JPH0565808A - Steam turbine plant supplying heat - Google Patents

Steam turbine plant supplying heat

Info

Publication number
JPH0565808A
JPH0565808A JP3223188A JP22318891A JPH0565808A JP H0565808 A JPH0565808 A JP H0565808A JP 3223188 A JP3223188 A JP 3223188A JP 22318891 A JP22318891 A JP 22318891A JP H0565808 A JPH0565808 A JP H0565808A
Authority
JP
Japan
Prior art keywords
pressure
steam
temperature
compressor
cogeneration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3223188A
Other languages
Japanese (ja)
Inventor
Ryozo Nishioka
良三 西岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP3223188A priority Critical patent/JPH0565808A/en
Publication of JPH0565808A publication Critical patent/JPH0565808A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Turbines (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To reduce loss of available energy due to the supply of steam to a process to improve the power efficiency of a plant by providing a steam compressor for boosting pressure-controlled bleed steam or exhaust steam, and a pressure control means for controlling the pressure of steam sent from the steam compressor to high level pressures. CONSTITUTION:A signal of the detected pressure of steam detected by a pressure detector 45 is inputted to a rotating speed controller 46, the controller 46 controls the rotating speed of a motor 40, namely the rotating speed of a steam compressor 41, and thus the pressure of high pressure process steam is controlled to a specified pressure to be supplied to a high pressure process 9. On the other hand, a signal of the detected temperature of steam detected by a temperature detector 47 is inputted to a temperature controller 49. The controller 49 controls the quantity of a water injection valve 48 to decrease the temperature, and thus the temperature of high pressure process steam is controlled to a specified temperature to be supplied to the high pressure process 9.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、プロセス等に供給する
蒸気を蒸気タービンから得るとともにタービンから動力
を得る熱併給蒸気タービンプラントに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cogeneration steam turbine plant in which steam to be supplied to a process or the like is obtained from a steam turbine and power is obtained from the turbine.

【0002】[0002]

【従来の技術】熱併給蒸気タービンプラントにおいて
は、タービンから動力を取出すとともに、複数の異なる
レベルの圧力, 温度の蒸気を加熱, 暖房, 冷房用等の目
的でプロセスに供給することが要求されることが多い。
この要求を満たすため、従来多段抽気復水タービン又は
多段抽気背圧タービンが採用され、これらのタービンか
ら抽気し、タービン側で所定の圧力に制御された抽気蒸
気 (以下制御抽気という)や排気蒸気をプロセスに供給
している。
2. Description of the Related Art In a cogeneration steam turbine plant, it is required to take out power from a turbine and supply steam with a plurality of pressures and temperatures at different levels to a process for heating, heating, cooling, etc. Often.
In order to meet this requirement, conventional multistage extraction steam condensing turbines or multistage extraction back pressure turbines have been adopted, and extraction steam extracted from these turbines and controlled to a predetermined pressure on the turbine side (hereinafter referred to as control extraction air) or exhaust steam Is being supplied to the process.

【0003】他方、タービンの構造上の制約からタービ
ンから抽出できる制御抽気の数には限度がある。これら
の点から、従来供給可能な蒸気のみをタービンから制御
抽気としてとり、他の蒸気はタービン上流からのバイパ
ス、あるいは十分に高い圧力のタービン段落から抽出し
た蒸気 (以下無制御抽気という) を絞り弁を通して減
圧, 減温して供給することが行われている。
On the other hand, the number of control bleed air that can be extracted from the turbine is limited due to structural restrictions of the turbine. From these points, only steam that can be supplied conventionally is taken as controlled bleed air from the turbine, and other steam is bypassed from the turbine upstream or steam extracted from the turbine stage with a sufficiently high pressure (hereinafter referred to as uncontrolled bleed air) is throttled. The pressure is reduced and the temperature is reduced through the valve.

【0004】以下図面を用いて従来技術について説明す
る。図6は従来の抽気背圧タービンを採用した熱併給蒸
気タービンプラントの系統図である。図6において高
圧, 高温の蒸気を発生するボイラ1は主蒸気供給系2を
介して抽気背圧タービン3に接続されている。抽気背圧
タービン3は高圧タービン部4と低圧タービン部5とか
らなり、高圧タービン部4の入口に主蒸気加減弁6と低
圧タービン部5の入口に抽気加減弁7とを備えている。
なお発電機8は抽気背圧タービン3に接続されている。
The prior art will be described below with reference to the drawings. FIG. 6 is a system diagram of a cogeneration steam turbine plant that employs a conventional extraction back pressure turbine. In FIG. 6, a boiler 1 that generates high-pressure and high-temperature steam is connected to a bleed back pressure turbine 3 via a main steam supply system 2. The extraction back pressure turbine 3 is composed of a high pressure turbine section 4 and a low pressure turbine section 5, and is provided with a main steam control valve 6 at the inlet of the high pressure turbine section 4 and an extraction control valve 7 at the inlet of the low pressure turbine section 5.
The generator 8 is connected to the extraction back pressure turbine 3.

【0005】高圧プロセス蒸気供給先 (以下高圧プロセ
スという)9は高圧タービン部4の排気部に高圧プロセ
ス蒸気系10を介して接続されている。高圧プロセス蒸
気系10には注水弁11を備えた減温器12と逆止弁1
3とを備えている。温度調節器14は高圧プロセス9に
供給される高圧プロセス蒸気の温度検出器15で検出さ
れた検出温度と高圧プロセス9に供給する所定温度の目
標温度との偏差から注水弁11を制御して注水量を制御
し、減温器12にて注水を蒸気と混合して高圧プロセス
蒸気系10を流れる蒸気を減温して温度制御する。
A high pressure process steam supply destination (hereinafter referred to as a high pressure process) 9 is connected to an exhaust portion of the high pressure turbine section 4 via a high pressure process steam system 10. The high-pressure process steam system 10 has a temperature reducer 12 equipped with a water injection valve 11 and a check valve 1.
3 and 3. The temperature controller 14 controls the water injection valve 11 based on the deviation between the detected temperature of the high pressure process vapor supplied to the high pressure process 9 detected by the temperature detector 15 and the target temperature of the predetermined temperature supplied to the high pressure process 9. The amount of water is controlled, and the dewatering device 12 mixes the injected water with the steam to reduce the temperature of the steam flowing through the high-pressure process steam system 10 to control the temperature.

【0006】低圧プロセス蒸気供給先 (以下低圧プロセ
スという)16は低圧タービン部5の排気部に低圧プロ
セス蒸気系17を介して接続され、前記と同じ作用を有
する温度検出器18, 減温器19, 注水弁20, 温度調
節器21とを備えている。
A low-pressure process steam supply destination (hereinafter referred to as a low-pressure process) 16 is connected to an exhaust section of the low-pressure turbine section 5 via a low-pressure process steam system 17, and has a temperature detector 18 and a desuperheater 19 having the same operations as described above. A water injection valve 20 and a temperature controller 21 are provided.

【0007】圧力調節器22は高圧プロセス9と低圧プ
ロセス16とに供給される高圧, 低圧プロセス蒸気の圧
力検出器23, 24でそれぞれ検出された検出圧力と高
圧プロセス9, 低圧プロセス16に供給する所定圧力の
各目標圧力との偏差から主蒸気加減弁6, 抽気加減弁7
を制御する。
The pressure controller 22 supplies the high pressure and low pressure process vapors supplied to the high pressure process 9 and the low pressure process 16 respectively with the detected pressures detected by the pressure detectors 23 and 24 and the high pressure process 9 and the low pressure process 16, respectively. Main steam control valve 6, bleed control valve 7 based on the deviation of each target pressure from the specified pressure
To control.

【0008】このような構成によりボイラ1で発生した
高圧, 高温の蒸気は主蒸気供給系2を経て抽気背圧ター
ビン3に流入し、高圧タービン部4, 低圧タービン部5
にて膨脹仕事をして動力を発生して低圧タービン部5か
ら排出される。なおタービンにて発生した動力は発電機
8により電力に変換され、負荷に供給される。
With this structure, the high-pressure, high-temperature steam generated in the boiler 1 flows into the extraction back pressure turbine 3 via the main steam supply system 2, and the high-pressure turbine section 4 and the low-pressure turbine section 5
At that time, expansion work is performed to generate power, and the power is discharged from the low-pressure turbine unit 5. The power generated by the turbine is converted into electric power by the generator 8 and supplied to the load.

【0009】高圧プロセス9に高圧プロセス蒸気系10
を経て供給される高圧プロセス蒸気及び低圧プロセス1
6に低圧プロセス蒸気系17を経て供給される低圧プロ
セス蒸気は圧力検出器23, 圧力検出器24で検出され
た検出圧力の信号が圧力調節器22に入力され、この調
節器により主蒸気加減弁6,抽気加減弁7が制御された
高圧プロセス蒸気と低圧プロセス蒸気の圧力がそれぞれ
高圧プロセス9, 低圧プロセス16に供給する所定圧力
に制御される。
The high pressure process 9 and the high pressure process steam system 10
Pressure process steam and low pressure process 1 supplied via
The low-pressure process steam supplied to 6 through the low-pressure process steam system 17 is input to the pressure regulator 22 by the signal of the detected pressure detected by the pressure detector 23 and the pressure detector 24, and this regulator controls the main steam control valve. 6. The pressures of the high-pressure process steam and the low-pressure process steam controlled by the extraction control valve 7 are controlled to predetermined pressures to be supplied to the high-pressure process 9 and the low-pressure process 16, respectively.

【0010】高圧プロセス9に供給される高圧プロセス
蒸気の温度は温度検出器15により検出された検出温度
の信号が温度調節器14に入力され、この調節器により
注水弁11を制御して減温器12にて減温されて高圧プ
ロセス9に供給する所定温度に制御される。
As for the temperature of the high-pressure process steam supplied to the high-pressure process 9, a signal of the detected temperature detected by the temperature detector 15 is input to the temperature controller 14, and this controller controls the water injection valve 11 to reduce the temperature. The temperature is reduced by the vessel 12 and controlled to a predetermined temperature to be supplied to the high pressure process 9.

【0011】低圧プロセス16に供給される低圧プロセ
ス蒸気の温度は上記と同様に温度検出器18, 温度調節
器21, 注水弁20, 減温器19により低圧プロセス1
6に供給する所定温度に制御される。
The temperature of the low-pressure process steam supplied to the low-pressure process 16 is controlled by the temperature detector 18, the temperature controller 21, the water injection valve 20, and the desuperheater 19 as in the above.
It is controlled to a predetermined temperature to be supplied to No. 6.

【0012】図7は従来の背圧タービンを採用した熱併
給蒸気タービンプラントの系統図である。図7において
図6と同一部品には同じ符号を付し、その説明を省略す
る。図において高圧プロセス9は背圧タービン25の途
中に高圧部段落から無制御抽気を取出す無制御抽気点2
6に高圧プロセス蒸気系10を介して接続され、高圧プ
ロセス蒸気系10には圧力調整弁27を備えている。圧
力調節器28は高圧プロセス9に供給される高圧プロセ
ス蒸気の圧力検出器29で検出された検出圧力と高圧プ
ロセス9に供給する所定圧力の目標圧力との偏差から圧
力調整弁27を制御する。
FIG. 7 is a system diagram of a cogeneration steam turbine plant adopting a conventional back pressure turbine. In FIG. 7, the same parts as those in FIG. 6 are designated by the same reference numerals, and the description thereof will be omitted. In the figure, the high pressure process 9 is an uncontrolled extraction point 2 for extracting uncontrolled extraction air from the high pressure section in the middle of the back pressure turbine 25.
6 via a high pressure process steam system 10, and the high pressure process steam system 10 is provided with a pressure adjusting valve 27. The pressure regulator 28 controls the pressure regulating valve 27 based on the deviation between the detected pressure of the high pressure process vapor supplied to the high pressure process 9 detected by the pressure detector 29 and the target pressure of the predetermined pressure supplied to the high pressure process 9.

【0013】低圧プロセス16は背圧タービン25の排
気部に低圧プロセス蒸気系17を介して接続されてい
る。
The low pressure process 16 is connected to the exhaust portion of the back pressure turbine 25 via a low pressure process steam system 17.

【0014】圧力調節器30は低圧プロセス蒸気系17
を経て低圧プロセス16に供給される低圧プロセス蒸気
の圧力検出器24で検出された検出圧力と低圧プロセス
16に供給する所定圧力の目標圧力との偏差から主蒸気
加減弁6を制御する。
The pressure regulator 30 is a low pressure process steam system 17
The main steam control valve 6 is controlled from the deviation between the detected pressure detected by the pressure detector 24 of the low pressure process steam supplied to the low pressure process 16 and the target pressure of the predetermined pressure supplied to the low pressure process 16.

【0015】このような構成によりボイラ1で発生した
高圧, 高温の蒸気は背圧タービン25に流入して膨脹仕
事をして排気され、動力を発生する。この動力は発電機
8にて電力に変換され、負荷に供給される。
With such a structure, the high-pressure, high-temperature steam generated in the boiler 1 flows into the back-pressure turbine 25, performs expansion work, and is exhausted to generate power. This power is converted into electric power by the generator 8 and supplied to the load.

【0016】高圧プロセス9には背圧タービン25の無
制御抽気点26から抽出された高圧プロセス蒸気が高圧
プロセス蒸気系10を経て供給され、その圧力は圧力検
出器29で検出された検出圧力の信号が圧力調節器28
に入力され、この調節器により圧力調整弁27を制御し
て高圧プロセス9に供給する所定圧力に制御されるとと
もに、その温度は前述のように温度検出器15, 温度調
節器14, 注水弁11, 減温器12にて高圧プロセス9
に供給する所定温度に制御される。
The high pressure process 9 is supplied with the high pressure process steam extracted from the uncontrolled extraction point 26 of the back pressure turbine 25 through the high pressure process steam system 10, and its pressure is equal to the detected pressure detected by the pressure detector 29. Signal is pressure regulator 28
Is input to the pressure control valve 27 by this controller to control it to a predetermined pressure to be supplied to the high pressure process 9, and its temperature is controlled by the temperature detector 15, the temperature controller 14, the water injection valve 11 as described above. High-pressure process 9 in the desuperheater 12
Is controlled to a predetermined temperature to be supplied to.

【0017】低圧プロセス16には低圧プロセス蒸気系
17を経て背圧タービン25の排気蒸気が低圧プロセス
蒸気として供給され、その圧力は圧力検出器24で検出
された検出圧力の信号が圧力調節器30に入力され、こ
の調節器により主蒸気加減弁6を制御して低圧プロセス
16に供給する所定圧力に制御されるとともに、その温
度は前述のように温度検出器18, 温度調節器21,注
水弁20, 減温器19により低圧プロセス16に供給す
る所定温度に制御される。
Exhaust steam from the back pressure turbine 25 is supplied to the low-pressure process 16 as a low-pressure process steam via the low-pressure process steam system 17, and the pressure of the exhaust pressure steam detected by the pressure detector 24 is a pressure regulator 30. Is input to the main steam control valve 6 by this controller to control it to a predetermined pressure to be supplied to the low pressure process 16, and its temperature is controlled by the temperature detector 18, the temperature controller 21, the water injection valve as described above. 20. The temperature reducer 19 controls the temperature to a predetermined temperature to be supplied to the low pressure process 16.

【0018】図8は従来の高圧プロセス9に供給する高
圧プロセス蒸気をタービンの上流からのタービンをバイ
パスするバイパス系により得る背圧タービン25を備え
た熱併給蒸気タービンプラントの系統図である。図8に
おいて高圧プロセス9に高圧プロセス蒸気を供給するた
めに、主蒸気供給系2から分岐したバイパス系32に圧
力検出器29, 圧力調整弁27, 温度検出器15, 減温
器12を設け、さらに圧力調節器28, 温度調節器1
4,注水弁11を備えた他は図7と同じである。
FIG. 8 is a system diagram of a cogeneration steam turbine plant equipped with a back pressure turbine 25 that obtains high-pressure process steam to be supplied to a conventional high-pressure process 9 by a bypass system that bypasses the turbine from upstream of the turbine. In order to supply high-pressure process steam to the high-pressure process 9 in FIG. 8, a pressure detector 29, a pressure adjusting valve 27, a temperature detector 15, and a desuperheater 12 are provided in a bypass system 32 branched from the main steam supply system 2. Furthermore, pressure controller 28, temperature controller 1
4. The same as FIG. 7 except that the water injection valve 11 is provided.

【0019】このような構成によりボイラ1からの高
圧, 高温の蒸気は背圧タービン25に流入して膨脹仕事
をして動力を発生し、排気部から排気される。この動力
は前述のように発電機8にて電力に変換されて負荷に供
給される。
With such a structure, the high-pressure, high-temperature steam from the boiler 1 flows into the back pressure turbine 25 to perform expansion work to generate power, which is exhausted from the exhaust section. As described above, this power is converted into electric power by the generator 8 and supplied to the load.

【0020】高圧プロセス9にはボイラ1からの高圧,
高温の蒸気の一部がバイパス系32を経て高圧プロセス
蒸気として供給される。この高圧プロセス蒸気の圧力
は、圧力検出器29で検出された検出圧力の信号が圧力
調節器28に入力され、この調節器により圧力調整弁2
7を制御して高圧プロセス9に供給する所定圧力に制御
されるとともに、その温度は温度検出器15で検出され
た検出温度の信号が温度調節器14に入力され、この調
節器により注水弁11を制御し、減温器12にて減温さ
れて高圧プロセス9に供給する所定温度に制御される。
The high pressure process 9 includes high pressure from the boiler 1,
A part of the high temperature steam is supplied as high pressure process steam through the bypass system 32. As for the pressure of this high-pressure process steam, a signal of the detected pressure detected by the pressure detector 29 is input to the pressure regulator 28, and this regulator regulates the pressure regulating valve 2
7 is controlled to a predetermined pressure to be supplied to the high-pressure process 9, and a signal of the temperature detected by the temperature detector 15 is input to the temperature controller 14, and the water injection valve 11 is controlled by this controller. Is controlled by the desuperheater 12 to be controlled to a predetermined temperature to be supplied to the high pressure process 9.

【0021】低圧プロセス16に供給される低圧プロセ
ス蒸気は、図7に示すものと同じ作用によりその圧力,
温度がそれぞれ低圧プロセスに供給する所定圧力, 所定
温度に制御される。
The low-pressure process steam supplied to the low-pressure process 16 has the same pressure as that shown in FIG.
The temperature is controlled to a predetermined pressure and a predetermined temperature which are supplied to the low pressure process.

【0022】図9は図8におけるバイパス系32にバイ
パス背圧タービンを備えた熱併給蒸気タービンプラント
の系統図である。図9において図8と異なるのは次記の
通りである。バイパス背圧タービン33をバイパス系3
2に設け、高圧プロセス9にはバイパス背圧タービン3
3の排気蒸気が高圧プロセス蒸気として供給される。な
お、バイパス背圧タービン33は主蒸気加減弁35を備
え、発電機36が接続されている。またバイパス背圧タ
ービン33の排気蒸気、すなわち高圧プロセス9に供給
する高圧プロセス蒸気の圧力を制御するために圧力検出
器29での検出圧力と高圧プロセス9に供給する所定圧
力の目標圧力との偏差から主蒸気加減弁35を制御する
圧力調節器37が設けられている。
FIG. 9 is a system diagram of a cogeneration steam turbine plant having a bypass back pressure turbine in the bypass system 32 in FIG. The difference between FIG. 9 and FIG. 8 is as follows. The bypass back pressure turbine 33 is connected to the bypass system 3
2 for the high pressure process 9 and the bypass back pressure turbine 3
Exhaust steam No. 3 is supplied as high pressure process steam. The bypass back pressure turbine 33 includes a main steam control valve 35, and a generator 36 is connected to the main steam control valve 35. Further, in order to control the pressure of the exhaust steam of the bypass back pressure turbine 33, that is, the pressure of the high-pressure process steam supplied to the high-pressure process 9, the deviation between the pressure detected by the pressure detector 29 and the target pressure of the predetermined pressure supplied to the high-pressure process 9. Is provided with a pressure regulator 37 for controlling the main steam control valve 35.

【0023】このような構成により、ボイラからの高
圧,高温の蒸気は、その一部が主蒸気供給系2を経て背
圧タービン25に流入し、その残りの蒸気はバイパス系
32を経てバイパス背圧タービン33に流入し、各ター
ビンにて膨脹仕事をして動力を発生し、排気部から排気
される。そして各タービンで発生した動力はそれぞれ発
電機8と36とで電力に変換され、負荷に供給される。
With such a structure, a part of the high-pressure, high-temperature steam from the boiler flows into the back pressure turbine 25 through the main steam supply system 2, and the remaining steam passes through the bypass system 32 and the bypass back. It flows into the pressure turbine 33, expands work in each turbine to generate power, and is exhausted from the exhaust unit. The power generated by each turbine is converted into electric power by the generators 8 and 36 and supplied to the load.

【0024】高圧プロセス9にはバイパス背圧タービン
33の排気蒸気が高圧プロセス蒸気として供給され、そ
の圧力は圧力検出器29で検出された検出圧力の信号が
圧力調節器37に入力され、この調節器により主蒸気加
減弁35を制御して高圧プロセス9に供給する所定圧力
に制御されるとともに、その温度は前述と同様に高圧プ
ロセス9に供給する所定温度に制御される。
Exhaust steam from the bypass back pressure turbine 33 is supplied to the high-pressure process 9 as high-pressure process steam, and the pressure of the exhaust pressure steam detected by the pressure detector 29 is input to the pressure regulator 37. The main steam control valve 35 is controlled by the reactor to a predetermined pressure to be supplied to the high pressure process 9, and its temperature is controlled to a predetermined temperature to be supplied to the high pressure process 9 as described above.

【0025】低圧プロセス16に供給される低圧プロセ
ス蒸気の圧力,温度制御は前述と同様にして行われる。
The pressure and temperature of the low pressure process steam supplied to the low pressure process 16 are controlled in the same manner as described above.

【0026】[0026]

【発明が解決しようとする課題】図6に示した抽気背圧
タービンを備えた熱併給蒸気タービンプラントでは、高
圧プロセス9に供給されるプロセス蒸気は高圧タービン
部3の排出部から排出され、その圧力が制御される制御
抽気であり、このためタービン内で絞り損失,漏れ損
失,段落損失が追加発生するので、タービンの内部効率
が低下し、動力効率が低下するという欠点がある。
In the cogeneration steam turbine plant equipped with the extraction back pressure turbine shown in FIG. 6, the process steam supplied to the high pressure process 9 is discharged from the discharge part of the high pressure turbine part 3, and This is control bleed air in which the pressure is controlled, and as a result, additional throttle loss, leakage loss, and paragraph loss occur in the turbine, which has the drawback of reducing the internal efficiency of the turbine and reducing the power efficiency.

【0027】図7に示した背圧タービンを備えた熱併給
蒸気タービンプラントでは、背圧タービン25の無制御
抽気点26から抽出したプロセス蒸気を高圧プロセス9
に供給するようにしたことにより、負荷の変動を考慮す
ると、無制御抽気点26は十分高い圧力,温度の抽気点
を選ぶ必要がある。このため圧力調整弁27における絞
り損失並びに減温による損失が生じるという欠点があ
る。
In the cogeneration steam turbine plant equipped with the back pressure turbine shown in FIG. 7, the process steam extracted from the uncontrolled extraction point 26 of the back pressure turbine 25 is processed by the high pressure process 9
In consideration of the fluctuation of the load, it is necessary to select the uncontrolled extraction point 26 having a sufficiently high pressure and temperature. For this reason, there is a drawback in that the pressure adjustment valve 27 causes a throttle loss and a loss due to a decrease in temperature.

【0028】図8に示した高圧プロセス9に供給するプ
ロセス蒸気をタービンの上流からのバイパス系により供
給する熱併給蒸気タービンプラントでは、バイパス系3
2を流れるボイラ1からの高圧,高温の蒸気を高圧プロ
セス9に供給する所定圧力,所定温度に制御する際、圧
力調整弁27による絞り損失並びに減温による損失が図
7に示したものの損失よりさらに大きくなるという欠点
がある。
In the cogeneration steam turbine plant in which the process steam supplied to the high-pressure process 9 shown in FIG. 8 is supplied by the bypass system from the upstream of the turbine, the bypass system 3 is used.
When controlling high pressure and high temperature steam from the boiler 1 flowing through the high pressure process 9 to the high pressure process 9 at a predetermined pressure and a predetermined temperature, the loss due to the throttling by the pressure regulating valve 27 and the loss due to the temperature decrease are less than those shown in FIG. It has the drawback of becoming larger.

【0029】図9に示したバイパス系32にバイパス背
圧タービンを備えた熱併給蒸気タービンプラントでは、
図8に示す圧力調整弁27に代えてバイパス背圧タービ
ンを設けることにより、動力の回収を図ることができる
が、蒸気容積流量が小さいので、タービン効率のよいバ
イパス背圧タービンの設計が難しく、かつ建設費が高く
なるという欠点がある。
In the cogeneration steam turbine plant having the bypass back pressure turbine in the bypass system 32 shown in FIG.
By providing a bypass back pressure turbine in place of the pressure control valve 27 shown in FIG. 8, power can be recovered, but since the steam volume flow rate is small, it is difficult to design a bypass back pressure turbine with good turbine efficiency. Moreover, there is a drawback that the construction cost becomes high.

【0030】本発明の目的は、前述の従来例で示したよ
うな制御抽気を設けることによるタービン内部効率の低
下を防止し、また無制御抽気点やバイパス系を経てプロ
セスに蒸気を供給するために生じる有効エネルギー損失
を低減することのできる熱併給蒸気タービンプラントを
提供することである。
An object of the present invention is to prevent a decrease in turbine internal efficiency due to the provision of control bleed air as shown in the above-mentioned conventional example, and to supply steam to the process through an uncontrolled bleed point or a bypass system. It is an object of the present invention to provide a cogeneration steam turbine plant capable of reducing the effective energy loss generated in the above.

【0031】[0031]

【課題を解決するための手段】上記課題を解決するため
に、本発明によれば動力とプロセスに複数の異なるレベ
ルの圧力, 温度の蒸気とを併給する熱併給蒸気タービン
プラントにおいて、前記異なるレベルのうち上位レベル
の圧力,温度の蒸気を下位レベルの圧力まで蒸気タービ
ン内で膨脹させてなり、かつ圧力制御された抽気蒸気又
は排気蒸気を昇圧する蒸気圧縮機と、この蒸気圧縮機か
ら送出される蒸気の圧力を前記上位レベルの圧力に制御
する圧力制御手段とを備えるものとする。
In order to solve the above-mentioned problems, according to the present invention, in a cogeneration steam turbine plant in which power and process are co-fed with a plurality of different levels of pressure and temperature of steam, said different levels are provided. Among these, a steam compressor that expands the steam of the upper level pressure and temperature to the lower level pressure in the steam turbine and boosts the pressure-controlled extracted steam or exhaust steam, and the steam compressor that delivers the steam. And a pressure control means for controlling the pressure of the steam to the upper level pressure.

【0032】上記の圧力制御手段は、蒸気圧縮機からプ
ロセスに送出される蒸気の圧力を検出する圧力検出器
と、この圧力検出器での検出圧力と上位レベルの圧力の
目標値との偏差から蒸気圧縮機の回転数を制御する制御
手段とを備えるものとする。
The above-mentioned pressure control means is based on the pressure detector for detecting the pressure of the vapor sent from the vapor compressor to the process, and the deviation between the pressure detected by this pressure detector and the target value of the upper level pressure. And a control means for controlling the rotation speed of the vapor compressor.

【0033】また、前記の圧力制御手段は蒸気圧縮機か
らプロセスに送出される蒸気の圧力を検出する圧力検出
器と、蒸気圧縮機の吐出側又は吸込側に設けられる圧力
調整弁と、圧力検出器での検出圧力と上位レベルの圧力
の目標値との偏差から吐出側又は吸込側に設けられた圧
力調整弁を制御する制御手段とを備えるものとする。
The pressure control means detects the pressure of the steam sent from the steam compressor to the process, a pressure control valve provided on the discharge side or the suction side of the steam compressor, and the pressure detection means. And a control means for controlling the pressure adjusting valve provided on the discharge side or the suction side based on the deviation between the pressure detected by the container and the target value of the upper level pressure.

【0034】上記における熱併給蒸気タービンプラント
において、前記圧力制御手段に加えて蒸気圧縮機からプ
ロセスに送出される蒸気を前記上位レベルの温度に制御
する温度制御手段を設けるものとする。
In the above co-heat steam turbine plant, in addition to the pressure control means, temperature control means for controlling the temperature of the steam sent from the steam compressor to the process to the upper level temperature is provided.

【0035】前記温度制御手段は、蒸気圧縮機からプロ
セスに送出される蒸気の温度を検出する温度検出器と、
蒸気圧縮機の吸込側に設けられる注水減温器と、温度検
出器での検出温度と上位レベルの温度の目標値との偏差
から注水減温器の注水量を制御する制御手段とを設ける
ものとする。
The temperature control means detects the temperature of the vapor sent from the vapor compressor to the process, and
Provision of a water injection desuperheater provided on the suction side of the vapor compressor, and control means for controlling the water injection amount of the water injection desuperheater based on the deviation between the temperature detected by the temperature detector and the target value of the upper level temperature And

【0036】また、前記温度制御手段は、蒸気圧縮機か
らプロセスに送出される蒸気の温度を検出する温度検出
器と、蒸気圧縮機の吸込側に設けられる第1の注水減温
器と、吐出側と蒸気圧縮中間段との少なくとも一方に設
けられる第2の注水減温器と、温度検出器での検出温度
と上位レベルの温度の目標値との偏差から第1と第2の
注水減温器の注水量を制御する制御手段とを設けるもの
とする。
Further, the temperature control means detects a temperature of the steam sent from the steam compressor to the process, a first water injection desuperheater provided on the suction side of the steam compressor, and a discharge. The second water injection desuperheater provided on at least one of the side and the vapor compression intermediate stage, and the first and second water injection dehumidification heat from the deviation between the temperature detected by the temperature detector and the target value of the upper level temperature. A control means for controlling the water injection amount of the vessel shall be provided.

【0037】[0037]

【作用】蒸気タービンから複数のプロセスにそれぞれ異
なるレベルの圧力,温度の蒸気をプロセス蒸気として供
給する場合、これら複数の異なるレベルのうち、上位レ
ベルの圧力,温度を有する蒸気をタービンから抽出させ
ずに圧力制御される下位レベルの圧力にまでタービン内
で膨脹仕事をさせてタービンから抽気蒸気又は排気蒸気
として取出し、この抽気蒸気又は排気蒸気を下位レベル
の圧力が必要とするプロセスへのプロセス蒸気とする。
一方、上位レベルの圧力,温度を必要とするプロセスに
は、前記下位レベルの圧力の抽気蒸気又は排気蒸気を蒸
気圧縮機により昇圧して排出し、この排出蒸気を上位レ
ベルの圧力に圧力制御手段により制御して供給する。な
お、必要に応じ温度制御手段により温度を上位レベルの
温度に制御する。
[Function] When steam having different pressures and temperatures of different levels are supplied as process steam from the steam turbine, steam having higher pressure and temperature of these different levels is not extracted from the turbine. The expansion work is performed in the turbine to a lower level pressure that is pressure controlled, and the extracted steam or exhaust steam is taken out from the turbine, and this extracted steam or exhaust steam is used as process steam for a process required by the lower level pressure. To do.
On the other hand, for processes requiring higher level pressure and temperature, the extracted steam or exhaust vapor at the lower level pressure is boosted and discharged by the steam compressor, and the discharged steam is pressure controlled by the pressure control means. Controlled by and supplied. If necessary, the temperature control means controls the temperature to a higher level temperature.

【0038】蒸気圧縮機からプロセスに送出される蒸気
を上位レベルの圧力に制御するときには、蒸気圧縮機か
らプロセスに送出する圧力を圧力検出器で検出し、この
検出圧力と上位レベルの圧力の目標値との偏差から蒸気
圧縮機の回転数を制御して行われる。
When the steam delivered from the vapor compressor to the process is controlled to an upper level pressure, the pressure sent from the vapor compressor to the process is detected by a pressure detector, and the detected pressure and the upper level pressure target. It is performed by controlling the rotation speed of the steam compressor from the deviation from the value.

【0039】なお、上記の蒸気圧縮機からプロセスに送
出される蒸気の圧力制御は、前記圧力検出器での検出圧
力と上位レベルの圧力の目標値との偏差から蒸気圧縮機
の吐出側又は吸込側に設けられた圧力調整弁を制御して
行われる。
The pressure control of the steam sent from the steam compressor to the process is carried out based on the deviation between the pressure detected by the pressure detector and the target value of the upper level pressure, on the discharge side or the suction side of the steam compressor. It is performed by controlling a pressure regulating valve provided on the side.

【0040】一方、蒸気圧縮機からプロセスに送出され
る蒸気を上位レベルの温度に制御するときには、蒸気圧
縮機からプロセスに送出する蒸気の温度を温度検出器で
検出し、この検出温度と上位レベルの温度の目標値との
偏差から蒸気圧縮機の吸込側に設けられた注水減温器の
注水量を制御して行われる。
On the other hand, when controlling the temperature of the vapor sent from the vapor compressor to the process to an upper level temperature, the temperature of the vapor sent from the vapor compressor to the process is detected by a temperature detector, and the detected temperature and the upper level are detected. It is performed by controlling the water injection amount of the water injection desuperheater provided on the suction side of the vapor compressor based on the deviation from the target value of the temperature.

【0041】なお上記の温度制御において、吸込側の蒸
気の湿り度が蒸気圧縮機に対して許容できない程大きく
なる場合には吸込側の注水減温器に加えて蒸気圧縮機の
吐出側と蒸気圧縮中間段との少なくとも一方に注水減温
器を設け、注水量を配分して制御してプロセスに供給す
る上位レベルの温度に制御する。
In the above temperature control, when the wetness of the steam on the suction side becomes unacceptably high for the steam compressor, in addition to the water injection desuperheater on the suction side, the discharge side of the steam compressor and the steam A water injection desuperheater is provided at least at one side of the compression middle stage, and the amount of water injection is distributed and controlled to control the temperature at a higher level to be supplied to the process.

【0042】上記のようにプロセスに供給する蒸気レベ
ルの圧力,温度の蒸気をタービンから抽出せずに、ター
ビン内で下位レベルの圧力の蒸気まで膨脹仕事をさせ、
この下位レベルの圧力になった抽気蒸気又は排気蒸気か
らなるプロセス蒸気を蒸気圧縮機により昇圧し、かつ必
要により減温して上位レベルの圧力,温度にしてプロセ
ス蒸気として送出することにより下記の効果がある。
As described above, the steam at the pressure and temperature at the steam level supplied to the process is not extracted from the turbine, and the expansion work is performed up to the steam at the lower level pressure in the turbine.
The following effects are obtained by boosting the process steam consisting of extracted steam or exhaust steam that has reached this lower level pressure with a steam compressor, and lowering the temperature to the upper level pressure and temperature if necessary to send it as process steam. There is.

【0043】1)制御抽気が無くなったことによるタービ
ン内部効率の向上,抽気がタービン内である仕事量の増
加,これら両者による動力量の増大が、蒸気圧縮機の所
要動力を上回り、結果として発生動力量が増え、動力プ
ラント効率を高めることができる。 2)タービンをバイパスしていた蒸気がタービンを通って
仕事をするので、タービンの動力量が増え、この動力量
は蒸気圧縮機の所要動力を上回り、結果として発生動力
量が増大する。他方、タービンを通過した蒸気は冷却さ
れるので、減温する場合には減温のために必要な注水量
が減り、サイクル効率が改善され、その分動力プラント
効率が向上する。
1) Improvement in turbine internal efficiency due to elimination of control bleed air, increase in work amount of bleed air in the turbine, and increase in power amount due to both of them exceed the required power of the steam compressor and result. The amount of power is increased, and power plant efficiency can be improved. 2) Steam that bypasses the turbine works through the turbine, so the power of the turbine increases, which exceeds the power required by the steam compressor, resulting in an increase in the amount of power generated. On the other hand, since the steam that has passed through the turbine is cooled, when the temperature is reduced, the amount of water injection necessary for the temperature reduction is reduced, the cycle efficiency is improved, and the power plant efficiency is improved accordingly.

【0044】[0044]

【実施例】以下図面に基づいて本発明の実施例について
説明する。図1は本発明の実施例1による背圧タービン
を備えた熱併給蒸気タービンプラントの系統図である。
なお図1において図7の従来例と同一部品には同じ符号
を付し、その説明を省略する。図1において従来例と異
なるのは低圧プロセス蒸気系17から分岐して高圧プロ
セス9に接続し、モータ40により駆動される高効率の
蒸気圧縮機41と、圧縮機吸込側に設けられる減温器4
2,注水弁48と、圧縮機吐出側に設けられる逆止弁4
3とを備えた高圧プロセス蒸気系44を設けたことであ
る。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a system diagram of a cogeneration steam turbine plant including a back pressure turbine according to a first embodiment of the present invention.
In FIG. 1, the same parts as those in the conventional example of FIG. 7 are designated by the same reference numerals and the description thereof will be omitted. 1 differs from the conventional example in that a low-pressure process steam system 17 is branched and connected to a high-pressure process 9, and a high-efficiency steam compressor 41 driven by a motor 40 and a desuperheater provided on the suction side of the compressor are provided. Four
2. Water injection valve 48 and check valve 4 provided on the compressor discharge side
3 is provided.

【0045】なお、高圧プロセス9に供給する高圧プロ
セス蒸気の圧力を制御するために、高圧プロセス蒸気の
圧力を検出する圧力検出器45と、この検出器で検出さ
れた検出圧力と高圧プロセス9に供給する所定圧力の目
標圧力との偏差からモータ40の回転数を制御する回転
数調節器46とを設けている。
In order to control the pressure of the high-pressure process steam supplied to the high-pressure process 9, a pressure detector 45 for detecting the pressure of the high-pressure process steam, and the detected pressure detected by this detector and the high-pressure process 9 are used. A rotation speed adjuster 46 that controls the rotation speed of the motor 40 based on the deviation of the supplied predetermined pressure from the target pressure is provided.

【0046】また高圧プロセス9に供給する高圧プロセ
ス蒸気の温度を制御するために高圧プロセス蒸気の温度
を検出する温度検出器47と、蒸気圧縮機41の吸込側
に設けられ、温度検出器47で検出された検出温度と高
圧プロセス9に供給する所定温度の目標温度との偏差か
ら減温器42に注水する注水弁48を制御する温度調節
器49を設けている。なお、温度制御を蒸気圧縮機41
の吸込側で行うのは蒸気圧縮機41の必要動力を極力節
減するためである。
A temperature detector 47 for detecting the temperature of the high-pressure process steam for controlling the temperature of the high-pressure process steam supplied to the high-pressure process 9 and a temperature detector 47 provided on the suction side of the steam compressor 41. A temperature controller 49 that controls a water injection valve 48 that injects water into the temperature reducer 42 based on a deviation between the detected temperature detected and a target temperature of a predetermined temperature supplied to the high-pressure process 9 is provided. In addition, the temperature control is performed by the vapor compressor 41.
This is done on the suction side in order to reduce the required power of the vapor compressor 41 as much as possible.

【0047】このような構成により、ボイラ1からの高
圧,高温の蒸気は背圧タービン25に流入し、タービン
にて膨脹仕事して動力を発生し、排気される。この動力
は発電機8により電力に変換され、負荷に供給される。
With such a structure, the high-pressure, high-temperature steam from the boiler 1 flows into the back pressure turbine 25, where expansion work is performed in the turbine to generate power, which is then exhausted. This power is converted into electric power by the generator 8 and supplied to the load.

【0048】背圧タービン25の排気蒸気は主蒸気加減
弁6により低圧プロセス16に供給する所定圧力に制御
されて低圧プロセス蒸気系17を流れ、その一部は低圧
プロセス蒸気として低圧プロセス16に供給される。
The exhaust steam of the back pressure turbine 25 is controlled by the main steam control valve 6 to a predetermined pressure to be supplied to the low pressure process 16, flows through the low pressure process steam system 17, and part of it is supplied to the low pressure process 16 as low pressure process steam. To be done.

【0049】低圧プロセス蒸気系17を流れる低圧プロ
セス蒸気の残りは高圧プロセス蒸気系44を経て蒸気圧
縮機41により昇圧して高圧プロセス9に高圧プロセス
蒸気として供給される。
The rest of the low-pressure process vapor flowing through the low-pressure process vapor system 17 is pressurized by the vapor compressor 41 via the high-pressure process vapor system 44 and supplied to the high-pressure process 9 as high-pressure process vapor.

【0050】この際、高圧プロセス蒸気の圧力は、圧力
検出器45で検出した蒸気の検出圧力の信号が回転数調
節器46に入力され、この調節器によりモータ40の回
転数、すなわち蒸気圧縮機41の回転数を制御して高圧
プロセス9に供給する所定圧力に制御される。
At this time, as the pressure of the high-pressure process steam, a signal of the detected pressure of the steam detected by the pressure detector 45 is input to the rotation speed controller 46, and this rotation speed of the motor 40, that is, the steam compressor. The rotation speed of 41 is controlled to a predetermined pressure supplied to the high pressure process 9.

【0051】一方、高圧プロセス蒸気の温度は、温度検
出器47で検出した蒸気の検出温度の信号が温度調節器
49に入力され、この調節器により注水弁48の注水量
を制御して減温器42にて減温し、高圧プロセス9に供
給する所定温度に制御される。
On the other hand, regarding the temperature of the high-pressure process steam, a signal of the detected temperature of the steam detected by the temperature detector 47 is input to the temperature controller 49, and this controller controls the water injection amount of the water injection valve 48 to reduce the temperature. The temperature is reduced by the vessel 42 and controlled to a predetermined temperature to be supplied to the high pressure process 9.

【0052】低圧プロセス蒸気系17を経て低圧プロセ
ス16に供給される低圧プロセス蒸気は前述と同様に温
度検出器18,減温器19,注水弁20,温度調節器2
1により低圧プロセス16に供給する所定温度に制御さ
れる。
The low-pressure process steam supplied to the low-pressure process 16 via the low-pressure process steam system 17 is the same as the temperature detector 18, the desuperheater 19, the water injection valve 20, and the temperature controller 2.
1, the temperature is controlled to a predetermined temperature to be supplied to the low pressure process 16.

【0053】図2は本発明の実施例2による背圧タービ
ンを備えた熱併給蒸気タービンプラントの系統図であ
る。図2において図1の蒸気圧縮機41のモータ40の
回転数制御用の回転数調節器46を取除き、その代わり
に蒸気圧縮機41の吐出側の高圧プロセス蒸気系44に
圧力調整弁50を設け、さらに圧力検出器45での蒸気
の検出圧力の信号が入力され、この検出圧力と高圧プロ
セス9に供給する所定圧力の目標圧力との偏差から圧力
調整弁50を制御する圧力調節器51を設けた他は図1
と同じである。
FIG. 2 is a system diagram of a cogeneration steam turbine plant equipped with a back pressure turbine according to a second embodiment of the present invention. In FIG. 2, the rotation speed controller 46 for controlling the rotation speed of the motor 40 of the steam compressor 41 of FIG. 1 is removed, and instead a pressure control valve 50 is provided in the high pressure process steam system 44 on the discharge side of the steam compressor 41. A pressure regulator 51 is provided which controls the pressure regulating valve 50 based on the deviation between the detected pressure signal of the steam detected by the pressure detector 45 and the target pressure of the predetermined pressure supplied to the high pressure process 9. Figure 1 except for the provision
Is the same as.

【0054】このような構成により、高圧プロセス9に
供給される蒸気の圧力は、圧力検出器45で検出した蒸
気の検出圧力の信号が圧力調節器51に入力され、この
調節器により圧力調整弁50を制御して高圧プロセス9
に供給する所定圧力に制御される。
With such a configuration, as for the pressure of the steam supplied to the high-pressure process 9, a signal of the detected pressure of the steam detected by the pressure detector 45 is input to the pressure regulator 51, and the pressure regulator 51 is operated by this regulator. High pressure process 9 by controlling 50
The pressure is controlled to a predetermined pressure.

【0055】図3は本発明の実施例3による背圧タービ
ンを備えた熱併給蒸気タービンプラントの系統図であ
る。図3において図2の圧力調整弁50を取除き、圧力
調整弁52を蒸気圧縮機41の吸込側の高圧プロセス蒸
気系44に設け、さらに圧力検出器45で検出した蒸気
の検出圧力の信号が入力され、この検出圧力と高圧プロ
セス9に供給する所定圧力の目標圧力との偏差から圧力
調整弁52を制御する圧力調節器53を設けた他は図2
と同じである。
FIG. 3 is a system diagram of a cogeneration steam turbine plant equipped with a back pressure turbine according to a third embodiment of the present invention. In FIG. 3, the pressure regulating valve 50 of FIG. 2 is removed, the pressure regulating valve 52 is provided in the high-pressure process vapor system 44 on the suction side of the vapor compressor 41, and the signal of the detected pressure of the vapor detected by the pressure detector 45 is 2 except that a pressure regulator 53 for controlling the pressure regulating valve 52 is provided based on the deviation between the detected pressure input and the target pressure of the predetermined pressure supplied to the high pressure process 9.
Is the same as.

【0056】このような構成により蒸気圧縮機41から
送出され、高圧プロセス9に供給される蒸気の圧力は圧
力調整弁52により、前述と同じ作用により圧力検出器
45,圧力調節器53を介して所定圧力に制御される。
With the above-mentioned structure, the pressure of the vapor sent from the vapor compressor 41 and supplied to the high pressure process 9 is controlled by the pressure regulating valve 52 through the pressure detector 45 and the pressure regulator 53 by the same action as described above. It is controlled to a predetermined pressure.

【0057】図4は本発明の実施例4による背圧タービ
ンを備えた熱併給蒸気タービンプラントの系統図であ
る。図4において、蒸気圧縮機41により昇圧されて送
出される吐出側の高圧プロセス蒸気系44を流れる蒸気
に注水して減温する注水減温器の注水弁54と減温器5
5とを設け、さらに温度検出器47で検出した蒸気の検
出温度の信号が入力され、この検出温度と高圧プロセス
9に供給する所定温度の目標温度との偏差から注水量を
配分して注水弁48と54とを制御する温度調節器56
を設けた他は図1と同じである。
FIG. 4 is a system diagram of a cogeneration steam turbine plant equipped with a back pressure turbine according to a fourth embodiment of the present invention. In FIG. 4, a water injection valve 54 and a temperature reducer 5 of a water injection desuperheater for injecting water into the steam flowing through the high-pressure process steam system 44 on the discharge side which is boosted and delivered by the vapor compressor 41 to lower the temperature.
5 is further provided, and the signal of the detected temperature of the steam detected by the temperature detector 47 is input, and the water injection amount is distributed based on the deviation between the detected temperature and the target temperature of the predetermined temperature supplied to the high-pressure process 9. Temperature controller 56 controlling 48 and 54
1 is the same as that shown in FIG.

【0058】このような構造により、背圧タービンから
の排気蒸気の湿り度が大きい場合、温度検出器47での
蒸気の検出温度と高圧プロセス9に供給する所定温度の
目標温度との偏差から温度調節器55により注水弁48
と54とをその注水量を配分して制御し、高圧プロセス
9に供給する蒸気の温度を所定温度に制御する。
With such a structure, when the degree of wetness of the exhaust steam from the back pressure turbine is high, the temperature is calculated from the deviation between the detected temperature of the steam by the temperature detector 47 and the target temperature of the predetermined temperature supplied to the high pressure process 9. Water injection valve 48 by regulator 55
And 54 are controlled by distributing their water injection amounts, and the temperature of the steam supplied to the high-pressure process 9 is controlled to a predetermined temperature.

【0059】図5は本発明の実施例5による背圧タービ
ンを備えた熱併給蒸気タービンプラントの系統図であ
る。図5において、図4の注水弁54,減温器55を取
除き、圧縮中間段に減温用の水を注水する注水弁57を
設け、さらに温度検出器47での蒸気の検出温度の信号
が入力され、この検出温度と高圧プロセス9に供給する
所定温度の目標温度との偏差から注水量を配分して注水
弁48と54とを制御する温度調節器58を設けた他は
図4と同じである。
FIG. 5 is a system diagram of a cogeneration steam turbine plant equipped with a back pressure turbine according to a fifth embodiment of the present invention. In FIG. 5, the water injection valve 54 and the temperature reducer 55 of FIG. 4 are removed, a water injection valve 57 for injecting water for temperature reduction is provided in the intermediate stage of compression, and a signal of the temperature of steam detected by the temperature detector 47 is provided. 4 is input, and a temperature controller 58 for controlling the water injection valves 48 and 54 by distributing the water injection amount from the deviation between the detected temperature and the target temperature of the predetermined temperature supplied to the high-pressure process 9 is provided. Is the same.

【0060】このような構成により、温度検出器47,
温度調節器56により注水弁48と54とが制御されて
高圧プロセス9に供給する蒸気の温度は前述と同じ作用
によた所定温度に制御される。
With such a configuration, the temperature detector 47,
The temperature regulator 56 controls the water injection valves 48 and 54 to control the temperature of the steam supplied to the high-pressure process 9 to a predetermined temperature by the same action as described above.

【0061】なお、図5においては蒸気圧縮機41の圧
縮中間段に注水する注水弁57を設けたが、蒸気の湿り
度を考慮して蒸気圧縮機の吐出側にも注水減温器を設
け、吸込側,圧縮中間段,吐出側の注水弁をその注水量
を配分して制御しても同じ効果が得られる。
In FIG. 5, the water injection valve 57 for injecting water is provided in the intermediate compression stage of the vapor compressor 41, but a water injection dehumidifier is also provided on the discharge side of the vapor compressor in consideration of the wetness of the vapor. The same effect can be obtained by distributing and controlling the water injection valves on the suction side, the intermediate compression stage, and the discharge side.

【0062】なお、前記実施例において蒸気圧縮機の設
置に伴う建設費アップは、本発明によればタービン構造
が簡単になり、さらに蒸気圧縮機を、蒸気を消費するプ
ロセス近傍に設置する等による配管系統の合理化等によ
り十分カバーできる。
The increase in construction cost associated with the installation of the steam compressor in the above-described embodiment is due to the fact that the turbine structure is simplified according to the present invention, and the steam compressor is installed near the steam consuming process. It can be fully covered by rationalizing the piping system.

【0063】また前記実施例において、蒸気圧縮機41
から送出される蒸気を温度制御手段により高圧プロセス
9に供給する所定温度に制御しているが、蒸気圧縮機4
1の出口蒸気温度が高圧プロセス9に供給する所定温度
であれば温度制御手段は必要ない。
In the above embodiment, the vapor compressor 41
The steam discharged from the steam compressor 4 is controlled at a predetermined temperature to be supplied to the high-pressure process 9 by the temperature control means.
If the outlet steam temperature of 1 is a predetermined temperature to be supplied to the high-pressure process 9, the temperature control means is not necessary.

【0064】前記実施例では低圧プロセス蒸気としての
下位レベルの圧力の蒸気を圧力制御された排気蒸気とし
ているが、これを圧力制御された抽気蒸気としても同じ
作用が得られる。
In the above-mentioned embodiment, the low-level process steam as the low-pressure process steam is used as the pressure-controlled exhaust steam, but the same effect can be obtained by using the pressure-controlled bleed steam.

【0065】また前記実施例ではプロセスに供給される
異なるレベルの圧力,温度の蒸気のプロセス蒸気系を2
系統にして説明したが、2系統より多いプロセス蒸気系
でも本発明による手段を採用できる。この場合には高圧
プロセス蒸気系を複数系統設け、各系統に蒸気圧縮機を
設けて各プロセスに供給するレベルの所定圧力に圧力制
御手段により制御し、必要に応じ温度制御手段により減
温して温度制御すればよい。
Further, in the above-mentioned embodiment, the process steam system of the steam having different levels of pressure and temperature supplied to the process has two
Although explained as a system, the means according to the present invention can be adopted even if there are more than two process steam systems. In this case, a plurality of high-pressure process steam systems are provided, a steam compressor is provided in each system, and the pressure control means controls the pressure to a predetermined level to be supplied to each process, and the temperature control means reduces the temperature if necessary. The temperature may be controlled.

【0066】なお、本発明による図1に示した実施例1
をケース5とし、従来例の図6ないし図9のものをそれ
ぞれケース1ないし4として実際に有り得る条件を仮定
し各ケースについて取出すことのできるプラント出力を
比較計算して図10に示す結果が得られた。図10によ
り、本発明の実施例のケース5ガ従来例のケース1〜4
に対し、プラント出力ガ2〜10%増加していることが
理解される。
The first embodiment shown in FIG. 1 according to the present invention
Is assumed to be case 5, and the conventional examples shown in FIGS. 6 to 9 are assumed to be cases 1 to 4, respectively. Assuming the actual conditions, the plant outputs that can be extracted for each case are compared and calculated, and the results shown in FIG. 10 are obtained. Was given. Referring to FIG. 10, the case 5 of the embodiment of the present invention and the cases 1 to 4 of the conventional example
On the other hand, it is understood that the plant output gas increases by 2 to 10%.

【0067】[0067]

【発明の効果】以上の説明から明らかなように、本発明
によれば複数の異なるレベルの圧力,温度の蒸気をプロ
セス蒸気として供給する際、上位レベルの圧力,温度を
有する蒸気を蒸気タービン内で下位レベルの圧力まで膨
脹仕事をさせ、この低圧の蒸気をプロセス蒸気とし、さ
らにこのプロセス蒸気を昇圧する蒸気圧縮機を設け、こ
の圧縮機から送出される蒸気を上位レベルの圧力に制御
してプロセス蒸気とするために、蒸気圧縮機の回転数制
御又は圧力調整弁による圧力制御手段、また温度を制御
する注水減温器からなる温度制御手段を設けたことによ
り、上位レベルの圧力,温度のプロセス蒸気として従来
のように制御抽気,無制御抽気又はタービンをバイパス
する蒸気等を使用する必要がなくなるので、プラントの
動力効率が向上し、蒸気圧縮機を使用しても従来よりも
取出されるプラント出力は増加し、例えば図10に示す
ように本発明によるものから取出されるプラント出力は
従来より2〜10%増加するという効果がある。
As is apparent from the above description, according to the present invention, when a plurality of steams having different pressures and temperatures are supplied as process steams, steam having an upper level pressure and temperature is supplied to the steam turbine. The expansion work is performed up to a lower level pressure by using the low pressure steam as process steam, and a vapor compressor that boosts the pressure of this process steam is installed, and the steam sent from this compressor is controlled to a higher level pressure. In order to use process steam, by providing the pressure control means by the rotation speed control of the steam compressor or the pressure adjustment valve, and the temperature control means consisting of the water pouring desuperheater for controlling the temperature, Since it is no longer necessary to use controlled extraction air, uncontrolled extraction air, or steam that bypasses the turbine as process steam, the power efficiency of the plant is improved. Even if the vapor compressor is used, the plant output taken out is increased as compared with the conventional one, and for example, as shown in FIG. 10, the plant output taken out from the one according to the present invention is increased by 2 to 10% as compared with the conventional one. ..

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1による熱併給蒸気タービンプ
ラントの系統図
FIG. 1 is a system diagram of a cogeneration steam turbine plant according to a first embodiment of the present invention.

【図2】本発明の実施例2による熱併給蒸気タービンプ
ラントの系統図
FIG. 2 is a system diagram of a cogeneration steam turbine plant according to a second embodiment of the present invention.

【図3】本発明の実施例3による熱併給蒸気タービンプ
ラントの系統図
FIG. 3 is a system diagram of a cogeneration steam turbine plant according to a third embodiment of the present invention.

【図4】本発明の実施例4による熱併給蒸気タービンプ
ラントの系統図
FIG. 4 is a system diagram of a cogeneration steam turbine plant according to a fourth embodiment of the present invention.

【図5】本発明の実施例5による熱併給蒸気タービンプ
ラントの系統図
FIG. 5 is a system diagram of a cogeneration steam turbine plant according to a fifth embodiment of the present invention.

【図6】従来のケース1の熱併給蒸気タービンプラント
の系統図
FIG. 6 is a system diagram of a conventional cogeneration steam turbine plant of Case 1.

【図7】従来のケース2の熱併給蒸気タービンプラント
の系統図
FIG. 7 is a system diagram of a conventional cogeneration steam turbine plant of case 2

【図8】従来のケース3の熱併給蒸気タービンプラント
の系統図
FIG. 8 is a system diagram of a conventional cogeneration steam turbine plant of case 3

【図9】従来のケース4の熱併給蒸気タービンプラント
の系統図
FIG. 9 is a system diagram of a conventional cogeneration steam turbine plant of case 4

【図10】本発明と従来とによる熱併給蒸気タービンプ
ラントのプラント出力の比較を示す図
FIG. 10 is a diagram showing a comparison of plant outputs of a cogeneration steam turbine plant according to the present invention and a conventional one.

【符号の説明】[Explanation of symbols]

9 高圧プロセス 16 低圧プロセス 25 背圧タービン 41 蒸気圧縮機 42 減温器 45 圧力検出器 46 回転数調節器 48 注水弁 49 温度調節器 50 圧力調整弁 51 圧力調節器 52 圧力調整弁 53 圧力調節器 54 注水弁 55 減温器 56 温度調節器 57 注水弁 58 温度調節器 9 High Pressure Process 16 Low Pressure Process 25 Back Pressure Turbine 41 Steam Compressor 42 Desuperheater 45 Pressure Detector 46 Rotation Speed Controller 48 Water Injection Valve 49 Temperature Controller 50 Pressure Regulator Valve 51 Pressure Regulator 52 Pressure Regulator Valve 53 Pressure Regulator 54 Water Injection Valve 55 Desuperheater 56 Temperature Controller 57 Water Injection Valve 58 Temperature Controller

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】動力とプロセスに複数の異なるレベルの圧
力, 温度の蒸気とを併給する熱併給蒸気タービンプラン
トにおいて、前記異なるレベルのうち上位レベルの圧
力, 温度の蒸気を下位レベルの圧力まで蒸気タービン内
で膨脹してなり、かつ圧力制御された抽気蒸気又は排気
蒸気を昇圧する蒸気圧縮機と、この蒸気圧縮機から送出
される蒸気の圧力を前記上位レベルの圧力に制御する圧
力制御手段とを備えたことを特徴とする熱併給蒸気ター
ビンプラント。
1. A cogeneration steam turbine plant for co-supplying power and a process with steam of different pressure levels and temperatures, wherein steam of higher level pressure and temperature of said different levels is steamed up to lower level pressure. A steam compressor that expands in the turbine and that boosts the pressure-controlled extracted steam or exhaust steam; and pressure control means that controls the pressure of the steam sent from this steam compressor to the above-mentioned upper level pressure. A cogeneration steam turbine plant, characterized by being equipped with.
【請求項2】請求項1記載の熱併給蒸気タービンプラン
トにおいて、圧力制御手段は蒸気圧縮機からプロセスに
送出される蒸気の圧力を検出する圧力検出器と、この圧
力検出器での検出圧力と上位レベルとの圧力の目標値と
の偏差から蒸気圧縮機の回転数を制御する制御手段とを
備えたことを特徴とする熱併給蒸気タービンプラント。
2. A cogeneration steam turbine plant according to claim 1, wherein the pressure control means detects a pressure of the steam sent from the steam compressor to the process, and a pressure detected by the pressure detector. A cogeneration steam turbine plant, comprising: a control means for controlling the rotation speed of the steam compressor based on a deviation from a target value of the pressure with respect to an upper level.
【請求項3】請求項1記載の熱併給蒸気タービンプラン
トにおいて、圧力制御手段は蒸気圧縮機からプロセスに
送出される蒸気の圧力を検出する圧力検出器と、蒸気圧
縮機の吐出側又は吸込側に設けられる圧力調整弁と、圧
力検出器での検出圧力と上位レベルの圧力の目標値との
偏差から吐出側又は吸込側に設けられた圧力調整弁を制
御する制御手段とを備えたことを特徴とする熱併給蒸気
タービンプラント。
3. The cogeneration steam turbine plant according to claim 1, wherein the pressure control means detects a pressure of steam sent from the steam compressor to the process, and a discharge side or a suction side of the steam compressor. And a control means for controlling the pressure adjustment valve provided on the discharge side or the suction side from the deviation between the pressure detected by the pressure detector and the target value of the upper level pressure. A cogeneration steam turbine plant that features.
【請求項4】請求項1, 2又は3記載の熱併給蒸気ター
ビンプラントにおいて、蒸気圧縮機からプロセスに送出
される蒸気の温度を前記上位レベルの温度に制御する温
度制御手段を付加したことを特徴とする熱併給蒸気ター
ビンプラント。
4. The cogeneration steam turbine plant according to claim 1, 2 or 3, wherein temperature control means for controlling the temperature of the steam sent from the steam compressor to the process at the upper level temperature is added. A cogeneration steam turbine plant that features.
【請求項5】請求項4記載の熱併給蒸気タービンプラン
トにおいて、温度制御手段は蒸気圧縮機からプロセスに
送出される蒸気の温度を検出する温度検出器と、蒸気圧
縮機の吸込側に設けられる注水減温器と、温度検出器で
の検出温度と上位レベルの温度の目標値との偏差から注
水減温器の注水量を制御する制御手段とを備えたことを
特徴とする熱併給蒸気タービンプラント。
5. A cogeneration steam turbine plant according to claim 4, wherein the temperature control means is provided on a temperature detector for detecting the temperature of the steam sent from the steam compressor to the process, and on the suction side of the steam compressor. A cogeneration steam turbine, comprising: a water injection desuperheater; and a control means for controlling the water injection amount of the water injection desuperheater based on the deviation between the temperature detected by the temperature detector and the target value of the upper level temperature. plant.
【請求項6】請求項4記載の熱併給蒸気タービンプラン
トにおいて、温度制御手段は蒸気圧縮機から送出される
蒸気の温度を検出する温度検出器と、蒸気圧縮機の吸込
側に設けられる第1の注水減温器と、吐出側と蒸気圧縮
中間段との少なくとも一方に設けられる第2の注水減温
器と、温度検出器での検出温度と上位レベルの温度の目
標値との偏差から第1と第2の注水減温器の注水量を制
御する制御手段とを備えたことを特徴とする熱併給蒸気
タービンプラント。
6. A cogeneration steam turbine plant according to claim 4, wherein the temperature control means is a temperature detector for detecting the temperature of the steam sent from the steam compressor, and a first temperature sensor is provided on the suction side of the steam compressor. From the deviation between the temperature detected by the temperature detector and the target value of the upper level temperature, and the second water injection desuperheater provided on at least one of the discharge side and the vapor compression intermediate stage. A cogeneration steam turbine plant, comprising: a first and a second control means for controlling a water injection amount of a water injection desuperheater.
JP3223188A 1991-09-04 1991-09-04 Steam turbine plant supplying heat Pending JPH0565808A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3223188A JPH0565808A (en) 1991-09-04 1991-09-04 Steam turbine plant supplying heat

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3223188A JPH0565808A (en) 1991-09-04 1991-09-04 Steam turbine plant supplying heat

Publications (1)

Publication Number Publication Date
JPH0565808A true JPH0565808A (en) 1993-03-19

Family

ID=16794183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3223188A Pending JPH0565808A (en) 1991-09-04 1991-09-04 Steam turbine plant supplying heat

Country Status (1)

Country Link
JP (1) JPH0565808A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005273597A (en) * 2004-03-26 2005-10-06 Tlv Co Ltd Process steam control device using steam turbine
KR100731165B1 (en) * 2006-06-07 2007-06-22 (주)엑서지엔지니어링 Power plant to engage system collecting detemperature exergy for electric
JP2008019813A (en) * 2006-07-14 2008-01-31 Tlv Co Ltd Control device of process steam
JP2008019812A (en) * 2006-07-14 2008-01-31 Tlv Co Ltd Control device of process steam
JP2008019811A (en) * 2006-07-14 2008-01-31 Tlv Co Ltd Control device of process steam
JP2009300011A (en) * 2008-06-13 2009-12-24 Tlv Co Ltd Waste heat recovery device of steam
JP2009300012A (en) * 2008-06-13 2009-12-24 Tlv Co Ltd Waste heat recovery device of steam
JP2009300013A (en) * 2008-06-13 2009-12-24 Tlv Co Ltd Waste heat recovery device of steam
JP2010024897A (en) * 2008-07-16 2010-02-04 Tlv Co Ltd Power generating device by steam
JP2010112259A (en) * 2008-11-06 2010-05-20 Kobe Steel Ltd Vapor compression device
WO2010087126A1 (en) 2009-01-30 2010-08-05 株式会社日立製作所 Power plant
JP2012063052A (en) * 2010-09-14 2012-03-29 Tokyo Electric Power Co Inc:The Steam control device
JP4972708B2 (en) * 2009-01-30 2012-07-11 株式会社日立製作所 Steam-utilizing plant, operation method of the plant, steam supply device, and steam supply method
US8448439B2 (en) 2009-01-30 2013-05-28 Hitachi-Ge Nuclear Energy, Ltd. Electric power plant, and method for running electric power plant
WO2014155430A1 (en) * 2013-03-29 2014-10-02 千代田化工建設株式会社 Steam processing equipment and steam processing method
JP2015048712A (en) * 2013-08-29 2015-03-16 ヤンマー株式会社 Generating set
CN104950933A (en) * 2015-05-29 2015-09-30 湖北绿色家园精细化工股份有限公司 Device for stabilizing steam pressure of system
JP2017502249A (en) * 2013-12-11 2017-01-19 カレンタ、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツング、ウント、コンパニー、オッフェネ、ハンデルスゲゼルシャフトCurrenta Gmbh & Co. Ohg Steam storage with latent heat storage and steam heat compressor
CN110307044A (en) * 2019-07-09 2019-10-08 长兴永能动力科技有限公司 A kind of steamturbine booster

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4633376B2 (en) * 2004-03-26 2011-02-16 株式会社テイエルブイ Process steam control system using steam turbine
JP2005273597A (en) * 2004-03-26 2005-10-06 Tlv Co Ltd Process steam control device using steam turbine
KR100731165B1 (en) * 2006-06-07 2007-06-22 (주)엑서지엔지니어링 Power plant to engage system collecting detemperature exergy for electric
JP2008019813A (en) * 2006-07-14 2008-01-31 Tlv Co Ltd Control device of process steam
JP2008019812A (en) * 2006-07-14 2008-01-31 Tlv Co Ltd Control device of process steam
JP2008019811A (en) * 2006-07-14 2008-01-31 Tlv Co Ltd Control device of process steam
JP2009300011A (en) * 2008-06-13 2009-12-24 Tlv Co Ltd Waste heat recovery device of steam
JP2009300012A (en) * 2008-06-13 2009-12-24 Tlv Co Ltd Waste heat recovery device of steam
JP2009300013A (en) * 2008-06-13 2009-12-24 Tlv Co Ltd Waste heat recovery device of steam
JP2010024897A (en) * 2008-07-16 2010-02-04 Tlv Co Ltd Power generating device by steam
JP2010112259A (en) * 2008-11-06 2010-05-20 Kobe Steel Ltd Vapor compression device
WO2010087126A1 (en) 2009-01-30 2010-08-05 株式会社日立製作所 Power plant
JP4972708B2 (en) * 2009-01-30 2012-07-11 株式会社日立製作所 Steam-utilizing plant, operation method of the plant, steam supply device, and steam supply method
US8448439B2 (en) 2009-01-30 2013-05-28 Hitachi-Ge Nuclear Energy, Ltd. Electric power plant, and method for running electric power plant
US8695347B2 (en) 2009-01-30 2014-04-15 Hitachi, Ltd. Power plant
JP2012063052A (en) * 2010-09-14 2012-03-29 Tokyo Electric Power Co Inc:The Steam control device
WO2014155430A1 (en) * 2013-03-29 2014-10-02 千代田化工建設株式会社 Steam processing equipment and steam processing method
JP2014199004A (en) * 2013-03-29 2014-10-23 千代田化工建設株式会社 Steam processing equipment and steam processing method
JP2015048712A (en) * 2013-08-29 2015-03-16 ヤンマー株式会社 Generating set
JP2017502249A (en) * 2013-12-11 2017-01-19 カレンタ、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツング、ウント、コンパニー、オッフェネ、ハンデルスゲゼルシャフトCurrenta Gmbh & Co. Ohg Steam storage with latent heat storage and steam heat compressor
US10190443B2 (en) 2013-12-11 2019-01-29 Currenta Gmbh & Co. Ohg Steam accumulator comprising a latent heat accumulator and a steam thermocompressor
CN104950933A (en) * 2015-05-29 2015-09-30 湖北绿色家园精细化工股份有限公司 Device for stabilizing steam pressure of system
CN110307044A (en) * 2019-07-09 2019-10-08 长兴永能动力科技有限公司 A kind of steamturbine booster

Similar Documents

Publication Publication Date Title
JPH0565808A (en) Steam turbine plant supplying heat
JP3481983B2 (en) How to start a steam turbine
US6339926B1 (en) Steam-cooled gas turbine combined power plant
US6301895B1 (en) Method for closed-loop output control of a steam power plant, and steam power plant
KR101813741B1 (en) Waste heat steam generator
US4274256A (en) Turbine power plant with back pressure turbine
JP2000161014A5 (en)
JPS6239648B2 (en)
US4870823A (en) Low load operation of steam turbines
KR20100133427A (en) Steam turbine system for a power plant
JPH10292902A (en) Main steam temperature controller
US4338789A (en) Method of varying turbine output of a supercritical-pressure steam generator-turbine installation
GB2176248A (en) Turbine control
JPH0454204A (en) Control device for gas-extraction and condensation type turbine
JPH06137113A (en) Supply water treatment device for combined cycle plant
JPS5870007A (en) Apparatus for controlling combined cycle power plant
JP3747253B2 (en) Thermal power plant protection system
CA1163814A (en) Method of varying turbine output of a supercritical- pressure steam generator-turbine installation
JPH01102202A (en) Drain controller for feedwater heater
JP2004190546A (en) Steam power plant
JP2642389B2 (en) Steam turbine bypass device
JPH05296407A (en) After burning type combined cyclic power generating facility
JPH09195718A (en) Main steam temperature control device
JPH01203804A (en) Feed water heater drain system
JPH05240402A (en) Method of operating waste heat recovery boiler

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees