JP2013087644A - Increase output operation method in steam power generation plant - Google Patents

Increase output operation method in steam power generation plant Download PDF

Info

Publication number
JP2013087644A
JP2013087644A JP2011226593A JP2011226593A JP2013087644A JP 2013087644 A JP2013087644 A JP 2013087644A JP 2011226593 A JP2011226593 A JP 2011226593A JP 2011226593 A JP2011226593 A JP 2011226593A JP 2013087644 A JP2013087644 A JP 2013087644A
Authority
JP
Japan
Prior art keywords
feed water
steam
water heater
generator
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011226593A
Other languages
Japanese (ja)
Other versions
JP5783458B2 (en
Inventor
Shuichi Umezawa
修一 梅沢
Hiroshi Ozaki
宏 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electric Power Company Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc filed Critical Tokyo Electric Power Co Inc
Priority to JP2011226593A priority Critical patent/JP5783458B2/en
Publication of JP2013087644A publication Critical patent/JP2013087644A/en
Application granted granted Critical
Publication of JP5783458B2 publication Critical patent/JP5783458B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for increasingly outputting generator output to rated output or more without changing a facility, by increasing a steam turbine driving steam quantity by limiting an extraction use quantity of a steam turbine.SOLUTION: This increase output operation method of the steam power generation plant performs increase output by increasing a steam quantity for driving the steam turbine joined to a generator by reducing an extraction quantity consumed by a water supply heater by reducing a supply water flow rate of passing through the water supply heater by adjusting opening of a water supply heater bypass valve, and by setting a steam supply quantity generated by a steam generator constant.

Description

本発明は、蒸気タービンの抽気量を制限することで蒸気タービン駆動用蒸気量を増やし、設備変更を行わずに発電機出力を定格出力以上に増出力する蒸気発電プラントにおける増出力運転方法に関する。   The present invention relates to a method for increasing power output in a steam power plant that increases the amount of steam for driving a steam turbine by restricting the amount of steam extracted from the steam turbine, and increases the output of a generator beyond a rated output without changing equipment.

電力供給については、需要量と供給量のバランスを保つために、あらゆる条件を想定し最大の需要量をまかなえる様な供給量を確保している。しかし、異常気象による需要量の増加や不測の設備トラブル等が重なり需要に対して供給量が逼迫する可能性がある。   As for power supply, in order to maintain a balance between demand and supply, supply is ensured to cover the maximum demand under all conditions. However, an increase in demand due to abnormal weather, unexpected equipment troubles, etc. may cause the supply volume to become tight against demand.

そのような場合、新たな設備を増設したり、既設の発電設備を改造したり、レンタル機器を設置するなどの手段が考えられるが、いずれも設備の設置にはある程度の期間が必要で、急な需要増に対して間に合わない場合があり、また緊急工事となる場合、コストが高くなる恐れがある。   In such a case, it is possible to add new equipment, remodel existing power generation equipment, install rental equipment, etc., but all of them require a certain period of time for installation. In some cases, it may not be in time for a rapid increase in demand, and in the case of emergency construction, the cost may increase.

そこで、新設や改造を行うことなく、既設の発電設備の設備余裕代を活用し発電機出力を定格出力以上に増出力することができれば、より高い需要に対して供給安定度を高めることが出来る。   Therefore, if the generator output can be increased beyond the rated output by making use of the equipment margin of the existing power generation equipment without new construction or remodeling, supply stability can be improved for higher demand. .

発電機出力を増出力させる発電プラントとして例えば、蒸気発電プラントがある。蒸気発電プラントでは、蒸気発生装置にて発生した蒸気にて発電機と結合された蒸気タービンを駆動して発電している。   As a power plant that increases the output of the generator, for example, there is a steam power plant. In a steam power plant, a steam turbine coupled to a generator is driven by steam generated by a steam generator to generate power.

一般的な蒸気発電プラントでは、蒸気タービンの駆動用蒸気の一部を抽気として取りだし、その抽気を給水の加熱や給水ポンプ駆動用蒸気タービンの動力として使用することで蒸気発電プラント全体の効率向上を図っている。   In a typical steam power plant, a part of steam for driving a steam turbine is extracted as extracted air, and the extracted air is used as heating for feed water or power for a steam turbine for driving a feed water pump to improve the efficiency of the entire steam power plant. I am trying.

蒸気タービンプラントの発電機出力を増出力する方法として、特許文献1には、既設蒸気タービンプラントとは別に設置した蒸気タービンと発電機に、既設蒸気タービンからの抽気を流下することにより増出力をおこなう石炭焚き火力発電システムがある。   As a method for increasing the generator output of a steam turbine plant, Patent Document 1 discloses an increase in output by flowing down the extracted air from an existing steam turbine to a steam turbine and a generator installed separately from the existing steam turbine plant. There is a coal fired thermal power generation system.

特開2011−132899号公報JP 2011-132899 A

しかし、特許文献1のものでは、新たな設備を設置するため確実に発電機出力を増加することができるが、設置のための期間やコストがかかり急遽供給量が不足する事態には対応できない。また、発電所内に設置スペースを確保することができない等の問題点もある。   However, although the thing of patent document 1 can increase a generator output reliably in order to install a new installation, it cannot respond to the situation where the period and cost for installation require and the supply amount is suddenly insufficient. In addition, there is a problem that an installation space cannot be secured in the power plant.

本発明の目的は、新たな設備を設置することなく蒸気発電プラントの増出力を可能とする運転方法を提供することである。   An object of the present invention is to provide an operation method that enables increased output of a steam power plant without installing new equipment.

請求項1の発明に係る蒸気発電プラントの増出力運転方法は、蒸気発生装置で発生した蒸気にて発電機と結合した蒸気タービンを駆動させることで発電をし、前記蒸気タービンを駆動する蒸気の一部を給水加熱器での給水加熱用の抽気として取りだす方式を採用する蒸気発電プラントにおいて、前記給水加熱器を通過する給水流量を減少させるとともに、前記蒸気発生装置にて発生する蒸気流量を一定とすることを特徴とする。   According to a first aspect of the present invention, there is provided a steam power plant increasing output operation method in which steam generated by a steam generator is driven to drive a steam turbine coupled to a generator to generate power, and the steam that drives the steam turbine is generated. In a steam power plant that adopts a method of extracting a part of the feed water heating bleed air in the feed water heater, the feed water flow rate passing through the feed water heater is reduced and the steam flow rate generated by the steam generator is constant. It is characterized by.

請求項2の発明に係る蒸気発電プラントの増出力運転方法は、請求項1の発明において、前記給水加熱器は給水加熱器バイパス管を備え、前記給水加熱器バイパス管に設置された給水加熱器バイパス弁の開度を調整することで、前記給水加熱器を通過する給水流量を調整することを特徴とする。   A steam power plant increasing output operation method according to a second aspect of the present invention is the feed water heater according to the first aspect, wherein the feed water heater includes a feed water heater bypass pipe and is installed in the feed water heater bypass pipe By adjusting the opening degree of the bypass valve, the feed water flow rate passing through the feed water heater is adjusted.

請求項3の発明に係る蒸気発電プラントの増出力運転方法は、請求項2において、前記給水加熱器バイパス弁の開度と発電機出力値の相関カーブをあらかじめ作成しておき、蒸気発電プラント運転中の前記給水加熱器バイパス弁の開度に対する前記発電機出力値を前記相関カーブに基づいて、目標となる発電機出力に対応するバイパス弁開度に調整することを特徴とする。   According to a third aspect of the present invention, there is provided a steam power plant increasing output operation method according to the second aspect, wherein a correlation curve between the opening degree of the feed water heater bypass valve and the generator output value is prepared in advance to operate the steam power plant. The generator output value with respect to the opening of the feed water heater bypass valve is adjusted to a bypass valve opening corresponding to the target generator output based on the correlation curve.

請求項4の発明に係る蒸気発電プラントの増出力運転方法は、請求項3において、前記給水加熱器バイパス弁の開度と発電機出力値の相関カーブは、熱計算により求めた前記給水加熱器バイパス弁開度に対する前記蒸気発生装置の入口給水温度と、プラント熱計算により求めた前記蒸気発生装置にて発生する蒸気流量を一定とする場合の前記発電機出力値より作成することを特徴とする。   According to a fourth aspect of the present invention, there is provided a method for increasing the output power of a steam power plant according to the third aspect, wherein the correlation curve between the opening degree of the feed water heater bypass valve and the generator output value is obtained by thermal calculation. It is created from the generator output value in the case where the inlet water supply temperature of the steam generator with respect to the bypass valve opening and the steam flow rate generated in the steam generator determined by plant heat calculation are constant. .

請求項1の発明によれば、給水加熱器を通過する給水流量を減少させることで、給水加熱器に流れる給水流量に正の相関を持つ抽気流量を減少させることが出来る。給水流量と熱交換量の関係は、熱通過率流速の0.8乗に比例するDittus-Boelterの方程式等が知られている。   According to the first aspect of the present invention, by reducing the feed water flow rate that passes through the feed water heater, the extraction flow rate that has a positive correlation with the feed water flow rate that flows through the feed water heater can be reduced. As for the relationship between the feed water flow rate and the heat exchange amount, the Dittus-Boelter equation, which is proportional to the 0.8th power of the heat passage rate flow velocity, is known.

蒸気タービンからの抽気量が減り、かつ、蒸気タービン入口蒸気流量は一定で制御されているため、結果的に蒸気タービンを駆動する蒸気流量が増え、蒸気タービンに結合される発電機出力を増加させることができる。   Since the amount of bleed air from the steam turbine is reduced and the steam flow rate at the inlet of the steam turbine is controlled at a constant level, the flow rate of steam that drives the steam turbine increases, resulting in an increase in the generator output coupled to the steam turbine. be able to.

請求項2の発明によれば、給水加熱器に流れる給水流量を減少させる手段として、給水加熱器バイパス弁の開度を調整することで可能にしている。給水加熱器バイパス弁を操作することで、蒸気発生装置入口の給水流量を変化させずに、容易に給水加熱器に流れる給水流量を調整することができる。蒸気タービン入口の蒸気流量を定格値一定とするためには、蒸気発生装置入口の給水流量を変化させないことが望ましいからである。   According to the second aspect of the present invention, it is made possible by adjusting the opening of the feed water heater bypass valve as means for reducing the feed water flow rate flowing to the feed water heater. By operating the feed water heater bypass valve, the feed water flow rate flowing to the feed water heater can be easily adjusted without changing the feed water flow rate at the inlet of the steam generator. This is because, in order to keep the steam flow rate at the steam turbine inlet constant at the rated value, it is desirable not to change the feed water flow rate at the steam generator inlet.

請求項3の発明によれば、あらかじめ作成した給水加熱器バイパス弁の開度に対する蒸気発電プラントの出力の相関カーブを基に、必要な出力に応じた給水加熱器バイパス弁開度を設定できるため、必要な発電機出力に応じたバイパス弁開度を容易に設定することが出来る。電力の需給状況に応じて、適切な量の増出力運転が可能となる。   According to the invention of claim 3, the feed water heater bypass valve opening according to the required output can be set based on the correlation curve of the output of the steam power plant with the opening of the feed water heater bypass valve prepared in advance. The opening degree of the bypass valve according to the required generator output can be easily set. An appropriate amount of increased output operation is possible depending on the power supply and demand situation.

請求項4の発明によれば、蒸気発電プラントの実運転前に給水加熱器バイパス弁開度に対する蒸気発電プラントの出力値を確認することが出来る。増出力はプラントに多少なりとも負担がかかるので、プラントの健全性を確保しながら実施する必要がある。あらかじめ作成した相関カーブどおりに運転できているか否かで、プラントの健全性を確認する手段の一つとなり得る。   According to the invention of claim 4, it is possible to confirm the output value of the steam power plant with respect to the feed water heater bypass valve opening before the actual operation of the steam power plant. Increased output places some burden on the plant, so it is necessary to implement it while ensuring the soundness of the plant. It can be one of the means for confirming the soundness of the plant depending on whether or not it can be operated according to the correlation curve created in advance.

このように、実際に蒸気発電プラントで実施する試験運転時の適用可否判断に使用できるほか、増出力運転中に運転値と相関カーブとの差異が大きくなった場合、プラントのどこかに不具合が出ている可能性を早期の段階に発見することが出来る。   In this way, it can be used to determine applicability during test operations that are actually carried out in a steam power plant, and if the difference between the operation value and the correlation curve becomes large during increased output operation, there is a problem somewhere in the plant. The possibility of appearing can be found at an early stage.

本発明の実施形態に係る蒸気発電プラントの概略構成図。1 is a schematic configuration diagram of a steam power plant according to an embodiment of the present invention. 本発明の実施形態に係る蒸気発電プラントの増出力運転方法の実施例1の構成図。The block diagram of Example 1 of the increase output operation method of the steam power plant which concerns on embodiment of this invention. 本発明の実施形態に係る蒸気発電プラントの増出力運転方法の実施例2の構成図。The block diagram of Example 2 of the increase output operation method of the steam power plant which concerns on embodiment of this invention. 給水加熱器の概略構成図。The schematic block diagram of a feed water heater. 相関カーブ(給水加熱器バイパス給水流量−発電機出力)Correlation curve (feed water heater bypass feed water flow rate-generator output) 相関カーブ(給水加熱器バイパス給水流量−蒸気発生装置入口給水温度)Correlation curve (feed water heater bypass feed water flow rate-steam generator inlet feed water temperature) 相関カーブ(給水加熱器バイパス弁開度−発電機出力)Correlation curve (feed water heater bypass valve opening-generator output)

以下に添付図面を参照しながら、本発明の実施の形態について詳細に説明する。かかる実施の形態に示す名称や、構成などは、発明の理解を容易とするための例示に過ぎず、特に断る場合を除き、本発明を限定するものではない。   Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. The names, configurations, and the like shown in the embodiments are merely examples for facilitating understanding of the invention, and do not limit the present invention unless otherwise specified.

図1は、本発明の実施の形態に係わる蒸気発電プラントである火力発電プラントの概略構成図である。蒸気発電プラントは、蒸気発生器であるボイラー60と、ボイラー60で発生した蒸気によって駆動される蒸気タービン70と、蒸気タービン70に流入する蒸気量を調整する蒸気加減弁62と、蒸気タービン70と結合される発電機80と、蒸気タービン70を駆動した蒸気を復水に戻す復水器90と、復水器90内の復水を給水として蒸気発生器60に送り出す給水ポンプ100と、給水ポンプ100によって送出された給水を加熱する給水加熱器10と、給水加熱器10を流れる給水をバイパスさせるバイパス管20と、バイパス管20内の給水流量を調整する給水加熱器バイパス弁30と、蒸気タービン70を駆動する蒸気の一部を抽気として給水加熱器10に送出する抽気管40と、抽気管40に設置される抽気弁50とから構成される。図1では、説明のために一般的な構成を簡略化した構成図を示している。   FIG. 1 is a schematic configuration diagram of a thermal power plant that is a steam power plant according to an embodiment of the present invention. The steam power plant includes a boiler 60 that is a steam generator, a steam turbine 70 that is driven by steam generated by the boiler 60, a steam control valve 62 that adjusts the amount of steam flowing into the steam turbine 70, and the steam turbine 70. A generator 80 to be coupled, a condenser 90 that returns steam that has driven the steam turbine 70 to condensate, a feed water pump 100 that feeds the condensate in the condenser 90 to the steam generator 60 as feed water, and a feed water pump The feed water heater 10 that heats the feed water delivered by 100, the bypass pipe 20 that bypasses the feed water flowing through the feed water heater 10, the feed water heater bypass valve 30 that adjusts the feed water flow rate in the bypass pipe 20, and the steam turbine It is comprised from the extraction pipe | tube 40 which sends a part of the steam which drives 70 to the feed water heater 10 as extraction, and the extraction valve 50 installed in the extraction pipe 40 It is. In FIG. 1, a general configuration is simplified for the sake of explanation.

ボイラー60にて発生した蒸気は、蒸気タービン70を駆動し、蒸気タービン70に結合された発電機80の出力として電力を発生し、図示省略の電力系統に電力を供給する。発電機80の出力は、ボイラー60にて発生した蒸気の圧力、温度、流量と蒸気加減弁62の開度という各要素にて蒸気流量を調整され、定格運転時には定格の蒸気流量にて運転を行っている。   The steam generated in the boiler 60 drives the steam turbine 70, generates electric power as an output of the generator 80 coupled to the steam turbine 70, and supplies the electric power to a power system (not shown). The output of the generator 80 is adjusted with the steam flow, pressure, temperature, flow rate generated by the boiler 60, and the opening degree of the steam control valve 62. Is going.

蒸気タービン70にて仕事を終えた蒸気は、復水器90に導かれて水に戻される。復水器90内の水は給水ポンプ100でボイラー60に給水として送出され、ボイラー60で再び蒸気となり蒸気タービン70を駆動させる。給水はボイラー60に入る前に蒸気タービン70から供給される抽気を熱源とした給水加熱器10により暖められることで、蒸気発電プラント全体の効率向上を図っている。   The steam that has finished work in the steam turbine 70 is guided to the condenser 90 and returned to the water. The water in the condenser 90 is sent as feed water to the boiler 60 by the feed water pump 100, becomes steam again by the boiler 60, and drives the steam turbine 70. The feed water is heated by the feed water heater 10 using the bleed gas supplied from the steam turbine 70 as a heat source before entering the boiler 60, thereby improving the efficiency of the entire steam power plant.

そこで、蒸気タービン70から供給される抽気量を減らすことが出来れば、蒸気発電プラント全体としての効率は低下するが、蒸気タービン70を駆動するための蒸気量が増えるため、結果として発電機出力を増出力する事が出来る。   Therefore, if the amount of extraction supplied from the steam turbine 70 can be reduced, the efficiency of the entire steam power plant decreases, but the amount of steam for driving the steam turbine 70 increases, and as a result, the generator output is reduced. The output can be increased.

しかし、蒸気タービン70からの抽気量を減らしたことにより発電機出力が増加しても、通常は発電機出力を一定にする制御を行っているため、ボイラー60からの蒸気流量を減少させ、もとの発電機出力に戻すようになっている。   However, even if the generator output is increased by reducing the amount of bleed air from the steam turbine 70, control is normally performed to keep the generator output constant, so the steam flow from the boiler 60 is reduced, and And return to the generator output.

そこで、発電機出力に応じて蒸気流量を制御するのではなく、蒸気流量を一定に制御することで、ボイラー60の出力流量を変化させることなく、発電機出力を増出力することが出来る。ただし、あくまでボイラー60、蒸気タービン70、発電機80それぞれの機器について増出力が可能な定格値に対する設備余裕代の範囲でおこなうことが可能である。   Therefore, the generator output can be increased without changing the output flow rate of the boiler 60 by controlling the steam flow rate to be constant rather than controlling the steam flow rate according to the generator output. However, it is possible to carry out within the range of the equipment margin for the rated value capable of increasing the output for each of the boiler 60, the steam turbine 70, and the generator 80.

つづいて、抽気量を減らすための具体的な方法について図1および図4を用いて示す。図4は給水加熱器10の構造を示す概略構造図である。給水は給水加熱器10に入った後、熱交換器110である細管を通り出口に流れる。熱交換器110には蒸気タービン70からの抽気が流入するため、抽気と給水とが熱交換を行い、給水の温度を高めている。   Next, a specific method for reducing the amount of extraction will be described with reference to FIGS. FIG. 4 is a schematic structural diagram showing the structure of the feed water heater 10. The feed water enters the feed water heater 10 and then flows to the outlet through a thin tube which is the heat exchanger 110. Since the extracted air from the steam turbine 70 flows into the heat exchanger 110, the extracted air and the feed water exchange heat to increase the temperature of the feed water.

抽気は給水と熱交換を行うことで冷やされ気体から液体に変化し凝縮し、熱交換器内圧力が減少するため、圧力の高い抽気管40より新たな抽気が供給される。抽気流量は、抽気管40に設けられた抽気弁50によって制御されているわけではなく、あくまで給水加熱器10の熱交換器110での熱交換量に比例した流量が流れている。   The bleed air is cooled by performing heat exchange with the water supply, is changed from gas to liquid and condensed, and the pressure in the heat exchanger decreases, so that new bleed air is supplied from the bleed pipe 40 having a high pressure. The bleed flow rate is not controlled by the bleed valve 50 provided in the bleed pipe 40, and a flow rate proportional to the heat exchange amount in the heat exchanger 110 of the feed water heater 10 flows to the last.

つまり、抽気と熱交換を行う給水量を減らすことで、抽気との熱交換量が減り、気体から液体に凝縮する抽気量が減ることで、抽気流量を減らすことが出来るのである。   In other words, by reducing the amount of water supply for exchanging heat with the bleed air, the amount of heat exchange with the bleed air is reduced, and the amount of bleed air condensing from gas to liquid is reduced, thereby reducing the bleed air flow rate.

各給水加熱器の抽気弁を操作することでも抽気量を減少させることは可能だが、実際のプラントでは給水加熱器は複数存在し、全ての抽気弁を操作することは操作員にとって煩雑であり、全ての給水加熱器の抽気弁を同時に開閉出来ない場合、ヒートバランスが崩れプラントの状態を安定させるのに時間がかかる等、速やかに増出力を実現することが出来ない。   It is possible to reduce the amount of bleed by operating the bleed valve of each feed water heater, but there are multiple feed water heaters in the actual plant, and it is complicated for the operator to operate all the bleed valves, If the bleed valves of all feed water heaters cannot be opened and closed at the same time, the heat balance is lost and it takes time to stabilize the state of the plant.

新たに制御装置を設置し抽気弁を操作することもできるが、その分改造コストがかかってしまう。それに対し、給水流量を調整する場合、全ての給水加熱器の給水が同時に変化するため、全体的なヒートバランスを崩すことなく速やかに抽気量を減少させることが出来る。   A new control device can be installed and the bleed valve can be operated, but the modification cost is increased accordingly. On the other hand, when the feed water flow rate is adjusted, the feed water of all the feed water heaters changes at the same time, so that the amount of bleed can be reduced quickly without destroying the overall heat balance.

つづいて、一般的な火力発電プラントにおける増出力運転方法について示す。図2は一般的な火力発電プラントの構成図である。蒸気発生器であるボイラー60で発生した蒸気は、主蒸気として蒸気加減弁62を通過し高圧タービン71を駆動させる。高圧タービン71を駆動した蒸気は再度ボイラー60で加熱された後、再熱蒸気として中圧タービン72を駆動させ、その排気で低圧タービン73を駆動させ、各タービンと結合された発電機80によって発電している。   Next, a method for increasing output operation in a general thermal power plant will be described. FIG. 2 is a configuration diagram of a general thermal power plant. The steam generated in the boiler 60 which is a steam generator passes through the steam control valve 62 as main steam and drives the high-pressure turbine 71. The steam that has driven the high-pressure turbine 71 is heated again by the boiler 60, and then the medium-pressure turbine 72 is driven as reheated steam, and the low-pressure turbine 73 is driven by the exhaust gas. The generator 80 coupled to each turbine generates power. doing.

低圧タービン73の排気は復水器90で水に戻され、復水ポンプ101で脱気器16へ送出される。復水ポンプ101と脱気器16間には低圧タービン73の抽気を用いた低圧給水加熱器14、15があり、脱気器16へ流入する復水温度を高めている。脱気器16では中圧タービン72の抽気等を用いて復水中に含まれる酸素分を除去する。   Exhaust gas from the low-pressure turbine 73 is returned to water by the condenser 90 and sent to the deaerator 16 by the condensate pump 101. Between the condensate pump 101 and the deaerator 16, there are low-pressure feed water heaters 14 and 15 using the extraction of the low-pressure turbine 73, and the condensate temperature flowing into the deaerator 16 is increased. In the deaerator 16, oxygen contained in the condensate is removed by using extraction of the intermediate pressure turbine 72 or the like.

脱気器16の復水は給水ポンプ102により給水としてボイラー60へ送出される。給水ポンプ102とボイラー60間には高圧給水加熱器11、12、13があり中圧タービン72及び高圧タービン71の抽気を利用して給水温度を高める。ボイラー60へ送出された給水は再び蒸気となり高圧タービン71へ送出される。   Condensate from the deaerator 16 is sent to the boiler 60 as feed water by the feed pump 102. There are high-pressure feed water heaters 11, 12, and 13 between the feed water pump 102 and the boiler 60, and the feed water temperature is raised by using extraction of the intermediate pressure turbine 72 and the high pressure turbine 71. The feed water sent to the boiler 60 becomes steam again and is sent to the high-pressure turbine 71.

蒸気発電プラントの増出力を行うには、まず、定格出力で安定して運転している状態において、その時の主蒸気流量制御を発電機出力追従制御から主蒸気流量一定制御に切り替える。定格出力で安定して運転しているので、主蒸気流量には変化が無く制御方法を切り替えてもプラントとして変化は起きない。   In order to increase the output of the steam power plant, first, the main steam flow rate control at that time is switched from the generator output follow-up control to the main steam flow constant control in the state of stable operation at the rated output. Since it operates stably at the rated output, there is no change in the main steam flow rate, and there is no change in the plant even if the control method is switched.

続いて、高圧給水加熱器バイパス弁30の開度を通常運転時の0%から徐々に開いていく。高圧給水加熱器バイパス弁30に給水が流れることで、高圧給水加熱器11、12、13に流れる給水の量が減っていく。高圧給水加熱器11、12、13に流れる給水量が減ることで、流入する抽気量が減る。   Subsequently, the opening of the high-pressure feed water heater bypass valve 30 is gradually opened from 0% during normal operation. As the feed water flows through the high-pressure feed water heater bypass valve 30, the amount of feed water flowing through the high-pressure feed water heaters 11, 12, and 13 decreases. By reducing the amount of water supplied to the high-pressure feed water heaters 11, 12, and 13, the amount of bleed air flowing in is reduced.

具体的には、高圧給水加熱器バイパス弁30によって複数の高圧給水加熱器11、12、13に流れる給水量を減らすことが出来るので、複数箇所の抽気流量を同時に減らすことが出来る。高圧給水加熱器の数量はプラントによって異なり、3つや4つであることが多い。   Specifically, since the amount of water supplied to the plurality of high-pressure feed water heaters 11, 12, and 13 can be reduced by the high-pressure feed water heater bypass valve 30, the bleed flow rates at a plurality of locations can be reduced simultaneously. The number of high-pressure feed water heaters varies depending on the plant and is often three or four.

抽気流量が減ることで、高圧タービン71及び中圧タービン72、さらに中圧タービン72の出口蒸気が流入する低圧タービン73の駆動用蒸気が増加し発電機出力を増出力することが出来る。なお、高圧給水加熱器11、12、13に流れる給水量を減らした後で、主蒸気流量制御を発電機出力追従制御から主蒸気流量一定制御とし主蒸気流量を定格流量に戻す手順としても良い。   By reducing the extraction flow rate, the driving steam of the high-pressure turbine 71, the intermediate-pressure turbine 72, and the low-pressure turbine 73 into which the outlet steam of the intermediate-pressure turbine 72 flows can be increased and the generator output can be increased. The main steam flow rate control may be changed from the generator output follow-up control to the main steam flow rate constant control and the main steam flow rate may be returned to the rated flow rate after the amount of feed water flowing to the high-pressure feed water heaters 11, 12, 13 is reduced. .

なお、前記操作に加えて低圧給水加熱器バイパス弁37を開操作してさらに増出力を行うことも出来る。しかし、低圧給水加熱器14、15をバイパスする復水流量が増えることで、脱気器16に流入する復水温度が低下するため、脱気器16に供給する復水中の酸素分を適切に低下させるためには抽気流量を増やさなければならなくなり、結果的にプラントによっては増出力できない場合も考えられる。   In addition to the above operation, the low pressure feed water heater bypass valve 37 can be opened to further increase the output. However, since the condensate flow rate that flows into the deaerator 16 decreases due to an increase in the condensate flow rate that bypasses the low-pressure feed water heaters 14, 15, the oxygen content in the condensate supplied to the deaerator 16 is appropriately adjusted. In order to lower it, it is necessary to increase the extraction flow rate. As a result, it may be possible that the output cannot be increased depending on the plant.

また、低圧給水加熱器14、15の復水流量のみを減少させても良いが、低圧給水加熱器14、15への抽気量は減るが、脱気器への復水温度や、その次の段の給水加熱器への給水温度が低下するなど、脱気器やその次の段の給水加熱器において熱交換量が増えてしまい、抽気量が増加するため、結果的に増出力効果は小さくなる。プラントによってはほぼゼロになることもある。   Although only the condensate flow rate of the low-pressure feed water heaters 14 and 15 may be reduced, the amount of bleed into the low-pressure feed water heaters 14 and 15 is reduced, but the condensate temperature to the deaerator and the next The amount of heat exchange increases in the deaerator and the water heater in the next stage, for example, the temperature of the feed water to the stage water heater decreases. Become. Depending on the plant, it may be almost zero.

図3は実施例2における蒸気発電プラントの構成図である。給水加熱器バイパス弁を給水加熱器ごとに設置してある場合、それぞれの給水加熱器バイパス弁を操作しても良い。その場合、給水温度が高温となる側の給水加熱器から操作を行うことが望ましい。   FIG. 3 is a configuration diagram of the steam power plant in the second embodiment. When the feed water heater bypass valve is installed for each feed water heater, each feed water heater bypass valve may be operated. In that case, it is desirable to operate from the feed water heater on the side where the feed water temperature becomes high.

例えば、第1高圧給水加熱器バイパス弁31を操作して、第1高圧給水加熱器11の給水流量を下げてしまうと、さらに高温側の第2高圧給水加熱器12にはその前後で流量は変わらないが温度の低い給水が流れるため、抽気の熱交換量が増えてしまい抽気流量が増えてしまうこととなる。   For example, if the first high-pressure feed water heater bypass valve 31 is operated and the feed water flow rate of the first high-pressure feed water heater 11 is lowered, the flow rate of the second high-pressure feed water heater 12 on the higher temperature side is reduced before and after that. Although it does not change, since the low temperature water supply flows, the heat exchange amount of the extraction air increases and the extraction flow rate increases.

その後第2高圧給水加熱器バイパス弁32を操作し、第2高圧給水加熱器12の給水流量を下げると、一度増えた抽気流量が大幅に減るため、高圧タービン71の駆動蒸気流量が変動してしまいプラントへの影響が大きくなる。そこで、第3高圧給水加熱器13から給水量を減らしていくと、抽気流量の増減量は第1高圧給水加熱器13から給水量を減らした場合に比べて小さいため、変動の少ない安定した蒸気発電プラントとしての運転が可能となる。   Thereafter, when the second high-pressure feed water heater bypass valve 32 is operated and the feed water flow rate of the second high-pressure feed water heater 12 is lowered, the once-extracted bleed flow rate is greatly reduced, so that the driving steam flow rate of the high-pressure turbine 71 fluctuates. The impact on the plant will increase. Therefore, when the amount of water supplied from the third high-pressure feed water heater 13 is decreased, the amount of increase / decrease in the extraction flow rate is small compared to the case where the amount of water supplied from the first high-pressure feed water heater 13 is reduced. Operation as a power plant becomes possible.

また、高圧給水加熱器11、12、もしくは低圧給水加熱器14、15いずれかの給水流量のみを減少させた場合は、当該給水加熱器への抽気量は減るが、その次の段の給水加熱器への給水温度が低下するため、その次の段の給水加熱器において熱交換量が増えてしまう。その結果、その次の段の給水加熱器の抽気量が増加するため、増出力効果は小さくなる。プラントによってはほぼゼロになることもある。   Further, when only the feed water flow rate of either the high pressure feed water heaters 11 and 12 or the low pressure feed water heaters 14 and 15 is reduced, the amount of bleed into the feed water heater is reduced, but the feed water heating of the next stage is performed. Since the feed water temperature to the vessel decreases, the heat exchange amount increases in the feed water heater at the next stage. As a result, the amount of bleed from the feed water heater at the next stage increases, so the output increase effect is reduced. Depending on the plant, it may be almost zero.

つづいて、本発明を実際の発電プラントに適用する場合は、適用の可否について十分に確認を行う必要があり、適用の可否については、給水加熱器バイパス弁の開度に応じた蒸気発電プラントの出力をヒートバランス計算によりあらかじめ求め、計算上運転が実施可能か検討をおこなう。   Subsequently, when the present invention is applied to an actual power plant, it is necessary to sufficiently check whether it can be applied. The applicability of the steam power plant according to the opening of the feed water heater bypass valve is determined. Obtain the output in advance by heat balance calculation, and examine whether it is possible to carry out the calculation operation.

計算上実施が可能であると判断された場合、実際に試験運転を行い蒸気発電プラントの各部実測値とヒートバランス計算値との比較をおこなう。実際の試験運転時には、ヒートバランス計算値は発電機出力だけでなく、ボイラ入口給水温度、燃料流量、給水流量、主蒸気流量などの項目においてもあらかじめヒートバランス計算値を求めて比較することが望ましい。   When it is determined that the calculation can be performed, a test operation is actually performed to compare the actual measurement values of each part of the steam power plant with the heat balance calculation values. During actual test operation, it is desirable to calculate and calculate the heat balance not only for the generator output but also for the items such as boiler inlet feed water temperature, fuel flow rate, feed water flow rate, main steam flow rate, etc. .

ヒートバランス計算は、以下のような手順にて行う。まず基準とする給水加熱器をバイパスさせる給水流量を設定する。給水加熱器バイパス弁開度に対する給水加熱器をバイパスさせる給水流量があらかじめ解っていれば直接給水加熱器バイパス弁開度を設定しても良い。   The heat balance calculation is performed according to the following procedure. First, the feed water flow rate for bypassing the reference feed water heater is set. If the feed water flow rate for bypassing the feed water heater relative to the feed water heater bypass valve opening is known in advance, the feed water heater bypass valve opening may be set directly.

続いて、バイパスさせることで減少する給水加熱器に流れる給水流量から、給水加熱器出口の給水温度を熱計算により求める。さらに、給水加熱器出口の給水と、給水加熱器バイパス管出口の給水を混合した給水温度を求める。これが、ボイラ入口給水温度となる。さらに主蒸気流量を一定とし、プラントのヒートバランス計算を行い、その時の発電機出力を求める。   Subsequently, the feed water temperature at the feed water heater outlet is obtained by heat calculation from the feed water flow rate flowing to the feed water heater that decreases by bypassing. Furthermore, the feed water temperature obtained by mixing the feed water at the outlet of the feed water heater and the feed water at the outlet of the feed water heater bypass pipe is obtained. This is the boiler inlet water supply temperature. Furthermore, the main steam flow is fixed, the plant heat balance calculation is performed, and the generator output at that time is obtained.

これらのヒートバランス計算を、基準とする給水加熱器バイパス給水流量として例えば10%、20%、30%と変化させてそれぞれ行い、図5に示すような給水加熱器バイパス給水流量と蒸気発電プラントの発電機出力の相関カーブを作成する。その他ヒートバランス計算において、図6に示すような給水加熱器バイパス給水流量とボイラ入口給水温度の相関カーブを作成しても良い。   These heat balance calculations are performed by changing the feed water heater bypass feed water flow rate as a reference, for example, 10%, 20%, and 30%, respectively, and the feed water heater bypass feed water flow rate and the steam power plant as shown in FIG. Create a correlation curve for generator output. In addition, in the heat balance calculation, a correlation curve between the feed water heater bypass feed water flow rate and the boiler inlet feed water temperature as shown in FIG. 6 may be created.

給水加熱器バイパス弁開度と給水加熱器バイパス給水流量の相関が不明な場合には、増出力運転でない通常プラント運転時に、給水加熱器バイパス弁の開度とその時のボイラ給水温度を計測し、相関カーブを作成してヒートバランス計算にて作成した相関カーブより、図7に示すような給水加熱器バイパス弁開度と蒸気発電プラントの発電機出力の相関カーブを作成することが出来る。   When the correlation between the feed water heater bypass valve opening and the feed water heater bypass feed water flow rate is unclear, measure the opening of the feed water heater bypass valve and the boiler feed water temperature at the time of normal plant operation that is not in the increased output operation, A correlation curve between the feed water heater bypass valve opening and the generator output of the steam power plant as shown in FIG. 7 can be created from the correlation curve created by heat balance calculation.

このような相関カーブを用いることで、蒸気発電プラントにおける増出力運転において、必要な発電機出力に応じた給水加熱器バイパス弁開度が相関カーブより容易に調整することが可能となる。また、増出力運転中に、発電機出力と対応した給水加熱器バイパス弁開度に偏差が生じた場合には、プラントに不具合が生じている可能性があることが解り、早期に対応が可能となる。偏差が大きい場合には警報を発して運転員に知らせるようなシステムとしても良い。   By using such a correlation curve, the feed water heater bypass valve opening according to the required generator output can be adjusted more easily than the correlation curve in the increased output operation in the steam power plant. In addition, if there is a deviation in the feedwater heater bypass valve opening corresponding to the generator output during increased output operation, it is understood that there may be a problem with the plant, and it is possible to respond quickly It becomes. If the deviation is large, an alarm may be issued to notify the operator.

以上より、新たな設備改造等を行うことなく蒸気発電プラントの増出力運転が可能となり、さらに実際のプラントへの適用可否の判断や運転中の不具合確認を行うなど安定した運転が可能となる。   As described above, it is possible to increase the output power of the steam power plant without renewing the equipment and the like, and it is possible to perform stable operation such as determining whether it can be applied to the actual plant and checking the malfunction during the operation.

10…給水加熱器、11…第1高圧給水加熱器、12…第2高圧給水加熱器、13…第3高圧給水加熱器、14…第1低圧給水加熱器、15…第2低圧給水加熱器、16…脱気器、20…給水加熱器バイパス管、21…第1高圧給水加熱器バイパス管、22…第2高圧給水加熱器バイパス管、23…第3高圧給水加熱器バイパス管、24…第1低圧給水加熱器バイパス管、25…第2低圧給水加熱器バイパス管、27…低圧給水加熱器バイパス管、30…給水加熱器バイパス弁、31…第1高圧給水加熱器バイパス弁、32…第2高圧給水加熱器バイパス弁、33…第3高圧給水加熱器バイパス弁、34…第1低圧給水加熱器バイパス弁、35…第2低圧給水加熱器バイパス弁、37…低圧給水加熱器バイパス弁、40…抽気管、41…第1高圧給水加熱器抽気管、42…第2高圧給水加熱器抽気管、43…第3高圧給水加熱器抽気管、44…第1低圧給水加熱器抽気管、45…第2低圧給水加熱器抽気管、50…抽気弁、51…第1高圧給水加熱器抽気弁、52…第2高圧給水加熱器抽気弁、53…第3高圧給水加熱器抽気弁、54…第1低圧給水加熱器抽気弁、55…第2低圧給水加熱器抽気弁、60…ボイラー、61…主蒸気管、62…蒸気加減弁、70…タービン、71…高圧タービン、72…中圧タービン、73…低圧タービン、80…発電機、90…復水器、100、102…給水ポンプ、101…復水ポンプ、110…熱交換器 DESCRIPTION OF SYMBOLS 10 ... Feed water heater, 11 ... 1st high pressure feed water heater, 12 ... 2nd high pressure feed water heater, 13 ... 3rd high pressure feed water heater, 14 ... 1st low pressure feed water heater, 15 ... 2nd low pressure feed water heater , 16 ... deaerator, 20 ... feed water heater bypass pipe, 21 ... first high pressure feed water heater bypass pipe, 22 ... second high pressure feed water heater bypass pipe, 23 ... third high pressure feed water heater bypass pipe, 24 ... 1st low pressure feed water heater bypass pipe, 25 ... 2nd low pressure feed water heater bypass pipe, 27 ... low pressure feed water heater bypass pipe, 30 ... feed water heater bypass valve, 31 ... 1st high pressure feed water heater bypass valve, 32 ... 2nd high pressure feed water heater bypass valve, 33 ... 3rd high pressure feed water heater bypass valve, 34 ... 1st low pressure feed water heater bypass valve, 35 ... 2nd low pressure feed water heater bypass valve, 37 ... Low pressure feed water heater bypass valve , 40 ... bleed pipe, 41 ... first Pressure feed water heater bleed pipe, 42 ... second high pressure feed water bleed pipe, 43 ... third high pressure feed water bleed pipe, 44 ... first low pressure feed water bleed pipe, 45 ... second low pressure feed water bleed pipe 50 ... Bleed valve, 51 ... First high pressure feed water heater bleed valve, 52 ... Second high pressure feed water bleed valve, 53 ... Third high pressure feed water bleed valve, 54 ... First low pressure feed water bleed valve, 55 ... second low pressure feed water heater bleed valve, 60 ... boiler, 61 ... main steam pipe, 62 ... steam control valve, 70 ... turbine, 71 ... high pressure turbine, 72 ... medium pressure turbine, 73 ... low pressure turbine, 80 ... power generation 90 ... Condenser, 100, 102 ... Feed water pump, 101 ... Condensate pump, 110 ... Heat exchanger

Claims (4)

蒸気発生装置で発生した蒸気にて発電機と結合した蒸気タービンを駆動させることで発電をし、前記蒸気タービンを駆動する蒸気の一部を給水加熱器での給水加熱用の抽気として取りだす方式を採用する蒸気発電プラントにおいて、
前記給水加熱器を通過する給水流量を減少させるとともに、前記蒸気発生装置にて発生する蒸気流量を一定とすることを特徴とする蒸気発電プラントの増出力運転方法。
A method of generating electricity by driving a steam turbine coupled to a generator with steam generated by a steam generator, and extracting a part of the steam that drives the steam turbine as extraction water for feed water heating in a feed water heater. In the steam power plant to be adopted,
A method for increasing output operation of a steam power plant, wherein the flow rate of feed water passing through the feed water heater is reduced and the flow rate of steam generated by the steam generator is constant.
前記給水加熱器は、給水加熱器バイパス管を備え、前記給水加熱器バイパス管に設置された給水加熱器バイパス弁の開度を調整することで、前記給水加熱器を通過する給水流量を調整することを特徴とした請求項1に記載の蒸気発電プラントの増出力運転方法。   The feed water heater includes a feed water heater bypass pipe, and adjusts a feed water flow rate passing through the feed water heater by adjusting an opening degree of a feed water heater bypass valve installed in the feed water heater bypass pipe. The method for increasing output operation of a steam power plant according to claim 1. 前記給水加熱器バイパス弁の開度と発電機出力値の相関カーブをあらかじめ作成しておき、蒸気発電プラント運転中の前記給水加熱器バイパス弁の開度に対する前記発電機出力値を前記相関カーブに基づいて、目標となる発電機出力に対応するバイパス弁開度に調整することを特徴とした請求項2に記載の蒸気発電プラントの増出力運転方法。   A correlation curve between the opening degree of the feed water heater bypass valve and the generator output value is prepared in advance, and the generator output value with respect to the opening degree of the feed water heater bypass valve during operation of the steam power plant is used as the correlation curve. 3. The method for increasing the output power of a steam power plant according to claim 2, wherein the opening degree of the bypass valve is adjusted to correspond to the target generator output. 前記給水加熱器バイパス弁の開度と発電機出力値の相関カーブは、熱計算により求めた前記給水加熱器バイパス弁開度に対する前記蒸気発生装置の入口給水温度と、プラント熱計算により求めた前記蒸気発生装置にて発生する蒸気流量を一定とする場合の前記発電機出力値より作成することを特徴とする請求項3に記載の蒸気発電プラントの増出力運転方法。



The correlation curve between the opening degree of the feed water heater bypass valve and the generator output value is the inlet feed water temperature of the steam generator with respect to the opening degree of the feed water heater bypass valve obtained by heat calculation, and the above-mentioned obtained by plant heat calculation. The method for increasing output operation of a steam power plant according to claim 3, wherein the output is generated from the generator output value when the flow rate of steam generated by the steam generator is constant.



JP2011226593A 2011-10-14 2011-10-14 Increased output operation method in steam power plant Expired - Fee Related JP5783458B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011226593A JP5783458B2 (en) 2011-10-14 2011-10-14 Increased output operation method in steam power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011226593A JP5783458B2 (en) 2011-10-14 2011-10-14 Increased output operation method in steam power plant

Publications (2)

Publication Number Publication Date
JP2013087644A true JP2013087644A (en) 2013-05-13
JP5783458B2 JP5783458B2 (en) 2015-09-24

Family

ID=48531824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011226593A Expired - Fee Related JP5783458B2 (en) 2011-10-14 2011-10-14 Increased output operation method in steam power plant

Country Status (1)

Country Link
JP (1) JP5783458B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018173042A (en) * 2017-03-31 2018-11-08 三菱重工業株式会社 Waste treatment plant and method for operating waste treatment plant
CN112302964A (en) * 2020-10-29 2021-02-02 西安西热节能技术有限公司 Method for measuring efficiency of independent condensing steam-driven water supply pump
CN112567110A (en) * 2018-10-15 2021-03-26 三菱动力株式会社 Control device for power generation facility, control method and control program for power generation facility, and power generation facility

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102013584B1 (en) * 2017-11-14 2019-10-21 두산중공업 주식회사 Apparatus and method for controlling steam flow
KR102092826B1 (en) * 2019-08-16 2020-03-24 두산중공업 주식회사 Apparatus and method for controlling steam flow

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59138705A (en) * 1983-01-28 1984-08-09 Toshiba Corp Controller for temperature of supplied water
JPH04252807A (en) * 1991-01-25 1992-09-08 Mazda Motor Corp Steam turbine power generation plant
JP2000018008A (en) * 1998-07-06 2000-01-18 Mitsubishi Heavy Ind Ltd Feed water heating device
JP2003090508A (en) * 2001-09-18 2003-03-28 Hitachi Ltd Water feed system and operation method of steam power generating plant
JP2007085294A (en) * 2005-09-26 2007-04-05 Chugoku Electric Power Co Inc:The Steam turbine plant and its operating method
JP2010249056A (en) * 2009-04-16 2010-11-04 Chugoku Electric Power Co Inc:The Steam turbine plant and operating method therefor
JP2011190696A (en) * 2010-03-12 2011-09-29 Hitachi Ltd Coal-fired power plant, and method for operating coal-fired power plant

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59138705A (en) * 1983-01-28 1984-08-09 Toshiba Corp Controller for temperature of supplied water
JPH04252807A (en) * 1991-01-25 1992-09-08 Mazda Motor Corp Steam turbine power generation plant
JP2000018008A (en) * 1998-07-06 2000-01-18 Mitsubishi Heavy Ind Ltd Feed water heating device
JP2003090508A (en) * 2001-09-18 2003-03-28 Hitachi Ltd Water feed system and operation method of steam power generating plant
JP2007085294A (en) * 2005-09-26 2007-04-05 Chugoku Electric Power Co Inc:The Steam turbine plant and its operating method
JP2010249056A (en) * 2009-04-16 2010-11-04 Chugoku Electric Power Co Inc:The Steam turbine plant and operating method therefor
JP2011190696A (en) * 2010-03-12 2011-09-29 Hitachi Ltd Coal-fired power plant, and method for operating coal-fired power plant

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018173042A (en) * 2017-03-31 2018-11-08 三菱重工業株式会社 Waste treatment plant and method for operating waste treatment plant
CN112567110A (en) * 2018-10-15 2021-03-26 三菱动力株式会社 Control device for power generation facility, control method and control program for power generation facility, and power generation facility
CN112567110B (en) * 2018-10-15 2023-06-20 三菱重工业株式会社 Control device for power generation facility, control method for power generation facility, control program for power generation facility, and power generation facility
CN112302964A (en) * 2020-10-29 2021-02-02 西安西热节能技术有限公司 Method for measuring efficiency of independent condensing steam-driven water supply pump

Also Published As

Publication number Publication date
JP5783458B2 (en) 2015-09-24

Similar Documents

Publication Publication Date Title
JP4578354B2 (en) Waste heat utilization equipment for steam turbine plant
US10167743B2 (en) Method for controlling a steam generator and control circuit for a steam generator
JP5783458B2 (en) Increased output operation method in steam power plant
US8171733B2 (en) Systems and methods involving combined cycle plants
US8887747B2 (en) System and method for drum level control
KR20210009279A (en) Steam power generation plant, method for modifying steam power generation plant and method for operating steam power generation
RU2586802C2 (en) Combined cycle power plant (versions)
KR20150083374A (en) Apparatus and method for reactor power control of steam turbine power generation system
JP5725913B2 (en) Combined cycle plant
JP4794254B2 (en) Steam turbine plant and operation method thereof
JP4818391B2 (en) Steam turbine plant and operation method thereof
JP5524923B2 (en) Low pressure turbine bypass control device and power plant
JP5723220B2 (en) Power plant
JP4415189B2 (en) Thermal power plant
JP2010121559A (en) Combined power generation plant and exhaust heat recovery boiler
US9574461B2 (en) Method for controlling a thermal power plant using regulated valves
JP4905941B2 (en) Waste heat recovery boiler and its steam pressure control method
US10422251B2 (en) Method for cooling a steam turbine
JP2016065486A (en) Combined cycle power generation facility
JP4431512B2 (en) Nuclear power plant
RU2600655C2 (en) Method of operating thermal power plant with open heat extraction system and device therefor
JP5895498B2 (en) Turbine bypass device and turbine bypass control method
JP4127541B2 (en) Power generation / desalination complex plant and operation method thereof
JP5137694B2 (en) Flash tank apparatus and steam control method
JP2012140910A (en) Combined cycle power generation plant and gas turbine system, and gas turbine fuel gas heating system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140320

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141024

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150626

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150709

R150 Certificate of patent or registration of utility model

Ref document number: 5783458

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees