる蒸気
タービン発電装置の系統図が示されている。
FIG. 1 shows a system diagram of a steam turbine power generator according to an embodiment of the present invention.

【0016】本実施例の蒸気タービン発電装置は、ボイ
ラー1と、該ボイラー1からの蒸気が供給される高圧タ
ービン部2aと該高圧タービン部2aを経て蒸気が供給
される低圧タービン部2bとからなる蒸気タービン2と
、該蒸気タービン2により駆動される発電機3と、前記
蒸気タービン2の排気を適宜の冷却手段(図示省略)を
用いて冷却凝縮させて復水となし、大気圧以下の所定圧
力に保持する復水器4とを備えている。
The steam turbine power generator of this embodiment includes a boiler 1, a high-pressure turbine section 2a to which steam from the boiler 1 is supplied, and a low-pressure turbine section 2b to which steam is supplied via the high-pressure turbine section 2a. A steam turbine 2, a generator 3 driven by the steam turbine 2, and an exhaust gas from the steam turbine 2 are cooled and condensed to condensate using an appropriate cooling means (not shown), and the It is equipped with a condenser 4 that maintains a predetermined pressure.

【0017】前記ボイラー1には、前記復水器4からの
復水および補給水を供給する給水系5が接続されており
、該給水系5には、復水ポンプ6、復水タンク7、脱気
器給水ポンプ8、給水流量調整弁9、低圧給水加熱器1
0、脱気器11、脱気水ポンプ12、脱気水タンク13
およびボイラー給水ポンプ14が順次介設されている。
A water supply system 5 that supplies condensate from the condenser 4 and make-up water is connected to the boiler 1, and the water supply system 5 includes a condensate pump 6, a condensate tank 7, Deaerator feed water pump 8, feed water flow rate adjustment valve 9, low pressure feed water heater 1
0, deaerator 11, deaerator water pump 12, deaerator water tank 13
and a boiler feed pump 14 are successively installed.

【0018】前記ボイラー1からの蒸気は、主蒸気系1
5を介して前記蒸気タービン2の高圧タービン部2aに
供給されることとなっており、該主蒸気系15には、高
圧蒸気加減弁16が介設されている。該高圧蒸気加減弁
16は、主蒸気系15を経て高圧タービン部2aに流入
する主蒸気流量を制御する。
Steam from the boiler 1 is transferred to the main steam system 1
5 to the high-pressure turbine section 2a of the steam turbine 2, and the main steam system 15 is provided with a high-pressure steam control valve 16. The high pressure steam control valve 16 controls the flow rate of main steam flowing into the high pressure turbine section 2a via the main steam system 15.

【0019】前記高圧タービン部2aには、該高圧ター
ビン部2aからの排気の一部を抽気して前記脱気器11
および熱回収装置として作用する中圧蒸気プロセス18
へ供給する中圧抽気系17が接続されている。また、前
記高圧タービン部2aには、前記中圧抽気系17へ抽気
された残りの排気を低圧タービン部2bに供給する蒸気
通路19が接続されており、該蒸気通路19には低圧蒸
気加減弁20が介設されている。該低圧蒸気加減弁20
は、中圧抽気系17に供給される抽気蒸気の圧力を制御
する。符号21は緊急時に大気へ蒸気を放出すべく作用
する圧力逃し弁である。
A part of the exhaust gas from the high-pressure turbine section 2a is extracted into the high-pressure turbine section 2a, and the deaerator 11
and a medium pressure steam process 18 acting as a heat recovery device.
A medium-pressure extraction system 17 is connected thereto. Furthermore, a steam passage 19 is connected to the high-pressure turbine part 2a, and a steam passage 19 is connected to supply the remaining exhaust gas extracted to the intermediate-pressure extraction system 17 to the low-pressure turbine part 2b. 20 are interposed. The low pressure steam control valve 20
controls the pressure of the extracted steam supplied to the intermediate pressure extraction system 17. Reference numeral 21 is a pressure relief valve which acts to release steam to the atmosphere in an emergency.

【0020】前記低圧タービン部2bには、該低圧ター
ビン部2bから抽気して前記低圧給水加熱器10に供給
する低圧抽気系22と、前記低圧タービン部2bの排気
を前記復水器4に供給する排気系23とが接続されてい
る。
The low-pressure turbine section 2b includes a low-pressure extraction system 22 that extracts air from the low-pressure turbine section 2b and supplies it to the low-pressure feed water heater 10, and a low-pressure extraction system 22 that supplies exhaust gas from the low-pressure turbine section 2b to the condenser 4. An exhaust system 23 is connected thereto.

【0021】前記主蒸気系15と中圧抽気系17との間
には、前記高圧タービン部2aをバイパスする高圧バイ
パス系24が接続されており、該高圧バイパス系24に
は、主蒸気系15の蒸気圧力が所定圧力以上になった時
に開作動される高圧圧力調整弁25が介設されている。
A high-pressure bypass system 24 that bypasses the high-pressure turbine section 2a is connected between the main steam system 15 and the intermediate-pressure extraction system 17. A high-pressure pressure regulating valve 25 is provided which is opened when the steam pressure of the steam reaches a predetermined pressure or higher.

【0022】前記中圧抽気系17と復水器4との間には
、前記低圧タービン部2bをバイパスする低圧バイパス
系26が接続されており、該低圧バイパス系26には、
前記中圧抽気系17の抽気蒸気の圧力が所定圧力以上と
なった時に開作動される中圧圧力調整弁27が介設され
ている。
[0022] A low-pressure bypass system 26 that bypasses the low-pressure turbine section 2b is connected between the intermediate-pressure extraction system 17 and the condenser 4, and the low-pressure bypass system 26 includes:
An intermediate pressure regulating valve 27 is provided which is opened when the pressure of the extracted steam in the intermediate pressure extraction system 17 exceeds a predetermined pressure.

【0023】前記低圧給水加熱器10において、復水器
4からの復水を含む給水を中圧抽気系17を介して供給
される抽気蒸気によって加熱することとなっており、該
低圧給水加熱器10において生じたドレンは、ドレン系
28を介して復水器4へ戻される。
In the low-pressure feedwater heater 10, the feedwater containing condensate from the condenser 4 is heated by bleed steam supplied via the medium-pressure bleed system 17, and the low-pressure feedwater heater 10 The condensate produced in 10 is returned to condenser 4 via drain system 28 .

【0024】前記発電機3は、ボイラー1からの蒸気が
蒸気タービン2に流れて仕事をする仕事量に応じた電力
を発電し、工場電力系統29に接続される工場負荷30
に電力を供給することとなっている。なお、工場電力系
統29には、電力を買電する買電系統31が接続されて
いる。
The generator 3 generates electric power corresponding to the amount of work performed when steam from the boiler 1 flows to the steam turbine 2, and generates electric power corresponding to the amount of work done by the steam from the boiler 1, and connects the factory load 30 to the factory power system 29.
It is planned to supply electricity to the Note that a power purchasing system 31 for purchasing power is connected to the factory power system 29.

【0025】なお、本実施例においては、中圧圧力調整
弁27、圧力逃し弁21、高圧蒸気加減弁16、高圧圧
力調整弁25の順に設定圧力が小さくされている。
In this embodiment, the set pressures of the intermediate pressure regulating valve 27, the pressure relief valve 21, the high pressure steam regulating valve 16, and the high pressure regulating valve 25 are made smaller in this order.

【0026】図1において、符号32は主蒸気系15の
蒸気圧力を検出するための圧力検出器、33は中圧抽気
系17の抽気蒸気圧力を検出するための圧力検出器、3
4は蒸気タービン2の回転数を検出するための回転数検
出器、35は買電系統31の買電電力を検出するための
電力検出器である。
In FIG. 1, reference numeral 32 is a pressure detector for detecting the steam pressure of the main steam system 15; 33 is a pressure detector for detecting the extracted steam pressure of the intermediate pressure extraction system 17;
4 is a rotational speed detector for detecting the rotational speed of the steam turbine 2, and 35 is a power detector for detecting the purchased power of the power purchasing system 31.

【0027】上記構成の蒸気タービン発電装置には、前
記圧力検出器32,33、回転数検出器34および電力
検出器35からの各種情報を得て、給水流量調整弁9、
高圧蒸気加減弁16、低圧蒸気加減弁20および高圧圧
力調整弁25を開閉制御する制御ユニット40が付設さ
れている。
In the steam turbine power generating apparatus having the above configuration, various information is obtained from the pressure detectors 32, 33, the rotation speed detector 34 and the power detector 35, and the water supply flow rate regulating valve 9,
A control unit 40 is attached that controls the opening and closing of the high-pressure steam regulating valve 16, the low-pressure steam regulating valve 20, and the high-pressure pressure regulating valve 25.

【0028】該制御ユニット40は、図2に示すように
、前記発電機3に要求される電力負荷の変化に対応して
買電系統31から所定買電するように電力を制御(即ち
、APC制御)すべく前記給水流量調整弁9および低圧
蒸気加減弁20を開閉制御する電力制御手段41と、前
記発電機3に要求される電力負荷の急増減時において前
記給水流量調整弁9および低圧蒸気加減弁20の開閉速
度を速める開閉速度制御手段42と、前記回転数検出器
34からの情報(即ち、蒸気タービン2の回転数)に応
じて前記高圧蒸気加減弁16および低圧蒸気加減弁20
を制御して蒸気タービン2の調速を行う調速手段43と
、電力負荷を設定する負荷設定器44と、圧力検出器3
2により検出される主蒸気系15の蒸気圧力が所定圧力
以上となった時に高圧圧力調整弁25を開作動させる高
圧制御手段45と、圧力検出器33により検出される抽
気蒸気圧力が所定圧力以上となった時に中圧圧力調整弁
27を開作動させる中圧制御手段46と、圧力検出器3
3により検出された抽気蒸気圧力に基づいて中圧抽気系
17に送られる抽気蒸気の圧力を所定圧力に制御すべく
低圧蒸気加減弁20を制御する抽気圧力制御手段47と
を備えている。
As shown in FIG. 2, the control unit 40 controls the power so as to purchase a predetermined amount of power from the power purchasing system 31 in response to changes in the power load required of the generator 3 (that is, APC power control means 41 for controlling the opening and closing of the water supply flow rate adjustment valve 9 and the low pressure steam control valve 20 in order to an opening/closing speed control means 42 that increases the opening/closing speed of the regulator valve 20; and the high-pressure steam regulator 16 and the low-pressure steam regulator 20 according to information from the rotation speed detector 34 (i.e., the rotation speed of the steam turbine 2).
a speed governor 43 that controls the speed of the steam turbine 2, a load setting device 44 that sets the electric power load, and a pressure detector 3.
2, the high pressure control means 45 opens the high pressure regulating valve 25 when the steam pressure in the main steam system 15 detected by the pressure detector 33 exceeds a predetermined pressure; an intermediate pressure control means 46 that opens the intermediate pressure regulating valve 27 when
3, the bleed pressure control means 47 controls the low pressure steam control valve 20 to control the pressure of the bleed steam sent to the intermediate pressure bleed system 17 to a predetermined pressure based on the bleed steam pressure detected by 3.

【0029】上記の如く構成された蒸気タービン発電装
置は次のように作用する。
The steam turbine power generator constructed as described above operates as follows.

【0030】まず、この発電装置の定常運転について説
明する。
First, the steady operation of this power generator will be explained.

【0031】ボイラー1から蒸気が主蒸気系15を介し
て蒸気タービン2に供給されると、高圧蒸気加減弁16
を経て高圧タービン部2aに流入して仕事をし、その排
気の一部は取り出されて中圧抽気系17に供給される。 そして、残りの排気は低圧蒸気加減弁20を経て低圧タ
ービン部2bに流れて仕事をし、その排気は排気系23
を介して復水器4に導かれて復水となり、大気圧以下の
所定圧力に保持される。なお、この際、復水器4内の不
凝縮ガスは、図示しないエゼクターにより外部に排出さ
れる。
When steam is supplied from the boiler 1 to the steam turbine 2 via the main steam system 15, the high pressure steam control valve 16
The exhaust gas flows into the high-pressure turbine section 2a to do work, and a portion of the exhaust gas is taken out and supplied to the intermediate-pressure extraction system 17. The remaining exhaust gas passes through the low pressure steam control valve 20 and flows to the low pressure turbine section 2b to do work, and the exhaust gas flows through the exhaust system 23.
The water is led to the condenser 4 through the condenser 4, where it becomes condensate and is maintained at a predetermined pressure below atmospheric pressure. At this time, the non-condensable gas in the condenser 4 is discharged to the outside by an ejector (not shown).

【0032】発電機3は、蒸気が高圧タービン部2a、
低圧タービン部2bを流れて仕事をした仕事量に相応す
る電力を発生し、電力負荷である工場負荷30に供給す
る。この際、所定量の電力を買電系統31から買電して
いる。
[0032] In the generator 3, steam is supplied to a high pressure turbine section 2a,
Electric power corresponding to the amount of work flowing through the low-pressure turbine section 2b is generated and supplied to the factory load 30, which is an electric power load. At this time, a predetermined amount of power is purchased from the power purchasing system 31.

【0033】復水器4内で凝縮した復水は、図示されな
い復水器4のホットウェル水位制御により復水ポンプ6
によって復水タンク7に送られる。なお、復水タンク7
には、中圧蒸気プロセス18に送気された蒸気に見合う
補給水が供給される。
The condensate condensed in the condenser 4 is pumped to the condensate pump 6 by hot well water level control of the condenser 4 (not shown).
The water is sent to the condensate tank 7 by In addition, condensate tank 7
is supplied with make-up water commensurate with the steam supplied to the medium pressure steam process 18.

【0034】復水タンク7内で復水と補給水とが混合し
た給水は、脱気器給水ポンプ8により昇圧されて低圧給
水加熱器10に送られ、低圧抽気系22を介して供給さ
れる抽気蒸気により加熱昇温された後、脱気器11に送
られる。
The feed water in which condensate and make-up water are mixed in the condensate tank 7 is boosted in pressure by the deaerator feed water pump 8 and sent to the low pressure feed water heater 10, where it is supplied via the low pressure extraction system 22. After being heated and heated by extraction steam, it is sent to a deaerator 11.

【0035】該脱気器11においては、中圧抽気系17
を介して供給される抽気蒸気により給水が加熱脱気され
て脱気水とされ、脱気水ポンプ12により脱気水タンク
13に送水される。この際、脱気器11に送水される給
水量は、脱気水タンク13の水位が所定水位以上となっ
ている場合には最低流量となるように給水流量調整弁9
にて制御される。
In the deaerator 11, a medium pressure extraction system 17
The supplied water is heated and degassed by the bleed steam supplied through the degassed water pump 12 to become degassed water, and the degassed water pump 12 sends the water to the degassed water tank 13 . At this time, the amount of water supplied to the deaerator 11 is controlled by the water supply flow rate adjustment valve 9 so that the water level in the deaerated water tank 13 becomes the minimum flow rate when the water level is higher than the predetermined water level.
Controlled by

【0036】脱気水タンク13に貯蔵された脱気水は、
ボイラー給水ポンプ14により昇圧されてボイラー1の
ドラム水位を保持する水量だけ送水される。ボイラー1
に供給された給水はボイラー1にて蒸気となり、前述の
ように蒸気タービン2に供給される。
The degassed water stored in the degassed water tank 13 is
The pressure of the water is increased by the boiler feed pump 14, and water is fed in an amount that maintains the drum water level of the boiler 1. Boiler 1
The feed water supplied to the boiler 1 turns into steam and is supplied to the steam turbine 2 as described above.

【0037】ところで、中圧蒸気プロセス18や脱気器
11の蒸気消費量の変化により中圧抽気系17の蒸気圧
力が変化した時には、圧力検出器33で検出した圧力が
入力される制御ユニット40の抽気圧力制御手段47の
作用によって低圧蒸気加減弁20が開閉制御され、抽気
圧力は所定圧力に保持される。
By the way, when the steam pressure in the intermediate pressure extraction system 17 changes due to changes in the steam consumption of the intermediate pressure steam process 18 or the deaerator 11, the control unit 40 receives the pressure detected by the pressure detector 33. The opening and closing of the low pressure steam control valve 20 is controlled by the action of the bleed pressure control means 47, and the bleed pressure is maintained at a predetermined pressure.

【0038】また、工場負荷30の電力負荷が変化した
時には、電力検出器35により検出した買電電力が入力
される制御ユニット40の電力制御手段41の作用によ
って給水流量調整弁9および低圧蒸気加減弁20が開閉
制御され、買電電力を所定量(即ち、負荷設定器44に
より設定される)に制御して発電機3から所要の電力が
工場負荷30に供給される。
Furthermore, when the power load of the factory load 30 changes, the power control means 41 of the control unit 40 to which the purchased power detected by the power detector 35 is input controls the water supply flow rate regulating valve 9 and the low pressure steam control. The valve 20 is controlled to open and close, the purchased power is controlled to a predetermined amount (that is, set by the load setting device 44), and the required power is supplied from the generator 3 to the factory load 30.

【0039】上記の場合、主蒸気系15の蒸気圧力は、
ボイラー1の燃焼により所定の運転圧力になるように運
転される。この際、高圧圧力検出器32により検出され
る主蒸気系15の蒸気圧力が所定圧力を超えると、制御
ユニット40の高圧制御手段45の作用によって高圧圧
力調整弁25が開作動され、高圧バイパス系24を介し
て中圧抽気系17に余剰蒸気が逃がされる。
In the above case, the steam pressure of the main steam system 15 is:
The boiler 1 is operated to achieve a predetermined operating pressure by combustion. At this time, when the steam pressure of the main steam system 15 detected by the high pressure pressure detector 32 exceeds a predetermined pressure, the high pressure regulating valve 25 is operated to open by the action of the high pressure control means 45 of the control unit 40, and the high pressure bypass system Excess steam is vented to the medium pressure extraction system 17 via 24.

【0040】ついで、電力負荷が急減した場合について
説明する。
Next, a case where the power load suddenly decreases will be explained.

【0041】この場合には、電力検出器35で検出した
買電電力が入力される制御ユニット40の開閉速度制御
手段42からの指令により電力制御手段41による給水
流量調整弁9および低圧蒸気加減弁20の開閉速度が速
められる。
In this case, the power control means 41 controls the water supply flow rate adjustment valve 9 and the low pressure steam control valve in response to a command from the opening/closing speed control means 42 of the control unit 40 to which the purchased power detected by the power detector 35 is input. The opening/closing speed of 20 is increased.

【0042】即ち、給水流量調整弁9が急開されて脱気
器11に流入する給水量が急増され、脱気器11におい
て消費される抽気蒸気量が増大せしめられると、中圧抽
気系17の蒸気圧力が低下せしめられる。そこで、低圧
蒸気加減弁20が抽気圧力を保持するために急閉され、
買電量が所定量になるようにAPC制御される(即ち、
発電機3の発電能力が低下方向に制御される)。この時
、買電量が所定量以下となった場合には、低圧蒸気加減
弁20を更に絞り、買電量が所定量になるようにAPC
制御される。
That is, when the water supply flow rate regulating valve 9 is suddenly opened and the amount of water supplied to the deaerator 11 is rapidly increased, and the amount of extracted steam consumed in the deaerator 11 is increased, the medium pressure extraction system 17 steam pressure is reduced. Therefore, the low pressure steam control valve 20 is suddenly closed to maintain the bleed pressure.
APC control is performed so that the amount of electricity purchased is a predetermined amount (i.e.,
(The power generation capacity of the generator 3 is controlled to decrease). At this time, if the amount of electricity purchased is less than a predetermined amount, the low pressure steam control valve 20 is further throttled and the APC is adjusted so that the amount of electricity purchased becomes the predetermined amount.
controlled.

【0043】この際、中圧抽気系17の抽気圧力が上昇
して所定圧力を超えると、圧力検出器33により検出さ
れた抽気圧力が入力される制御ユニット40の中圧制御
手段46の作用によって、中圧圧力調整弁27が開作動
せしめられ、余剰蒸気が低圧バイパス系26を介して復
水器4に逃がされ、中圧抽気系17の抽気圧力が所定圧
力に制御される。そして、電力負荷の減少が止まり、一
定負荷になると低圧蒸気加減弁20は閉め止まり、中圧
圧力調整弁27が閉作動せしめられて抽気圧力が所定圧
力に制御される。
At this time, when the bleed pressure in the medium pressure bleed system 17 increases and exceeds a predetermined pressure, the medium pressure control means 46 of the control unit 40 receives the bleed pressure detected by the pressure detector 33. , the intermediate pressure regulating valve 27 is opened, excess steam is released to the condenser 4 via the low pressure bypass system 26, and the extraction pressure of the intermediate pressure extraction system 17 is controlled to a predetermined pressure. Then, when the electric power load stops decreasing and becomes a constant load, the low pressure steam control valve 20 stops closing, the intermediate pressure control valve 27 is operated to close, and the extraction pressure is controlled to a predetermined pressure.

【0044】次に、電力負荷が急増した場合について説
明する。
Next, a case where the power load suddenly increases will be explained.

【0045】この場合にも、電力検出器35で検出した
買電電力が入力される制御ユニット40の開閉速度制御
手段42からの指令により電力制御手段41による給水
流量調整弁9および低圧蒸気加減弁20の開閉速度が速
められる。
In this case as well, the power control means 41 controls the water supply flow rate adjustment valve 9 and the low pressure steam control valve in response to commands from the opening/closing speed control means 42 of the control unit 40 to which the purchased power detected by the power detector 35 is input. The opening/closing speed of 20 is increased.

【0046】即ち、給水流量調整弁9が急閉されて脱気
器11に流入する給水量が急減され、脱気器11におい
て消費される抽気蒸気量が減少せしめられると、中圧抽
気系17の蒸気圧力が上昇せしめられる。そこで、低圧
蒸気加減弁20が抽気圧力を保持するために急開され、
買電量が所定量になるようにAPC制御される(即ち、
発電機3の発電能力が上昇方向に制御される)。この時
、買電量が所定量以上となった場合には、低圧蒸気加減
弁20を更に開き、買電量が所定量になるようにAPC
制御される。
That is, when the water supply flow rate regulating valve 9 is suddenly closed and the amount of water supply flowing into the deaerator 11 is suddenly reduced, and the amount of extracted steam consumed in the deaerator 11 is reduced, the medium pressure extraction system 17 steam pressure is increased. Therefore, the low pressure steam control valve 20 is suddenly opened to maintain the bleed pressure.
APC control is performed so that the amount of electricity purchased is a predetermined amount (i.e.,
(The power generation capacity of the generator 3 is controlled in an upward direction). At this time, if the amount of electricity purchased exceeds a predetermined amount, the low pressure steam control valve 20 is further opened and the APC is adjusted so that the amount of electricity purchased becomes the predetermined amount.
controlled.

【0047】上記した如く、発電機3に要求される電力
負荷が急増減した場合には、開閉速度制御手段42から
の指令をうけた電力制御手段41により給水流量調整弁
9を急閉あるいは急開して脱気器11に供給される給水
量を急減あるいは急増せしめるとともに、低圧蒸気加減
弁20を急開あるいは急閉して低圧タービン部2bへ流
れる蒸気量を急増あるいは急減(即ち、高圧タービン部
2aから抽気される蒸気量を急減あるいは急増)させる
ことにより、急増減した電力負荷に発電機3の発電能力
を、低圧タービン部2bに流れる蒸気量制御により対応
せしめるようにしているため、低圧タービン部2bに流
れる蒸気量を急増あるいは急減させたとしても、低圧タ
ービン部2bは高圧タービン部2aに比べて低温である
ため、温度変化が小さく抑えられることとなり、蒸気タ
ービン2の耐久性を確保しつつ電力負荷の急変に対処す
ることができる。
As described above, when the power load required for the generator 3 suddenly decreases, the power control means 41 receives a command from the opening/closing speed control means 42 to close or suddenly close the water supply flow rate regulating valve 9. The amount of water supplied to the deaerator 11 is suddenly reduced or increased rapidly by opening, and the low-pressure steam control valve 20 is suddenly opened or closed to rapidly reduce or reduce the amount of steam flowing to the low-pressure turbine section 2b (i.e., the amount of water supplied to the high-pressure turbine section 2b is suddenly decreased or decreased). By rapidly decreasing or rapidly increasing the amount of steam extracted from the low pressure turbine section 2a, the generation capacity of the generator 3 can be adjusted to the rapidly reduced power load by controlling the amount of steam flowing to the low pressure turbine section 2b. Even if the amount of steam flowing into the turbine section 2b is suddenly or suddenly reduced, the low pressure turbine section 2b is at a lower temperature than the high pressure turbine section 2a, so the temperature change is kept small, and the durability of the steam turbine 2 is ensured. It is possible to cope with sudden changes in power load while

【0048】また、上記制御において脱気器11に供給
される給水量が急増減するが、それと対応して高圧ター
ビン部2aから抽気されて脱気器11に供給される抽気
蒸気量も急増減されることとなっているので、脱気器1
1が有効に作用することとなり、電力負荷急変時に生ず
る余剰蒸気の有効利用が図れる。
Further, in the above control, the amount of water supplied to the deaerator 11 decreases rapidly, but correspondingly, the amount of extracted steam extracted from the high-pressure turbine section 2a and supplied to the deaerator 11 also decreases rapidly. Deaerator 1
1 will work effectively, and the surplus steam generated when the power load suddenly changes can be used effectively.

【0049】電力負荷減少が長期間予定されている場合
には、給水流量調整弁9が急開されて脱気器11に流入
する給水量が急増され、脱気器11において消費される
抽気蒸気量が増大せしめられると、中圧抽気系17の蒸
気圧力が低下せしめられる。そこで、低圧蒸気加減弁2
0が抽気圧力を保持するために急閉され、買電量が所定
量になるようにAPC制御される(即ち、発電機3の発
電能力が上昇方向に制御される)。これと同時に、高圧
蒸気加減弁16が、ボイラー1の許容降下速度に相当す
る弁閉速度で閉じられ、予定されている電力負荷に見合
うボイラー相当蒸発量までボイラー蒸発量が絞り込まれ
る。
When power load reduction is planned for a long period of time, the water supply flow rate adjustment valve 9 is suddenly opened, and the amount of water supply flowing into the deaerator 11 is rapidly increased, and the extracted steam consumed in the deaerator 11 is increased. When the amount is increased, the steam pressure in the medium pressure extraction system 17 is reduced. Therefore, the low pressure steam control valve 2
0 is suddenly closed to maintain the bleed pressure, and APC control is performed so that the amount of electricity purchased becomes a predetermined amount (that is, the power generation capacity of the generator 3 is controlled in an upward direction). At the same time, the high-pressure steam control valve 16 is closed at a valve closing speed corresponding to the allowable lowering speed of the boiler 1, and the boiler evaporation amount is reduced to the boiler-equivalent evaporation amount that matches the planned power load.

【0050】この際、中圧抽気系17の抽気圧力が上昇
して所定圧力を超えると、圧力検出器33により検出さ
れた抽気圧力が入力される制御ユニット40の中圧制御
手段46の作用によって、中圧圧力調整弁27が開作動
せしめられ、余剰蒸気が低圧バイパス系26を介して復
水器4に逃がされ、中圧抽気系17の抽気圧力が所定圧
力に制御される。そして、電力負荷の減少が止まり、一
定負荷になると低圧蒸気加減弁20は閉め止まり、中圧
圧力調整弁27が閉作動せしめられて抽気圧力が所定圧
力に制御される。
At this time, when the bleed pressure in the medium pressure bleed system 17 increases and exceeds a predetermined pressure, the medium pressure control means 46 of the control unit 40 to which the bleed pressure detected by the pressure detector 33 is input is activated. , the intermediate pressure regulating valve 27 is opened, excess steam is released to the condenser 4 via the low pressure bypass system 26, and the extraction pressure of the intermediate pressure extraction system 17 is controlled to a predetermined pressure. Then, when the electric power load stops decreasing and becomes a constant load, the low pressure steam control valve 20 stops closing, the intermediate pressure control valve 27 is operated to close, and the extraction pressure is controlled to a predetermined pressure.

【0051】さらに、長期間の低負荷運転より負荷増加
が予定されたとき予じめボイラー1の発生蒸気量を増加
させておく蓄熱運転について説明する。
Furthermore, a heat storage operation in which the amount of steam generated by the boiler 1 is increased in advance when an increase in load is scheduled from a long-term low-load operation will be explained.

【0052】この場合には、高圧蒸気加減弁16をボイ
ラー1の許容負荷上昇に相当する速度で開にする。この
際、蒸気タービン2への蒸気供給量が増加し、且つAP
C制御が働いて、給水流量調整弁9が開方向、低圧蒸気
加減弁20が閉方向に作動し、買電量を一定としながら
も蒸気タービン2への蒸気供給量(即ち、ボイラー1の
蒸気発生量)を増加させる。この時、中圧抽気系17の
蒸気圧力が所定圧力を超えれば、中圧圧力調整弁27は
開になり、余剰の蒸気が復水器4に逃がされる。そして
、ボイラー1の蒸気発生量が所定量になると、高圧蒸気
加減弁16は通常の制御方法により制御される。
In this case, the high pressure steam control valve 16 is opened at a speed corresponding to the allowable load increase of the boiler 1. At this time, the amount of steam supplied to the steam turbine 2 increases, and the AP
C control operates, the water supply flow rate adjustment valve 9 operates in the opening direction, and the low pressure steam control valve 20 operates in the closing direction, keeping the amount of electricity purchased constant while increasing the amount of steam supplied to the steam turbine 2 (i.e., the amount of steam generated by the boiler 1). amount). At this time, if the steam pressure in the intermediate pressure extraction system 17 exceeds a predetermined pressure, the intermediate pressure regulating valve 27 is opened and excess steam is released to the condenser 4. When the amount of steam generated by the boiler 1 reaches a predetermined amount, the high pressure steam control valve 16 is controlled by a normal control method.

【0053】その後、電力負荷が上昇すると、給水流量
調整弁9がAPC制御により閉方向に作動せしめられる
ため、低圧蒸気加減弁20は開方向に作動せしめられて
、低圧タービン部2bに流入する蒸気量が増加せしめら
れることとなり、買電量を所定量とする運転となる。
Thereafter, when the power load increases, the feed water flow rate regulating valve 9 is operated in the closing direction by APC control, and the low pressure steam regulating valve 20 is operated in the opening direction, thereby reducing the amount of steam flowing into the low pressure turbine section 2b. The amount of electricity will be increased, and the operation will be performed with the amount of electricity purchased at a predetermined amount.

【0054】上記のようにして増加が予定されている負
荷量に相応する蒸発量をボイラー1にて事前に発生させ
るようにすることにより、負荷上昇時には、急速にター
ビン負荷をとることが可能となる。
[0054] By causing the boiler 1 to generate in advance the amount of evaporation corresponding to the amount of load that is scheduled to increase as described above, it is possible to rapidly increase the turbine load when the load increases. Become.

【0055】また、ボイラー1の負荷を下げることなく
、電力負荷および蒸気負荷の急減に対応できた場合には
、急激な負荷上昇に対して前述と同様の制御にて急速に
タービン負荷をとることが可能となる。
[0055] Furthermore, if it is possible to cope with a sudden decrease in the electric power load and steam load without reducing the load on the boiler 1, the turbine load can be rapidly reduced using the same control as described above in response to a sudden increase in load. becomes possible.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本願発明の実施例にかかる蒸気タービン発電装
置の系統図である。
FIG. 1 is a system diagram of a steam turbine power generation device according to an embodiment of the present invention.

【図2】図1の蒸気タービン発電装置における制御ユニ
ットの構成を示すブロック図である。
FIG. 2 is a block diagram showing the configuration of a control unit in the steam turbine power generator of FIG. 1.

【符号の説明】[Explanation of symbols]

1はボイラー、2は蒸気タービン、2aは高圧タービン
部、2bは低圧タービン部、3は発電機、4は復水器、
11は脱気器、15は主蒸気系、16は高圧蒸気加減弁
、17は中圧抽気系、18は中圧蒸気プロセス、20は
低圧蒸気加減弁、30は工場負荷、31は買電系統、4
0は制御ユニット、41は電力制御手段、42は開閉速
度制御手段。
1 is a boiler, 2 is a steam turbine, 2a is a high pressure turbine section, 2b is a low pressure turbine section, 3 is a generator, 4 is a condenser,
11 is a deaerator, 15 is a main steam system, 16 is a high pressure steam control valve, 17 is an intermediate pressure extraction system, 18 is an intermediate pressure steam process, 20 is a low pressure steam control valve, 30 is a factory load, 31 is a power purchase system ,4
0 is a control unit, 41 is a power control means, and 42 is an opening/closing speed control means.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  ボイラーからの蒸気が供給される高圧
タービン部と該高圧タービン部を経て蒸気が供給される
低圧タービン部とからなる蒸気タービンと、該蒸気ター
ビンにより駆動される発電機と、前記高圧タービン部の
排気から抽気される抽気蒸気が流れる中圧抽気系と、前
記高圧タービン部の入口に設けられ、高圧タービン部へ
流れる蒸気量を制御する高圧蒸気加減弁と、前記高圧タ
ービン部の排気から抽気して前記中圧抽気系に供給する
抽気蒸気の圧力を制御すべく高圧タービン部からの抽気
蒸気以外の排気が流れる低圧ボイラー部の入口に設けら
れた低圧蒸気加減弁と、前記ボイラーへ給水するための
給水系と、該給水系に設けられ、前記中圧抽気系を介し
て供給される余剰蒸気の熱を回収するための脱気器と、
該脱気器へ供給される給水量を制御する給水流量調整弁
とを備えた蒸気タービン発電装置であって、前記発電機
に要求される電力負荷の変化に応じて前記給水流量調整
弁および低圧蒸気加減弁を所定速度で開閉制御する電力
制御手段と、前記発電機に要求される電力負荷の急増減
時において前記給水流量調整弁および低圧蒸気加減弁の
開閉速度を速める開閉速度制御手段とが付設されている
ことを特徴とする蒸気タービン発電装置。
1. A steam turbine comprising a high-pressure turbine section to which steam from a boiler is supplied and a low-pressure turbine section to which steam is supplied via the high-pressure turbine section; a generator driven by the steam turbine; an intermediate-pressure extraction system through which extracted steam extracted from the exhaust gas of the high-pressure turbine section flows; a high-pressure steam control valve provided at the inlet of the high-pressure turbine section to control the amount of steam flowing to the high-pressure turbine section; a low-pressure steam regulating valve provided at an inlet of a low-pressure boiler section through which exhaust gas other than the extracted steam from the high-pressure turbine section flows in order to control the pressure of extracted steam extracted from the exhaust gas and supplied to the intermediate-pressure extraction system; a water supply system for supplying water to the water supply system; a deaerator provided in the water supply system for recovering heat of excess steam supplied via the medium pressure extraction system;
A steam turbine power generation device equipped with a water supply flow rate adjustment valve that controls the amount of water supplied to the deaerator, the supply water flow rate adjustment valve and the low pressure being adjusted according to changes in the power load required of the generator. A power control means for controlling the opening and closing of the steam regulating valve at a predetermined speed, and an opening/closing speed control means for increasing the opening and closing speed of the water supply flow rate regulating valve and the low pressure steam regulating valve when the electric power load required for the generator is suddenly reduced. A steam turbine power generation device characterized by being attached.
JP784091A 1991-01-25 1991-01-25 Steam turbine generator Expired - Fee Related JP2737884B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP784091A JP2737884B2 (en) 1991-01-25 1991-01-25 Steam turbine generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP784091A JP2737884B2 (en) 1991-01-25 1991-01-25 Steam turbine generator

Publications (2)

Publication Number Publication Date
JPH04252807A true JPH04252807A (en) 1992-09-08
JP2737884B2 JP2737884B2 (en) 1998-04-08

Family

ID=11676808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP784091A Expired - Fee Related JP2737884B2 (en) 1991-01-25 1991-01-25 Steam turbine generator

Country Status (1)

Country Link
JP (1) JP2737884B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008063984A (en) * 2006-09-06 2008-03-21 Hitachi Ltd Low pressure steam turbine
WO2012090778A1 (en) * 2010-12-27 2012-07-05 三菱重工業株式会社 Condensate flow rate control device for power-plant, and control method
JP2013087644A (en) * 2011-10-14 2013-05-13 Tokyo Electric Power Co Inc:The Increase output operation method in steam power generation plant
JP2014118908A (en) * 2012-12-18 2014-06-30 Kobe Steel Ltd Power generation device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008063984A (en) * 2006-09-06 2008-03-21 Hitachi Ltd Low pressure steam turbine
WO2012090778A1 (en) * 2010-12-27 2012-07-05 三菱重工業株式会社 Condensate flow rate control device for power-plant, and control method
CN103180666A (en) * 2010-12-27 2013-06-26 三菱重工业株式会社 Condensate flow rate control device for power-plant, and control method
JP5550746B2 (en) * 2010-12-27 2014-07-16 三菱重工業株式会社 Condensate flow control device and control method for power plant
CN103180666B (en) * 2010-12-27 2015-08-26 三菱日立电力系统株式会社 The condensing water flow control device of generating equipment and control method
US9709261B2 (en) 2010-12-27 2017-07-18 Mitsubishi Hitachi Power Systems, Ltd. Condensate flow rate control device and condensate flow rate control method for power plant
JP2013087644A (en) * 2011-10-14 2013-05-13 Tokyo Electric Power Co Inc:The Increase output operation method in steam power generation plant
JP2014118908A (en) * 2012-12-18 2014-06-30 Kobe Steel Ltd Power generation device

Also Published As

Publication number Publication date
JP2737884B2 (en) 1998-04-08

Similar Documents

Publication Publication Date Title
CA1068492A (en) Combined gas turbine and steam turbine power plant
JP3481983B2 (en) How to start a steam turbine
US4576124A (en) Apparatus and method for fluidly connecting a boiler into pressurized steam feed line and combined-cycle steam generator power plant embodying the same
JP2000161014A5 (en)
US5435138A (en) Reduction in turbine/boiler thermal stress during bypass operation
JPS6239648B2 (en)
JPH0565808A (en) Steam turbine plant supplying heat
JP4503995B2 (en) Reheat steam turbine plant and operation method thereof
CA2264157C (en) Steam cooling apparatus for gas turbine
EP0093724A4 (en) Sliding pressure flash tank.
JP2737884B2 (en) Steam turbine generator
JP4415189B2 (en) Thermal power plant
JPH10292902A (en) Main steam temperature controller
JPH10131716A (en) Method and device for controlling steam cooling system of gas turbine
JPH10317916A (en) Thermal power plant
JPH04140405A (en) Steam turbine type power generation facility
JP2765637B2 (en) Steam turbine power generation equipment
JPS59145307A (en) Control system of bleeder condensing turbine in thermal and power generation plant
JPH0454204A (en) Control device for gas-extraction and condensation type turbine
GB2176248A (en) Turbine control
JPH02163402A (en) Compound electric power plant and its operation
JPS5870007A (en) Apparatus for controlling combined cycle power plant
JPS6038510A (en) Controller for reheater
JPH0128202B2 (en)
JPH11166403A (en) Turbine bypass steam supply device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees