JP4431512B2 - Nuclear power plant - Google Patents

Nuclear power plant Download PDF

Info

Publication number
JP4431512B2
JP4431512B2 JP2005066498A JP2005066498A JP4431512B2 JP 4431512 B2 JP4431512 B2 JP 4431512B2 JP 2005066498 A JP2005066498 A JP 2005066498A JP 2005066498 A JP2005066498 A JP 2005066498A JP 4431512 B2 JP4431512 B2 JP 4431512B2
Authority
JP
Japan
Prior art keywords
feed water
steam
reactor
extraction
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005066498A
Other languages
Japanese (ja)
Other versions
JP2006250658A (en
Inventor
和明 木藤
雅夫 茶木
孝次 椎名
肇男 青山
雅哉 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi GE Nuclear Energy Ltd
Original Assignee
Hitachi GE Nuclear Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi GE Nuclear Energy Ltd filed Critical Hitachi GE Nuclear Energy Ltd
Priority to JP2005066498A priority Critical patent/JP4431512B2/en
Priority to US11/340,643 priority patent/US7614233B2/en
Publication of JP2006250658A publication Critical patent/JP2006250658A/en
Priority to US12/574,219 priority patent/US7997078B2/en
Application granted granted Critical
Publication of JP4431512B2 publication Critical patent/JP4431512B2/en
Priority to US13/046,329 priority patent/US8291704B2/en
Priority to US13/046,294 priority patent/US8453451B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Control Of Eletrric Generators (AREA)

Description

本発明は原子力発電プラントに係り、特に増出力時に給水温度を制御するのに好適な給水温度制御装置を備えた原子力発電プラントに関する。   The present invention relates to a nuclear power plant, and more particularly to a nuclear power plant equipped with a feed water temperature control device suitable for controlling the feed water temperature at the time of increased output.

原子力発電プラントの増出力方法として、給水温度を下げることで大幅な機器交換無しに増出力幅を拡大する方法があり、本増出力手法を用いるには給水温度制御手段が必要となる。   As a method of increasing the output of a nuclear power plant, there is a method of expanding the increased output width without drastically replacing the equipment by lowering the feed water temperature. To use this increased output method, a feed water temperature control means is required.

特開平9−264983号公報JP-A-9-264983 特開平8−233989号公報Japanese Patent Laid-Open No. 8-233989

従来の原子力プラントの増出力手法は、電気出力増加にほぼ比例して主蒸気流量と給水流量が増加していた。これに対し、原子炉への給水温度を下げれば原子炉内で発生する蒸気量を低減できるため、増出力時の主蒸気流量と給水流量の増加を抑制でき、大幅な機器交換無しに増出力幅を拡大することができる。さらに、本増出力手法を拡張すると、給水温度をリアルタイムに制御することで、原子力発電プラントを用いた負荷追従運転も可能となる。ただし、本増出力手法は増出力前のプラント設計時に想定していた給水温度よりもさらに給水温度を下げるために、給水温度制御範囲を広げるための制御手段を追加する必要がある。   In the conventional power plant increasing power method, the main steam flow rate and the feed water flow rate increase almost in proportion to the increase in electrical output. On the other hand, if the feed water temperature to the reactor is lowered, the amount of steam generated in the reactor can be reduced, so the increase in main steam flow and feed water flow at the time of increased output can be suppressed, and increased output without significant equipment replacement. The width can be enlarged. Furthermore, when this increase output method is expanded, load follow-up operation using a nuclear power plant can be performed by controlling the feed water temperature in real time. However, in this method of increasing output, it is necessary to add a control means for extending the supply water temperature control range in order to lower the supply water temperature further than the supply water temperature assumed at the time of designing the plant before the increased output.

本発明の目的は、増出力時における発電量のばらつきを抑制できる原子力発電プラントを提供することにある。   The objective of this invention is providing the nuclear power plant which can suppress the dispersion | variation in the electric power generation amount at the time of an increase output.

上記目的を達成するため本発明の特徴は、原子炉の第2運転サイクルにおける第2原子炉熱出力を、第2運転サイクルより少なくとも一運転サイクル以上前の第1運転サイクルにおける第1原子炉熱出力よりも増大させ、原子炉の第2運転サイクルにおける第2給水温度を原子炉の第1運転サイクルにおける第1給水温度よりも低下させた運転を行う原子力発電プラントにおいて、蒸気系から蒸気を抽気して給水加熱器に接続する抽気管の少なくとも1本以上に抽気流量制御弁を設置し、給水系上の複数段ある給水加熱器の間または給水加熱器の出口より下流側には少なくとも1つ以上の温度計測器を設置し、温度計測器の計測値信号と設定値信号とを用いて抽気流量制御弁の開度を制御する抽気流量制御器を設置することにある。   In order to achieve the above object, the present invention is characterized in that the second reactor heat output in the second operation cycle of the reactor is the first reactor heat in the first operation cycle at least one operation cycle before the second operation cycle. The steam is extracted from the steam system in a nuclear power plant that performs an operation in which the second feed water temperature in the second operation cycle of the reactor is increased below the output and lower than the first feed water temperature in the first operation cycle of the reactor. Then, an extraction flow control valve is installed in at least one of the extraction pipes connected to the feed water heater, and at least one is provided between the plurality of feed water heaters on the feed water system or downstream from the outlet of the feed water heater. The above temperature measuring device is installed, and the extraction flow controller for controlling the opening degree of the extraction flow control valve using the measured value signal and the set value signal of the temperature measuring device is installed.

抽気流量制御弁の開度を制御することによって給水温度を設定温度に調整することができるため、原子力発電プラントの増出力時における発電量のばらつきを抑制することができる。   Since the feed water temperature can be adjusted to the set temperature by controlling the opening degree of the extraction flow control valve, it is possible to suppress variations in the amount of power generation at the time of increased output of the nuclear power plant.

また、上記目的を達成する他の発明の特徴は、原子炉の第2運転サイクルにおける第2原子炉熱出力を、第2運転サイクルより少なくとも一運転サイクル以上前の第1運転サイクルにおける第1原子炉熱出力よりも増大させ、原子炉の第2運転サイクルにおける第2給水温度を原子炉の第1運転サイクルにおける第1給水温度よりも低下させた運転を行う原子力発電プラントにおいて、蒸気系から蒸気を抽気して給水加熱器に接続する抽気管の少なくとも1本以上の同じ抽気管上に抽気流量制御弁と抽気流量計測器を設置し、抽気流量計測器の計測値信号と設定値信号を用いて抽気流量制御弁の開度を制御する抽気流量制御器を設置することにある。   Another feature of the invention for achieving the above object is that the second reactor heat output in the second operation cycle of the nuclear reactor is the first atom in the first operation cycle at least one operation cycle before the second operation cycle. In a nuclear power plant that performs an operation in which the second feed water temperature in the second operation cycle of the nuclear reactor is increased to be lower than the first feed water temperature in the first operation cycle of the nuclear reactor. A bleed flow control valve and a bleed flow meter are installed on at least one bleed pipe connected to the feed water heater, and the measured value signal and set value signal of the bleed flow meter are used. Therefore, the extraction flow controller for controlling the opening degree of the extraction flow control valve is installed.

また、上記目的を達成する他の発明の特徴は、原子炉の第2運転サイクルにおける第2原子炉熱出力を、第2運転サイクルより少なくとも一運転サイクル以上前の第1運転サイクルにおける第1原子炉熱出力よりも増大させ、原子炉の第2運転サイクルにおける第2給水温度を原子炉の第1運転サイクルにおける第1給水温度よりも低下させた運転を行う原子力発電プラントにおいて、蒸気系から蒸気を抽気して給水加熱器に接続する抽気管の少なくとも1本以上に抽気流量制御弁を設置し、蒸気系上には少なくとも1つ以上の蒸気流量計測器を設置し、蒸気流量計測器の計測値信号と設定値信号を用いて抽気流量制御弁の開度を制御する抽気流量制御器を設置することにある。   Another feature of the invention for achieving the above object is that the second reactor heat output in the second operation cycle of the nuclear reactor is the first atom in the first operation cycle at least one operation cycle before the second operation cycle. In a nuclear power plant that performs an operation in which the second feed water temperature in the second operation cycle of the nuclear reactor is increased to be lower than the first feed water temperature in the first operation cycle of the nuclear reactor. The extraction flow control valve is installed in at least one of the extraction pipes that extract the gas and connect to the feed water heater, and at least one steam flow measuring instrument is installed on the steam system, and the steam flow measuring instrument measures The object is to install an extraction flow controller that controls the opening degree of the extraction flow control valve using the value signal and the set value signal.

本発明によれば、原子力発電プラントの増出力時における発電量のばらつきを抑制することができる。   ADVANTAGE OF THE INVENTION According to this invention, the dispersion | variation in the electric power generation amount at the time of the increased output of a nuclear power plant can be suppressed.

本発明を直接サイクル型原子力プラントの一つである沸騰水型軽水炉発電プラントに適用した好適な一実施例を図1及び図2に基づいて以下に説明する。   A preferred embodiment in which the present invention is applied to a boiling water type light water reactor power plant that is one of direct cycle nuclear power plants will be described below with reference to FIGS.

図1に本発明の好適な実施例である第一実施例の沸騰水型軽水炉発電プラントの系統図、図2に図1に示す抽気流量制御器の給水温度制御ロジック例を示す。   FIG. 1 shows a system diagram of a boiling water light water reactor power plant according to a first embodiment which is a preferred embodiment of the present invention, and FIG. 2 shows an example of a feed water temperature control logic of the extraction flow rate controller shown in FIG.

図1は原子炉圧力容器1,主蒸気管2,主蒸気管に繋がる高圧タービン3と低圧タービン5、および高圧タービンと低圧タービンとの間に湿分分離器4または湿分分離過熱器を有し、低圧タービン出口には復水器6を設置し、復水器の下流側には低圧給水加熱器7,給水ポンプ8および高圧給水加熱器9を有する沸騰水型軽水炉において、本発明を用いた場合のプラント系統例を模式的に示したものである。なお、一運転サイクルは原子炉の起動から燃料交換のために原子炉の運転を停止するまでの期間と定義している。   1 shows a high pressure turbine 3 and a low pressure turbine 5 connected to a reactor pressure vessel 1, a main steam pipe 2, a main steam pipe, and a moisture separator 4 or a moisture separation superheater between the high pressure turbine and the low pressure turbine. The present invention is applied to a boiling water type light water reactor having a condenser 6 installed at a low-pressure turbine outlet and having a low-pressure feed water heater 7, a feed water pump 8 and a high-pressure feed water heater 9 on the downstream side of the condenser. The example of the plant system | strain in the case of having shown is shown typically. One operation cycle is defined as the period from the start of the reactor to the shutdown of the reactor for fuel replacement.

原子炉熱出力を増加させた場合は、その増えた分の熱を取るために給水流量を増加するか、または原子炉圧力容器の入口・出口の冷却材のエンタルピ差を拡大する必要がある。従来の増出力手法では前者の手法を取っており、原子炉熱出力と比例させて給水流量を増やしている。一方で新たな増出力手法として、後者の手法を取り原子炉圧力容器入口の冷却材エンタルピ(温度)を意図的に下げることで、原子炉圧力容器入口・出口のエンタルピ差を拡大して、増出力時の主蒸気流量および給水流量の増加を抑制する手法も提案されている。本発明はこの新たな増出力手法に対応するためのものであり、給水温度をプラント建設時の想定範囲よりもさらに低い温度まで下げるため、給水温度制御範囲を拡大するための機器を追設する必要がある。   When the reactor heat output is increased, it is necessary to increase the feed water flow rate in order to take the increased amount of heat, or to increase the enthalpy difference of the coolant at the inlet and outlet of the reactor pressure vessel. The conventional method of increasing power uses the former method, and increases the feed water flow rate in proportion to the reactor heat output. On the other hand, as a new power increase method, the latter method was adopted and the coolant enthalpy (temperature) at the reactor pressure vessel inlet was intentionally lowered to increase the enthalpy difference between the reactor pressure vessel inlet and outlet, and increase A method for suppressing an increase in the main steam flow rate and the feed water flow rate during output has also been proposed. The present invention is to cope with this new power increase method, and in order to lower the feed water temperature to a temperature lower than the assumed range at the time of plant construction, a device for expanding the feed water temperature control range is additionally installed. There is a need.

給水温度範囲は低温側に拡大する必要があるため、増出力実施前に比較して給水加熱用の抽気蒸気量を減少させる必要がある。給水加熱用の抽気蒸気は高圧タービンおよび低圧タービンを含む主蒸気系から抽気して、抽気管10を通り、高圧給水加熱器または低圧給水加熱器へと送られる。現行の沸騰水型軽水炉では、主要な抽気点は高圧タービン入口より下流側で低圧タービン出口より上流側に複数設置されている。抽気蒸気量を減少させるためには、抽気管上に抽気流量制御弁11を設置すれば良い。   Since it is necessary to expand the feed water temperature range to the low temperature side, it is necessary to reduce the amount of extracted steam for heating the feed water as compared to before the increase in output. The extraction steam for heating the feed water is extracted from the main steam system including the high-pressure turbine and the low-pressure turbine, passes through the extraction pipe 10, and is sent to the high-pressure feed water heater or the low-pressure feed water heater. In the current boiling water reactor, a plurality of main extraction points are installed downstream from the high-pressure turbine inlet and upstream from the low-pressure turbine outlet. In order to reduce the amount of extracted steam, the extraction flow control valve 11 may be installed on the extraction pipe.

本発明が対象とする増出力手法を採用する場合には、給水温度が設定した値まできちんと下がっていることが重要である。そのため、給水系統上にある給水加熱器出口に給水温度計測器12を設置し、抽気流量制御器13で抽気流量を制御する。給水温度計測器は抽気量を制御している給水加熱器より下流側で原子炉入口よりも上流側に設置すれば良い。すなわち給水温度計測器は、抽気量を制御している給水加熱器よりも下流側の任意の給水加熱器の間に設置しても良いし、最終段の給水加熱器出口と原子炉入口の間に設置しても良い。   In the case of adopting the increase output method targeted by the present invention, it is important that the feed water temperature is properly lowered to the set value. Therefore, the feed water temperature measuring device 12 is installed at the feed water heater outlet on the feed water system, and the extraction flow rate controller 13 controls the extraction flow rate. The feed water temperature measuring device may be installed downstream of the feed water heater controlling the extraction amount and upstream of the reactor inlet. In other words, the feed water temperature measuring device may be installed between any feed water heaters downstream of the feed water heater that controls the extraction amount, or between the last feed water heater outlet and the reactor inlet. It may be installed in.

図2は、第一実施例における抽気流量制御器の制御ロジック例を示したものである。抽気流量制御器の入力としては、給水温度計測器で測定した給水温度計測値信号14と、給水温度の設定値信号15を用いる。抽気流量制御器の出力は、抽気流量制御弁の開度要求信号16である。給水温度の計測値が給水温度の設定値よりも低い場合には、抽気量が不足しているということであるので、抽気流量制御弁を開く方向の開度要求信号を出力する。逆に、給水温度の計測値が設定値よりも高い場合には、抽気量が多すぎるということであるので、抽気流量制御弁を閉める方向の開度要求信号を出力する。   FIG. 2 shows an example of the control logic of the extraction flow rate controller in the first embodiment. As an input to the extraction flow controller, a feed water temperature measurement value signal 14 measured by a feed water temperature measuring device and a feed water temperature set value signal 15 are used. The output of the extraction flow controller is an opening request signal 16 for the extraction flow control valve. If the measured value of the feed water temperature is lower than the set value of the feed water temperature, it means that the extraction amount is insufficient, and therefore an opening degree request signal in the direction to open the extraction flow control valve is output. On the other hand, when the measured value of the feed water temperature is higher than the set value, it means that the amount of extraction is too large, and therefore an opening degree request signal in the direction to close the extraction flow control valve is output.

本実施例によれば、給水温度を常に設定した温度に保つことができるため、原子炉の増出力時に給水温度を低下させることで主蒸気流量や給水流量の増加を抑制できる。さらに、給水温度をリアルタイムに調整することが可能であるので、原子力発電プラントの熱出力を変更した場合でもそれに合わせて給水温度の設定値を変更すれば、主蒸気流量や給水流量を一定に保ったままで、原子力発電プラントの負荷追従運転にも適用できる。   According to the present embodiment, since the feed water temperature can be always maintained at a set temperature, an increase in the main steam flow rate and the feed water flow rate can be suppressed by reducing the feed water temperature at the time of increased output of the nuclear reactor. Furthermore, since the feed water temperature can be adjusted in real time, the main steam flow rate and feed water flow rate can be kept constant by changing the set value of the feed water temperature accordingly even when the heat output of the nuclear power plant is changed. It can also be applied to load following operation of nuclear power plants.

図3に、本発明の他の実施例である第二実施例の沸騰水型軽水炉発電プラントを示す。   FIG. 3 shows a boiling water light water reactor power plant according to a second embodiment which is another embodiment of the present invention.

本実施例と第一実施例の違いは、抽気流量制御器の入力として用いる計測器である。本実施例では、抽気流量制御弁を設置した抽気管上に抽気流量計測器17を設置している。抽気流量制御弁と抽気流量計測器はどちらが上流側にきても良い。抽気管が途中で他の抽気管と合流する場合は、下流側に位置する抽気流量制御弁または抽気流量計測器は、合流後の配管上にあっても良い。また抽気管が途中で分岐する場合は、下流側に位置する抽気流量制御弁または抽気流量計測器は、分岐後の配管上にあっても良い。原子炉の熱出力,給水流量、および抽気流量が既知であれば、給水温度はプラントの熱バランスから一意的に決まる。よって、本実施例のように抽気管上に抽気流量計測器を設置して抽気量を計測することは、給水温度を計測することと同等である。   The difference between the present embodiment and the first embodiment is a measuring instrument used as an input of the extraction flow controller. In this embodiment, the extraction flow rate measuring device 17 is installed on the extraction pipe where the extraction flow control valve is installed. Either the bleed flow control valve or the bleed flow meter may be on the upstream side. When the extraction pipe merges with another extraction pipe on the way, the extraction flow control valve or the extraction flow measuring instrument located on the downstream side may be on the pipe after the merge. When the extraction pipe branches in the middle, the extraction flow control valve or the extraction flow measuring instrument located on the downstream side may be on the branched pipe. If the reactor heat output, feedwater flow rate, and extraction flow rate are known, the feedwater temperature is uniquely determined from the plant thermal balance. Therefore, installing the extraction flow rate measuring device on the extraction pipe as in this embodiment and measuring the extraction amount is equivalent to measuring the feed water temperature.

本実施例では、抽気流量制御器の入力として、抽気流量計測器で測定した抽気流量計測値信号18と、抽気流量の設定値信号19を用いる。抽気流量制御器の出力は、抽気流量制御弁の開度要求信号である。抽気流量の計測値が抽気流量の設定値よりも小さい場合には、抽気量が不足しているということであるので、抽気流量制御弁を開く方向の開度要求信号を出力する。逆に、抽気流量の計測値が設定値よりも大きい場合には、抽気量が多すぎるということであるので、抽気流量制御弁を閉める方向の開度要求信号を出力する。   In this embodiment, the extraction flow rate measurement value signal 18 measured by the extraction flow rate measuring device and the extraction flow rate set value signal 19 are used as the input of the extraction flow rate controller. The output of the extraction flow controller is an opening request signal for the extraction flow control valve. When the measured value of the bleed flow rate is smaller than the set value of the bleed flow rate, it means that the bleed amount is insufficient, and therefore an opening request signal in the direction to open the bleed flow rate control valve is output. On the contrary, if the measured value of the extraction flow rate is larger than the set value, it means that the extraction amount is too large, and therefore an opening degree request signal in the direction to close the extraction flow control valve is output.

ここでは、抽気流量計測器を単独で用いる場合の例を示したが、第一実施例と同様に給水温度計測器を設置して、抽気流量による制御と給水温度による制御を組み合わせても良い。図4に、第一実施例及び第二実施例の各技術的思想を組み合わせた、本発明の他の実施例である第三実施例の沸騰水型軽水炉発電プラントの系統例を示す。また、図5に、第三実施例で用いられる制御ロジック例を示す。抽気流量制御弁を調整してから実際に給水温度が変化するまでにはある程度の時間遅れがあるため、短い周期で抽気流量が変動するときには抽気流量を用いた制御を優先させ、比較的長い時間にわたって給水温度が下がっているまたは上がっている場合には給水温度による制御を優先させるなどして、役割を分ける。具体的には図5に示したように、給水温度による制御で抽気流量の設定値を定め、その設定値と抽気流量の測定値との差から抽気流量制御弁の開度要求信号を出力すれば良い。   Here, although the example in the case of using a bleed flow rate measuring device alone was shown, you may install the feed water temperature measuring device similarly to 1st Example, and may combine the control by bleed flow rate and the control by feed water temperature. FIG. 4 shows a system example of a boiling water light water reactor power plant according to a third embodiment, which is another embodiment of the present invention, in which the technical ideas of the first embodiment and the second embodiment are combined. FIG. 5 shows an example of control logic used in the third embodiment. Since there is a certain time delay between the adjustment of the extraction flow control valve and the actual change of the feed water temperature, priority is given to the control using the extraction flow when the extraction flow fluctuates in a short cycle, and a relatively long time When the water supply temperature is lowered or increased over time, the role is divided by giving priority to the control based on the water supply temperature. Specifically, as shown in FIG. 5, a setting value of the extraction flow rate is determined by control based on the feed water temperature, and an opening degree request signal for the extraction flow control valve is output from the difference between the setting value and the measurement value of the extraction flow rate. It ’s fine.

図6に、本発明の他の実施例である第四実施例の沸騰水型軽水炉発電プラントの系統を示す。   FIG. 6 shows a system of a boiling water light water reactor power plant according to a fourth embodiment which is another embodiment of the present invention.

本実施例と第一実施例の違いは、抽気流量制御器の入力として用いる計測器である。本実施例では、原子炉より下流側で高圧タービン入口よりも上流側に、主蒸気流量計測器
20を設置している。原子炉の熱出力と主蒸気流量が既知であれば、給水温度はプラントの熱バランスから一意的に決まる。よって、本実施例のように主蒸気流量計測器を設置して主蒸気流量を計測することは、給水温度を計測することと同等である。
The difference between the present embodiment and the first embodiment is a measuring instrument used as an input of the extraction flow controller. In this embodiment, the main steam flow rate measuring device 20 is installed downstream of the reactor and upstream of the high-pressure turbine inlet. If the reactor heat output and main steam flow are known, the feedwater temperature is uniquely determined from the heat balance of the plant. Therefore, installing a main steam flow rate measuring device and measuring the main steam flow rate as in this embodiment is equivalent to measuring the feed water temperature.

本実施例では、抽気流量制御器の入力として、主蒸気流量計測器で測定した主蒸気流量計測値信号21と、主蒸気流量の設定値信号22を用いる。抽気流量制御器の出力は、抽気流量制御弁の開度要求信号である。主蒸気流量の計測値が主蒸気流量の設定値よりも小さい場合には、給水温度が低すぎる、すなわち抽気量が不足しているということであるので、抽気流量制御弁を開く方向の開度要求信号を出力する。逆に、主蒸気流量の計測値が設定値よりも大きい場合には、給水温度が高すぎる、すわなち、抽気量が多すぎるということであるので、抽気流量制御弁を閉める方向の開度要求信号を出力する。   In this embodiment, the main steam flow rate measurement value signal 21 measured by the main steam flow rate measuring device and the main steam flow rate set value signal 22 are used as the input of the extraction flow rate controller. The output of the extraction flow controller is an opening request signal for the extraction flow control valve. If the measured value of the main steam flow rate is smaller than the set value of the main steam flow rate, it means that the feed water temperature is too low, that is, the extraction amount is insufficient. Outputs a request signal. On the contrary, when the measured value of the main steam flow rate is larger than the set value, the feed water temperature is too high, that is, the extraction amount is too large. Outputs a request signal.

ここでは、主蒸気流量計測器を単独で用いる場合の例を示したが、第一実施例と同様に給水温度計測器を設置して、主蒸気流量による制御と給水温度による制御を組み合わせる、または第二実施例と同様に抽気流量計測器を設置して、主蒸気流量による制御と抽気流量による制御を組み合わせる、またはこれら全てを組み合わせても良い。図7に、第一実施例,第二実施例および第四実施例の各技術的思想を組み合わせた、本発明の他の実施例である第五実施例の沸騰水型軽水炉発電プラントの系統例を示す。また、図8に、第五実施例で用いる制御ロジック例を示す。抽気流量制御弁を調整してから実際に主蒸気流量が変化するまでには時間遅れがあり、抽気流量制御弁を調整してから実際に給水温度が変化するまでには主蒸気流量よりは短いがある程度の時間遅れがある。逆に、抽気流量制御弁を調整してから抽気流量が変化するまでの時間遅れは短い。よって、短い周期で抽気流量が変動するときには抽気流量を用いた制御を優先させ、比較的長い時間にわたって給水温度が下がっているまたは上がっている場合には給水温度による制御を優先させ、さらに長い時間にわたって主蒸気流量が増加または減少している場合には主蒸気流量による制御を優先させるなどして、役割を分ける。具体的には図8に示したように、主蒸気流量による制御で給水温度の設定値を定め、給水温度の設定値と給水温度の測定値の差から抽気流量の設定値を定め、抽気流量の設定値と抽気流量の測定値との差から抽気流量制御弁の開度要求信号を出力すれば良い。   Here, an example in which the main steam flow rate measuring device is used alone has been shown, but a feed water temperature measuring device is installed in the same manner as in the first embodiment, and the control by the main steam flow rate and the control by the feed water temperature are combined, or Similarly to the second embodiment, an extraction flow measuring device may be installed, and the control based on the main steam flow and the control based on the extraction flow may be combined, or all of these may be combined. FIG. 7 shows a system example of the boiling water light water reactor power plant of the fifth embodiment, which is another embodiment of the present invention, combining the technical ideas of the first embodiment, the second embodiment and the fourth embodiment. Indicates. FIG. 8 shows an example of control logic used in the fifth embodiment. There is a time lag between the adjustment of the extraction flow control valve and the actual change of the main steam flow, and it is shorter than the main steam flow from the adjustment of the extraction flow control valve to the actual change of the feed water temperature. There is a certain time delay. Conversely, the time delay from the adjustment of the extraction flow control valve to the change of the extraction flow is short. Therefore, priority is given to control using the bleed flow rate when the bleed flow rate fluctuates in a short cycle, and priority is given to control by the feed water temperature if the feed water temperature has fallen or increased over a relatively long time, and a longer time. When the main steam flow rate increases or decreases over the entire range, priority is given to the control based on the main steam flow rate, and the role is divided. Specifically, as shown in FIG. 8, the set value of the feed water temperature is determined by the control based on the main steam flow rate, and the set value of the extraction flow rate is determined from the difference between the set value of the feed water temperature and the measured value of the feed water temperature. The opening request signal of the extraction flow control valve may be output from the difference between the set value and the extraction flow measurement value.

以上述べた第一実施例〜第五実施例は沸騰水型軽水炉発電プラントを例にとって記載したが、本発明は沸騰水型軽水炉発電プラント以外の直接サイクル型のプラントにも適用可能である。   Although the first embodiment to the fifth embodiment described above have been described by taking the boiling water light water reactor power plant as an example, the present invention can also be applied to direct cycle type plants other than the boiling water light water reactor power plant.

なお、一般的に、抽気量を減少させて給水温度を低下させるとプラント熱効率は減少するが、その熱効率の減少を抑制するにはなるべく上流側の抽気点からの抽気蒸気量を減らした方が良い。よって抽気流量制御弁は、高圧タービン入口より下流側で低圧タービン入口より上流側から抽気する抽気管上に設置すると効果が高い。また、本発明の実施例では抽気管1本のみに抽気流量制御弁を設置したが、抽気管1本の抽気蒸気量を減少させただけでは十分に給水温度が下がらない場合もあるため、その場合は複数の抽気管上に抽気流量制御弁を設置する。   In general, when the amount of extraction is reduced and the feed water temperature is lowered, the plant thermal efficiency is reduced, but in order to suppress the decrease in thermal efficiency, it is better to reduce the amount of extraction steam from the upstream extraction point as much as possible. good. Therefore, if the extraction flow control valve is installed on the extraction pipe that extracts air from the downstream side of the high-pressure turbine inlet and the upstream side of the low-pressure turbine inlet, the effect is high. Further, in the embodiment of the present invention, the extraction flow control valve is installed only in one extraction pipe, but there is a case where the feed water temperature may not be lowered sufficiently only by reducing the extraction steam amount in one extraction pipe. In this case, an extraction flow control valve is installed on a plurality of extraction pipes.

また、一般的に沸騰水型軽水炉発電プラントにおいては、原子炉熱出力102%程度までは給水流量計測器などの計測精度を向上するだけで実施可能であり、本発明のように給水温度を減少する必要が無いので、本発明は原子炉熱出力102%より高く105%未満の範囲での増出力に対して効果が大きい。さらに、原子炉熱出力105%〜120%の範囲での増出力では、一般的に高圧タービンの交換などの大幅なシステム機器の変更は不要である。本発明のように給水温度を下げる増出力手法を用いれば、原子炉熱出力105%を超える増出力時でも高圧タービンの交換が不要となるため、本発明は原子炉熱出力を
105%以上まで増加させる場合に特に大きな効果が得られる。
In general, in a boiling water light water reactor power plant, up to about 102% of the reactor thermal output can be implemented simply by improving the measurement accuracy of the feed water flow meter, etc., and the feed water temperature is reduced as in the present invention. Therefore, the present invention is very effective for increasing the power in the range higher than the reactor thermal output 102% and lower than 105%. Furthermore, in the case of an increase in the reactor heat output in the range of 105% to 120%, generally no significant system equipment change such as replacement of a high-pressure turbine is required. If the power increase method for lowering the feed water temperature is used as in the present invention, it is not necessary to replace the high-pressure turbine even at a power increase exceeding the reactor thermal output of 105%. A particularly large effect can be obtained when the number is increased.

本発明を間接サイクル型原子力プラントの一つである加圧水型軽水炉発電プラントに適用した場合の例を示す。   The example at the time of applying this invention to the pressurized water type light water reactor power plant which is one of the indirect cycle type nuclear power plants is shown.

図9に本発明の他の実施例である第六実施例の加圧水型軽水炉発電プラントの系統を示す。第六実施例で用いる給水温度制御ロジックは図2に示すとおりである。   FIG. 9 shows a system of a pressurized water light water reactor power plant according to a sixth embodiment which is another embodiment of the present invention. The feed water temperature control logic used in the sixth embodiment is as shown in FIG.

図9は原子炉圧力容器1,原子炉圧力容器内の炉心で発生した熱を2次系に伝える蒸気発生器23,蒸気発生器から出た2次系の蒸気をタービンへと導く主蒸気管2、および主蒸気管に繋がる高圧タービン3と低圧タービン5、および高圧タービンと低圧タービンとの間に湿分分離過熱器24を有し、低圧タービン出口には復水器6を設置し、復水器の下流側には低圧給水加熱器7,給水ポンプ8および高圧給水加熱器9を有する加圧水型軽水炉において、本発明を実施する場合のプラント系統例を模式的に示したものである。なお、一運転サイクルは原子炉の起動から燃料交換のために原子炉の運転を停止するまでの期間と定義している。   FIG. 9 shows a reactor pressure vessel 1, a steam generator 23 for transmitting heat generated in the core in the reactor pressure vessel to the secondary system, and a main steam pipe for guiding the secondary system steam emitted from the steam generator to the turbine. 2 and a high-pressure turbine 3 and a low-pressure turbine 5 connected to the main steam pipe, and a moisture separation superheater 24 between the high-pressure turbine and the low-pressure turbine, and a condenser 6 is installed at the outlet of the low-pressure turbine. In a pressurized water light water reactor having a low-pressure feed water heater 7, a feed water pump 8, and a high-pressure feed water heater 9 on the downstream side of the water vessel, an example of a plant system in the case of carrying out the present invention is schematically shown. One operation cycle is defined as the period from the start of the reactor to the shutdown of the reactor for fuel replacement.

原子炉熱出力を増加させた場合は、蒸気発生器での熱交換量が原子炉熱出力の増加量にほぼ比例して増加する。増加した蒸気発生器での熱交換量を取るためには蒸気発生器への給水流量を増加するか、または蒸気発生器の入口・出口の冷却材のエンタルピ差を拡大する必要がある。従来の増出力手法では前者の手法を取っており、蒸気発生器の熱交換量と比例させて給水流量を増やしている。一方で新たな増出力手法として、後者の手法を取り蒸気発生器入口の冷却材エンタルピ(温度)を意図的に下げることで、蒸気発生器入口・出口のエンタルピ差を拡大して、増出力時の主蒸気流量および給水流量の増加を抑制する手法も提案されている。本発明はこの新たな増出力手法に対応するためのものであり、給水温度をプラント建設時の想定範囲よりもさらに低い温度まで下げるため、給水温度制御範囲を拡大するための機器を追設する必要がある。   When the reactor heat output is increased, the amount of heat exchange in the steam generator increases almost in proportion to the increase in the reactor heat output. In order to obtain an increased amount of heat exchange in the steam generator, it is necessary to increase the feed water flow rate to the steam generator or to enlarge the difference in enthalpy of the coolant at the inlet and outlet of the steam generator. In the conventional method of increasing output, the former method is used, and the feed water flow rate is increased in proportion to the heat exchange amount of the steam generator. On the other hand, as a new power increase method, the latter method is adopted and the coolant enthalpy (temperature) at the steam generator inlet is intentionally lowered to increase the enthalpy difference between the steam generator inlet and outlet to increase the output. A method for suppressing the increase in the main steam flow rate and the feed water flow rate has also been proposed. The present invention is to cope with this new power increase method, and in order to lower the feed water temperature to a temperature lower than the assumed range at the time of plant construction, a device for expanding the feed water temperature control range is additionally installed. There is a need.

給水温度範囲は低温側に拡大する必要があるため、増出力実施前に比較して給水加熱用の抽気蒸気量を減少させる必要がある。給水加熱用の抽気蒸気は高圧タービンおよび低圧タービンを含む主蒸気系から抽気して、抽気管10を通り、高圧給水加熱器または低圧給水加熱器へと送られる。現行の加圧水型軽水炉では、主要な抽気点は高圧タービン入口より下流側で低圧タービン出口より上流側に複数設置されている。抽気蒸気量を減少させるためには、抽気管上に抽気流量制御弁11を設置すれば良い。   Since it is necessary to expand the feed water temperature range to the low temperature side, it is necessary to reduce the amount of extracted steam for heating the feed water as compared to before the increase in output. The extraction steam for heating the feed water is extracted from the main steam system including the high-pressure turbine and the low-pressure turbine, passes through the extraction pipe 10, and is sent to the high-pressure feed water heater or the low-pressure feed water heater. In the current pressurized water reactor, a plurality of major extraction points are installed downstream from the high-pressure turbine inlet and upstream from the low-pressure turbine outlet. In order to reduce the amount of extracted steam, the extraction flow control valve 11 may be installed on the extraction pipe.

本発明が対象とする増出力手法を採用する場合には、給水温度が設定した値まできちんと下がっていることが重要である。そのため、給水系統上にある給水加熱器出口に給水温度計測器12を設置し、抽気流量制御器13で抽気流量を制御する。給水温度計測器は抽気量を制御している給水加熱器より下流側で蒸気発生器入口よりも上流側に設置すれば良い。すなわち給水温度計測器は、抽気量を制御している給水加熱器よりも下流側の任意の給水加熱器の間に設置しても良いし、最終段の給水加熱器出口と蒸気発生器入口の間に設置しても良い。   In the case of adopting the increase output method targeted by the present invention, it is important that the feed water temperature is properly lowered to the set value. Therefore, the feed water temperature measuring device 12 is installed at the feed water heater outlet on the feed water system, and the extraction flow rate controller 13 controls the extraction flow rate. The feed water temperature measuring device may be installed on the downstream side of the feed water heater that controls the extraction amount and upstream of the steam generator inlet. In other words, the feed water temperature measuring device may be installed between any feed water heaters downstream of the feed water heater that controls the extraction amount, or between the feed water heater outlet and the steam generator inlet at the final stage. It may be installed in between.

本実施例である第六実施例で用いる抽気流量制御器の制御ロジック例を、図2を用いて説明する。抽気流量制御器の入力としては、給水温度計測器で測定した給水温度計測値信号14と、給水温度の設定値信号15を用いる。抽気流量制御器の出力は、抽気流量制御弁の開度要求信号16である。給水温度の計測値が給水温度の設定値よりも低い場合には、抽気量が不足しているということであるので、抽気流量制御弁を開く方向の開度要求信号を出力する。逆に、給水温度の計測値が設定値よりも高い場合には、抽気量が多すぎるということであるので、抽気流量制御弁を閉める方向の開度要求信号を出力する。   An example of the control logic of the extraction flow controller used in the sixth embodiment, which is this embodiment, will be described with reference to FIG. As an input to the extraction flow controller, a feed water temperature measurement value signal 14 measured by a feed water temperature measuring device and a feed water temperature set value signal 15 are used. The output of the extraction flow controller is an opening request signal 16 for the extraction flow control valve. If the measured value of the feed water temperature is lower than the set value of the feed water temperature, it means that the extraction amount is insufficient, and therefore an opening degree request signal in the direction to open the extraction flow control valve is output. On the other hand, when the measured value of the feed water temperature is higher than the set value, it means that the amount of extraction is too large, and therefore an opening degree request signal in the direction to close the extraction flow control valve is output.

本実施例によれば、給水温度を常に設定した温度に保つことができるため、原子炉の増出力時に給水温度を低下させることで主蒸気流量や給水流量の増加を抑制できる。さらに、給水温度をリアルタイムに調整することが可能であるので、原子力発電プラントの熱出力を変更した場合でもそれに合わせて給水温度の設定値を変更すれば、主蒸気流量や給水流量を一定に保ったままで、原子力発電プラントの負荷追従運転にも適用できる。   According to the present embodiment, since the feed water temperature can be always maintained at a set temperature, an increase in the main steam flow rate and the feed water flow rate can be suppressed by reducing the feed water temperature at the time of increased output of the nuclear reactor. Furthermore, since the feed water temperature can be adjusted in real time, the main steam flow rate and feed water flow rate can be kept constant by changing the set value of the feed water temperature accordingly even when the heat output of the nuclear power plant is changed. It can also be applied to load following operation of nuclear power plants.

図10に、本発明の他の実施例である第七実施例の加圧水型軽水炉発電プラントの系統を示す。   FIG. 10 shows a system of a pressurized water light water reactor power plant according to a seventh embodiment which is another embodiment of the present invention.

本実施例と第六実施例の違いは、抽気流量制御器の入力として用いる計測器である。本実施例では、抽気流量制御弁を設置した抽気管上に抽気流量計測器17を設置している。抽気流量制御弁と抽気流量計測器はどちらが上流側にきても良い。抽気管が途中で他の抽気管と合流する場合は、下流側に位置する抽気流量制御弁または抽気流量計測器は、合流後の配管上にあっても良い。また抽気管が途中で分岐する場合は、下流側に位置する抽気流量制御弁または抽気流量計測器は、分岐後の配管上にあっても良い。原子炉の熱出力,給水流量、および抽気流量が既知であれば、給水温度はプラントの熱バランスから一意的に決まる。よって、本実施例のように抽気管上に抽気流量計測器を設置して抽気量を計測することは、給水温度を計測することと同等である。   The difference between the present embodiment and the sixth embodiment is a measuring instrument used as an input of the extraction flow controller. In this embodiment, the extraction flow rate measuring device 17 is installed on the extraction pipe where the extraction flow control valve is installed. Either the bleed flow control valve or the bleed flow meter may be on the upstream side. When the extraction pipe merges with another extraction pipe on the way, the extraction flow control valve or the extraction flow measuring instrument located on the downstream side may be on the pipe after the merge. When the extraction pipe branches in the middle, the extraction flow control valve or the extraction flow measuring instrument located on the downstream side may be on the branched pipe. If the reactor heat output, feedwater flow rate, and extraction flow rate are known, the feedwater temperature is uniquely determined from the plant thermal balance. Therefore, installing the extraction flow rate measuring device on the extraction pipe as in this embodiment and measuring the extraction amount is equivalent to measuring the feed water temperature.

本実施例では、抽気流量制御器の入力として、抽気流量計測器で測定した抽気流量計測値信号18と、抽気流量の設定値信号19を用いる。抽気流量制御器の出力は、抽気流量制御弁の開度要求信号である。抽気流量の計測値が抽気流量の設定値よりも小さい場合には、抽気量が不足しているということであるので、抽気流量制御弁を開く方向の開度要求信号を出力する。逆に、抽気流量の計測値が設定値よりも大きい場合には、抽気量が多すぎるということであるので、抽気流量制御弁を閉める方向の開度要求信号を出力する。   In this embodiment, the extraction flow rate measurement value signal 18 measured by the extraction flow rate measuring device and the extraction flow rate set value signal 19 are used as the input of the extraction flow rate controller. The output of the extraction flow controller is an opening request signal for the extraction flow control valve. When the measured value of the bleed flow rate is smaller than the set value of the bleed flow rate, it means that the bleed amount is insufficient, and therefore an opening request signal in the direction to open the bleed flow rate control valve is output. On the contrary, if the measured value of the extraction flow rate is larger than the set value, it means that the extraction amount is too large, and therefore an opening degree request signal in the direction to close the extraction flow control valve is output.

ここでは、抽気流量計測器を単独で用いる場合の例を示したが、第一実施例と同様に給水温度計測器を設置して、抽気流量による制御と給水温度による制御を組み合わせても良い。図11に、第六実施例及び第七実施例の各技術的思想を組み合わせた、本発明の他の実施例である第八実施例の加圧水型軽水炉発電プラントの系統例を示す。また、本実施例で用いる制御ロジックは、図5に示す制御ロジックである。抽気流量制御弁を調整してから実際に給水温度が変化するまでにはある程度の時間遅れがあるため、短い周期で抽気流量が変動するときには抽気流量を用いた制御を優先させ、比較的長い時間にわたって給水温度が下がっているまたは上がっている場合には給水温度による制御を優先させるなどして、役割を分ける。具体的には図5に示したように、給水温度による制御で抽気流量の設定値を定め、その設定値と抽気流量の測定値との差から抽気流量制御弁の開度要求信号を出力すれば良い。   Here, although the example in the case of using a bleed flow rate measuring device alone was shown, you may install the feed water temperature measuring device similarly to 1st Example, and may combine the control by bleed flow rate and the control by feed water temperature. FIG. 11 shows a system example of a pressurized water reactor of the eighth embodiment, which is another embodiment of the present invention, combining the technical ideas of the sixth embodiment and the seventh embodiment. Further, the control logic used in this embodiment is the control logic shown in FIG. Since there is a certain time delay between the adjustment of the extraction flow control valve and the actual change of the feed water temperature, priority is given to the control using the extraction flow when the extraction flow fluctuates in a short cycle, and a relatively long time When the water supply temperature is lowered or increased over time, the role is divided by giving priority to the control based on the water supply temperature. Specifically, as shown in FIG. 5, a setting value of the extraction flow rate is determined by control based on the feed water temperature, and an opening degree request signal for the extraction flow control valve is output from the difference between the setting value and the measurement value of the extraction flow rate. It ’s fine.

図12に、本発明の他の実施例である第九実施例の加圧水型軽水炉発電プラントの系統を示す。本実施例と第六実施例の違いは、抽気流量制御器の入力として用いる計測器である。本実施例では、原子炉より下流側で高圧タービン入口よりも上流側に、主蒸気流量計測器20を設置している。原子炉の熱出力と主蒸気流量が既知であれば、給水温度はプラントの熱バランスから一意的に決まる。よって、本実施例のように主蒸気流量計測器を設置して主蒸気流量を計測することは、給水温度を計測することと同等である。   FIG. 12 shows a system of a pressurized water LWR power plant according to the ninth embodiment which is another embodiment of the present invention. The difference between the present embodiment and the sixth embodiment is a measuring instrument used as an input of the extraction flow controller. In this embodiment, the main steam flow rate measuring device 20 is installed downstream of the reactor and upstream of the high-pressure turbine inlet. If the reactor heat output and main steam flow are known, the feedwater temperature is uniquely determined from the heat balance of the plant. Therefore, installing a main steam flow rate measuring device and measuring the main steam flow rate as in this embodiment is equivalent to measuring the feed water temperature.

本実施例では、抽気流量制御器の入力としては、主蒸気流量計測器で測定した主蒸気流量計測値信号21と、主蒸気流量の設定値信号22を用いる。抽気流量制御器の出力は、抽気流量制御弁の開度要求信号である。主蒸気流量の計測値が主蒸気流量の設定値よりも小さい場合には、給水温度が低すぎる、すなわち抽気量が不足しているということであるので、抽気流量制御弁を開く方向の開度要求信号を出力する。逆に、主蒸気流量の計測値が設定値よりも大きい場合には、給水温度が高すぎる、すわなち抽気量が多すぎるということであるので、抽気流量制御弁を閉める方向の開度要求信号を出力する。   In this embodiment, the main steam flow rate measurement value signal 21 measured by the main steam flow rate measuring device and the main steam flow rate set value signal 22 are used as the input of the extraction flow rate controller. The output of the extraction flow controller is an opening request signal for the extraction flow control valve. If the measured value of the main steam flow rate is smaller than the set value of the main steam flow rate, it means that the feed water temperature is too low, that is, the extraction amount is insufficient. Outputs a request signal. Conversely, if the measured value of the main steam flow rate is larger than the set value, it means that the feed water temperature is too high, that is, the amount of bleed air is too large. Output a signal.

ここでは、主蒸気流量計測器を単独で用いる場合の例を示したが、第一実施例と同様に給水温度計測器を設置して、主蒸気流量による制御と給水温度による制御を組み合わせる、または第二実施例と同様に抽気流量計測器を設置して、主蒸気流量による制御と抽気流量による制御を組み合わせる、またはこれら全てを組み合わせても良い。図13に、第六実施例,第七実施例および第九実施例の各技術的思想を組み合わせた、本発明の他の実施例である第十実施例の加圧水型軽水炉発電プラントの系統例を示す。また、本実施例で用いる制御ロジックは、図8に示す制御ロジックである。抽気流量制御弁を調整してから実際に主蒸気流量が変化するまでには時間遅れがあり、抽気流量制御弁を調整してから実際に給水温度が変化するまでには主蒸気流量よりは短いがある程度の時間遅れがある。逆に、抽気流量制御弁を調整してから抽気流量が変化するまでの時間遅れは短い。よって、短い周期で抽気流量が変動するときには抽気流量を用いた制御を優先させ、比較的長い時間にわたって給水温度が下がっているまたは上がっている場合には給水温度による制御を優先させ、さらに長い時間にわたって主蒸気流量が増加または減少している場合には主蒸気流量による制御を優先させるなどして、役割を分ける。具体的には図8に示したように、主蒸気流量による制御で給水温度の設定値を定め、給水温度の設定値と給水温度の測定値の差から抽気流量の設定値を定め、抽気流量の設定値と抽気流量の測定値との差から抽気流量制御弁の開度要求信号を出力すれば良い。   Here, an example in which the main steam flow rate measuring device is used alone has been shown, but a feed water temperature measuring device is installed in the same manner as in the first embodiment, and the control by the main steam flow rate and the control by the feed water temperature are combined, or Similarly to the second embodiment, an extraction flow measuring device may be installed, and the control based on the main steam flow and the control based on the extraction flow may be combined, or all of these may be combined. FIG. 13 shows a system example of the pressurized water reactor according to the tenth embodiment, which is another embodiment of the present invention, combining the technical ideas of the sixth embodiment, the seventh embodiment and the ninth embodiment. Show. The control logic used in this embodiment is the control logic shown in FIG. There is a time lag between the adjustment of the extraction flow control valve and the actual change of the main steam flow, and it is shorter than the main steam flow from the adjustment of the extraction flow control valve to the actual change of the feed water temperature. There is a certain time delay. Conversely, the time delay from the adjustment of the extraction flow control valve to the change of the extraction flow is short. Therefore, priority is given to control using the bleed flow rate when the bleed flow rate fluctuates in a short cycle, and priority is given to control by the feed water temperature if the feed water temperature has fallen or increased over a relatively long time, and a longer time. When the main steam flow rate increases or decreases over the entire range, priority is given to the control based on the main steam flow rate, and the role is divided. Specifically, as shown in FIG. 8, the set value of the feed water temperature is determined by the control based on the main steam flow rate, and the set value of the extraction flow rate is determined from the difference between the set value of the feed water temperature and the measured value of the feed water temperature. The opening request signal of the extraction flow control valve may be output from the difference between the set value and the extraction flow measurement value.

本発明の第六実施例,第七実施例,第九実施例は加圧水型軽水炉を例にとって記載したが、本発明は加圧水型軽水炉以外の間接サイクル型のプラントにも適用可能である。   Although the sixth embodiment, the seventh embodiment, and the ninth embodiment of the present invention have been described by taking the pressurized water light water reactor as an example, the present invention can also be applied to an indirect cycle type plant other than the pressurized water light water reactor.

なお、一般的に、抽気量を減少させて給水温度を低下させるとプラント熱効率は減少するが、その熱効率の減少を抑制するにはなるべく上流側の抽気点からの抽気蒸気量を減らした方が良い。よって抽気流量制御弁は、高圧タービン入口より下流側で低圧タービン入口より上流側から抽気する抽気管上に設置すると効果が高い。また、本発明の実施例では抽気管1本のみに抽気流量制御弁を設置したが、抽気管1本の抽気蒸気量を減少させただけでは十分に給水温度が下がらない場合もあるため、その場合は複数の抽気管上に抽気流量制御弁を設置する。   In general, when the amount of extraction is reduced and the feed water temperature is lowered, the plant thermal efficiency is reduced, but in order to suppress the decrease in thermal efficiency, it is better to reduce the amount of extraction steam from the upstream extraction point as much as possible. good. Therefore, if the extraction flow control valve is installed on the extraction pipe that extracts air from the downstream side of the high-pressure turbine inlet and the upstream side of the low-pressure turbine inlet, the effect is high. Further, in the embodiment of the present invention, the extraction flow control valve is installed only in one extraction pipe, but there is a case where the feed water temperature may not be lowered sufficiently only by reducing the extraction steam amount in one extraction pipe. In this case, an extraction flow control valve is installed on a plurality of extraction pipes.

また、一般的に加圧水型軽水炉においては、原子炉熱出力102%程度までは給水流量計測器などの計測精度を向上するだけで実施可能であり、本発明のように給水温度を減少する必要が無いので、本発明は原子炉熱出力102%より高く5%未満の範囲での増出力に対して効果が大きい。さらに、原子炉熱出力105%〜120%の範囲での増出力では、一般的に高圧タービンの交換などの大幅なシステム機器の変更は不要である。本発明のように給水温度を下げる増出力手法を用いれば、原子炉熱出力105%を超える増出力時でも高圧タービンの交換が不要となるため、本発明は原子炉熱出力を105%以上まで増加させる場合に特に大きな効果が得られる。   In general, in a pressurized water reactor, up to about 102% of the reactor thermal output can be implemented simply by improving the measurement accuracy of the feed water flow meter, and it is necessary to reduce the feed water temperature as in the present invention. Therefore, the present invention is highly effective for increasing the power in the range higher than the reactor thermal power 102% and lower than 5%. Furthermore, in the case of an increase in the reactor heat output in the range of 105% to 120%, generally no significant system equipment change such as replacement of a high-pressure turbine is required. If the power increase method for lowering the feed water temperature is used as in the present invention, it is not necessary to replace the high-pressure turbine even at a power increase exceeding the reactor heat output of 105%. Therefore, the present invention increases the reactor heat output to 105% or more. A particularly large effect can be obtained when the number is increased.

本発明の好適な実施例である第一実施例の沸騰水型軽水炉発電プラント系統図。The boiling water type light water reactor power plant system diagram of the 1st example which is a suitable example of the present invention. 抽気流量制御器の制御ロジックを示す説明図。Explanatory drawing which shows the control logic of an extraction flow controller. 本発明の他の実施例である第二実施例の沸騰水型軽水炉発電プラントの系統図。The system diagram of the boiling water type light water reactor power plant of 2nd Example which is another Example of this invention. 上記第一実施例及び第二実施例の各技術的思想を組み合わせた、本発明の他の実施例である第三実施例の沸騰水型軽水炉発電プラントの系統図。The system diagram of the boiling water type light water reactor power plant of 3rd Example which is another Example of this invention which combined each technical idea of the said 1st Example and 2nd Example. 図4に示す実施例における抽気流量制御器の制御ロジックを示す説明図。Explanatory drawing which shows the control logic of the extraction flow controller in the Example shown in FIG. 本発明の他の実施例である第四実施例の沸騰水型軽水炉発電プラントの系統図。The system diagram of the boiling water type light water reactor power plant of 4th Example which is another Example of this invention. 上記の第一実施例,第二実施例および第四実施例の各技術的思想を組み合わせた、本発明の他の実施例である第五実施例の沸騰水型軽水炉発電プラントの系統図。The system diagram of the boiling water type light water reactor power plant of 5th Example which is another Example of this invention which combined each technical idea of said 1st Example, 2nd Example, and 4th Example. 図7に示す実施例における抽気流量制御器の制御ロジックを示す説明図。Explanatory drawing which shows the control logic of the extraction air flow controller in the Example shown in FIG. 本発明の他の実施例である第六実施例の加圧水型軽水炉発電プラントの系統図。The system diagram of the pressurized water light water reactor power plant of 6th Example which is another Example of this invention. 本発明の他の実施例である第七実施例の加圧水型軽水炉発電プラントの系統図。The system diagram of the pressurized water light water reactor power plant of 7th Example which is another Example of this invention. 上記の第六実施例及び第七実施例の各技術的思想を組み合わせた、本発明の他の実施例である第八実施例の加圧水型軽水炉発電プラントの系統図。The system diagram of the pressurized water reactor power plant of the eighth embodiment which is another embodiment of the present invention, combining the technical ideas of the sixth embodiment and the seventh embodiment. 本発明の他の実施例である第九実施例の加圧水型軽水炉発電プラントの系統図。The system diagram of the pressurized water light water reactor power plant of 9th Example which is another Example of this invention. 上記の第六実施例,第七実施例および第九実施例の各技術的思想を組み合わせた、本発明の他の実施例である第十実施例の加圧水型軽水炉発電プラントの系統図。The system diagram of the pressurized water reactor power plant of 10th Example which is another Example of this invention which combined each technical idea of said 6th Example, 7th Example, and 9th Example.

符号の説明Explanation of symbols

1…原子炉圧力容器、2…主蒸気管、3…高圧タービン、4…湿分分離器、5…低圧タービン、6…復水器、7…低圧給水加熱器、8…給水ポンプ、9…高圧給水加熱器、10…抽気管、11…抽気流量調整弁、12…給水温度計測器、13…抽気流量制御器、14…給水温度計測値信号、15…給水温度設定値信号、16…抽気流量制御弁開度要求信号、17…抽気流量計測器、18…抽気流量計測値信号、19…抽気流量設定値信号、20…主蒸気流量計測器、21…主蒸気流量計測値信号、22…主蒸気流量設定値信号、23…蒸気発生器、24…湿分分離過熱器。   DESCRIPTION OF SYMBOLS 1 ... Reactor pressure vessel, 2 ... Main steam pipe, 3 ... High pressure turbine, 4 ... Moisture separator, 5 ... Low pressure turbine, 6 ... Condenser, 7 ... Low pressure feed water heater, 8 ... Feed water pump, 9 ... High pressure feed water heater, 10 ... Extraction pipe, 11 ... Extraction flow rate adjustment valve, 12 ... Feed water temperature measuring device, 13 ... Extraction flow rate controller, 14 ... Feed water temperature measurement value signal, 15 ... Feed water temperature set value signal, 16 ... Extraction Flow rate control valve opening request signal, 17 ... Extraction flow rate measuring device, 18 ... Extraction flow rate measurement value signal, 19 ... Extraction flow rate set value signal, 20 ... Main steam flow rate measurement device, 21 ... Main steam flow rate measurement value signal, 22 ... Main steam flow rate setpoint signal, 23 ... steam generator, 24 ... moisture separation superheater.

Claims (9)

原子炉と、
該原子炉で発生する蒸気が供給される高圧タービン及び低圧タービンを含む蒸気系と、
該低圧タービンから排出された蒸気を凝縮する復水器と、
該復水器から供給された給水を加熱する複数段の給水加熱器と、
前記蒸気系の途中から蒸気を抽気して前記給水加熱器に接続する抽気管を少なくとも1本以上含み、
前記複水器より出て前記給水加熱器を通った後に給水を前記原子炉に向けて導く給水系とを備える原子力発電プラントにおいて、
前記抽気管の少なくとも1本以上の途中には抽気流量制御弁を備え、前記給水系上の複数段ある給水加熱器の間または最終段の給水加熱器の出口より下流側で前記原子炉より上流側には少なくとも1つ以上の温度計測手段を備え、
前記温度計測手段の計測値と給水温度の設定値を入力として用い、前記抽気流量制御弁の開度要求を出力する抽気流量制御器を備えることで、
前記原子炉の第2運転サイクルにおける第2原子炉熱出力を、該第2運転サイクルより前の第1運転サイクルにおける第1原子炉熱出力よりも増大させ、
前記原子炉の第2運転サイクルにおける第2給水温度を、該第2運転サイクルより前の第1運転サイクルにおける第1給水温度よりも減少させた運転を行うことを特徴とする原子力発電プラント。
A nuclear reactor,
A steam system including a high-pressure turbine and a low-pressure turbine to which steam generated in the nuclear reactor is supplied;
A condenser for condensing steam discharged from the low-pressure turbine;
A plurality of feed water heaters for heating the feed water supplied from the condenser;
Including at least one extraction pipe for extracting steam from the middle of the steam system and connecting to the feed water heater;
In a nuclear power plant comprising a water supply system that guides feed water to the nuclear reactor after passing through the feed water heater from the double water heater,
An extraction flow rate control valve is provided in the middle of at least one of the extraction pipes, and is provided between a plurality of feed water heaters on the feed water system or downstream from the outlet of the last feed water heater and upstream from the reactor. At least one temperature measuring means is provided on the side,
By using the measurement value of the temperature measurement means and the set value of the feed water temperature as input, and including a bleed flow controller for outputting an opening request of the bleed flow control valve,
Increasing the second reactor heat output in the second operating cycle of the reactor above the first reactor heat output in the first operating cycle prior to the second operating cycle;
A nuclear power plant that performs an operation in which a second feed water temperature in a second operation cycle of the nuclear reactor is decreased from a first feed water temperature in a first operation cycle before the second operation cycle.
原子炉と、
該原子炉で発生する蒸気が供給される高圧タービン及び低圧タービンを含む蒸気系と、
該低圧タービンから排出された蒸気を凝縮する復水器と、
該復水器から供給された給水を加熱する複数段の給水加熱器と、
前記蒸気系の途中から蒸気を抽気して前記給水加熱器に接続する抽気管を少なくとも1本以上含み、
前記複水器より出て前記給水加熱器を通った後に給水を前記原子炉に向けて導く給水系とを備える原子力発電プラントにおいて、
前記抽気管の少なくとも1本以上の途中には同じ抽気管上に抽気流量制御弁と抽気流量計測手段を備え、
前記抽気流量計測手段の計測値と抽気流量の設定値を入力として用い、前記抽気流量制御弁の開度要求を出力する抽気流量制御器を備えることで、
前記原子炉の第2運転サイクルにおける第2原子炉熱出力を、該第2運転サイクルより前の第1運転サイクルにおける第1原子炉熱出力よりも増大させ、
前記原子炉の第2運転サイクルにおける第2給水温度を、該第2運転サイクルより前の第1運転サイクルにおける第1給水温度よりも減少させた運転を行うことを特徴とする原子力発電プラント。
A nuclear reactor,
A steam system including a high-pressure turbine and a low-pressure turbine to which steam generated in the nuclear reactor is supplied;
A condenser for condensing steam discharged from the low-pressure turbine;
A plurality of feed water heaters for heating the feed water supplied from the condenser;
Including at least one extraction pipe for extracting steam from the middle of the steam system and connecting to the feed water heater;
In a nuclear power plant comprising a water supply system that guides feed water to the nuclear reactor after passing through the feed water heater from the double water heater,
In the middle of at least one of the bleed pipes, the bleed flow control valve and the bleed flow measuring means are provided on the same bleed pipe,
By using a measurement value of the extraction flow rate measuring means and a set value of the extraction flow rate as inputs, and including an extraction flow controller that outputs an opening degree request of the extraction flow control valve,
Increasing the second reactor heat output in the second operating cycle of the reactor above the first reactor heat output in the first operating cycle prior to the second operating cycle;
A nuclear power plant that performs an operation in which a second feed water temperature in a second operation cycle of the nuclear reactor is decreased from a first feed water temperature in a first operation cycle before the second operation cycle.
原子炉と、
該原子炉で発生する蒸気が供給される高圧タービン及び低圧タービンを含む蒸気系と、
該低圧タービンから排出された蒸気を凝縮する復水器と、
該復水器から供給された給水を加熱する複数段の給水加熱器と、
前記蒸気系の途中から蒸気を抽気して前記給水加熱器に接続する抽気管を少なくとも1本以上含み、
前記複水器より出て前記給水加熱器を通った後に給水を前記原子炉に向けて導く給水系とを備える原子力発電プラントにおいて、
前記抽気管の少なくとも1本以上の途中には抽気流量制御弁を備え、前記原子炉より下流側で前記高圧タービンよりも上流側には少なくとも1つ以上の主蒸気流量計測手段を備え、
前記主蒸気流量計測手段の計測値と主蒸気流量の設定値を入力として用い、前記抽気流量制御弁の開度要求を出力する抽気流量制御器を備えることで、
前記原子炉の第2運転サイクルにおける第2原子炉熱出力を、該第2運転サイクルより前の第1運転サイクルにおける第1原子炉熱出力よりも増大させ、
前記原子炉の第2運転サイクルにおける第2給水温度を、該第2運転サイクルより前の第1運転サイクルにおける第1給水温度よりも減少させた運転を行うことを特徴とする原子力発電プラント。
A nuclear reactor,
A steam system including a high-pressure turbine and a low-pressure turbine to which steam generated in the nuclear reactor is supplied;
A condenser for condensing steam discharged from the low-pressure turbine;
A plurality of feed water heaters for heating the feed water supplied from the condenser;
Including at least one extraction pipe for extracting steam from the middle of the steam system and connecting to the feed water heater;
In a nuclear power plant comprising a water supply system that guides feed water to the nuclear reactor after passing through the feed water heater from the double water heater,
In the middle of at least one of the extraction pipes, an extraction flow control valve is provided, and at least one main steam flow measurement means is provided downstream from the reactor and upstream from the high-pressure turbine,
By using a measurement value of the main steam flow rate measuring means and a set value of the main steam flow rate as inputs, and including a bleed flow rate controller that outputs an opening degree request of the bleed flow rate control valve,
Increasing the second reactor heat output in the second operating cycle of the reactor above the first reactor heat output in the first operating cycle prior to the second operating cycle;
A nuclear power plant that performs an operation in which a second feed water temperature in a second operation cycle of the nuclear reactor is decreased from a first feed water temperature in a first operation cycle before the second operation cycle.
原子炉と、
該原子炉で加熱された冷却材を熱源にして蒸気を発生する蒸気発生器と、
該蒸気発生器で発生する蒸気が供給される高圧タービン及び低圧タービンを含む蒸気系と、
該低圧タービンから排出された蒸気を凝縮する復水器と、
該復水器から供給された給水を加熱する給水加熱器と、
前記蒸気系の途中から蒸気を抽気して前記給水加熱器に接続する抽気管を少なくとも1本以上含み、
前記複水器より出て前記給水加熱器を通った後に給水を前記蒸気発生器に向けて導く給水系とを備える原子力発電プラントにおいて、
前記抽気管の少なくとも1本以上の途中には抽気流量制御弁を備え、前記給水系上の複数段ある給水加熱器の間または最終段の給水加熱器の出口より下流側で前記蒸気発生器より上流側には少なくとも1つ以上の温度計測手段を備え、
前記温度計測手段の計測値と給水温度の設定値を入力として用い、前記抽気流量制御弁の開度要求を出力する抽気流量制御器を備えることで、
前記原子炉の第2運転サイクルにおける第2原子炉熱出力を、該第2運転サイクルより前の第1運転サイクルにおける第1原子炉熱出力よりも増大させ、
前記原子炉の第2運転サイクルにおける第2給水温度を、該第2運転サイクルより前の第1運転サイクルにおける第1給水温度よりも減少させた運転を行うことを特徴とする原子力発電プラント。
A nuclear reactor,
A steam generator that generates steam using a coolant heated in the nuclear reactor as a heat source;
A steam system including a high-pressure turbine and a low-pressure turbine to which steam generated by the steam generator is supplied;
A condenser for condensing steam discharged from the low-pressure turbine;
A feed water heater for heating the feed water supplied from the condenser;
Including at least one extraction pipe for extracting steam from the middle of the steam system and connecting to the feed water heater;
In a nuclear power plant comprising a water supply system that guides the feed water toward the steam generator after passing through the feed water heater from the double water generator,
A bleed flow control valve is provided in the middle of at least one of the bleed pipes, and is provided between a plurality of feed water heaters on the feed water system or downstream of the outlet of the last feed water heater from the steam generator. At least one temperature measuring means is provided on the upstream side,
By using the measurement value of the temperature measurement means and the set value of the feed water temperature as input, and including a bleed flow controller for outputting an opening request of the bleed flow control valve,
Increasing the second reactor heat output in the second operating cycle of the reactor above the first reactor heat output in the first operating cycle prior to the second operating cycle;
A nuclear power plant that performs an operation in which a second feed water temperature in a second operation cycle of the nuclear reactor is decreased from a first feed water temperature in a first operation cycle prior to the second operation cycle.
原子炉と、
該原子炉で加熱された冷却材を熱源にして蒸気を発生する蒸気発生器と、
該蒸気発生器で発生する蒸気が供給される高圧タービン及び低圧タービンを含む蒸気系と、
該低圧タービンから排出された蒸気を凝縮する復水器と、
該復水器から供給された給水を加熱する給水加熱器と、
前記蒸気系の途中から蒸気を抽気して前記給水加熱器に接続する抽気管を少なくとも1本以上含み、
前記複水器より出て前記給水加熱器を通った後に給水を前記蒸気発生器に向けて導く給水系とを備える原子力発電プラントにおいて、
前記抽気管の少なくとも1本以上の途中には同じ抽気管上に抽気流量制御弁と抽気流量計測手段を備え、
前記抽気流量計測手段の計測値と抽気流量の設定値を入力として用い、前記抽気流量制御弁の開度要求を出力する抽気流量制御器を備えることで、
前記原子炉の第2運転サイクルにおける第2原子炉熱出力を、該第2運転サイクルより前の第1運転サイクルにおける第1原子炉熱出力よりも増大させ、
前記原子炉の第2運転サイクルにおける第2給水温度を、該第2運転サイクルより前の第1運転サイクルにおける第1給水温度よりも減少させた運転を行うことを特徴とする原子力発電プラント。
A nuclear reactor,
A steam generator that generates steam using a coolant heated in the nuclear reactor as a heat source;
A steam system including a high-pressure turbine and a low-pressure turbine to which steam generated by the steam generator is supplied;
A condenser for condensing steam discharged from the low-pressure turbine;
A feed water heater for heating the feed water supplied from the condenser;
Including at least one extraction pipe for extracting steam from the middle of the steam system and connecting to the feed water heater;
In a nuclear power plant comprising a water supply system that guides the feed water toward the steam generator after passing through the feed water heater from the double water generator,
In the middle of at least one of the bleed pipes, a bleed flow control valve and a bleed flow measuring means are provided on the same bleed pipe,
By using the measurement value of the extraction flow rate measuring means and the set value of the extraction flow rate as inputs, and including an extraction flow rate controller that outputs an opening request of the extraction flow rate control valve,
Increasing the second reactor heat output in the second operating cycle of the reactor above the first reactor heat output in the first operating cycle prior to the second operating cycle;
A nuclear power plant that performs an operation in which a second feed water temperature in a second operation cycle of the nuclear reactor is decreased from a first feed water temperature in a first operation cycle prior to the second operation cycle.
原子炉と、
該原子炉で加熱された冷却材を熱源にして蒸気を発生する蒸気発生器と、
該蒸気発生器で発生する蒸気が供給される高圧タービン及び低圧タービンを含む蒸気系と、
該低圧タービンから排出された蒸気を凝縮する復水器と、
該復水器から供給された給水を加熱する給水加熱器と、
前記蒸気系の途中から蒸気を抽気して前記給水加熱器に接続する抽気管を少なくとも1本以上含み、
前記複水器より出て前記給水加熱器を通った後に給水を前記蒸気発生器に向けて導く給水系とを備える原子力発電プラントにおいて、
前記抽気管の少なくとも1本以上の途中には抽気流量制御弁を備え、前記蒸気発生器より下流側で前記高圧タービンよりも上流側には少なくとも1つ以上の主蒸気流量計測手段を備え、
前記主蒸気流量計測手段の計測値と主蒸気流量の設定値を入力として用い、前記抽気流量制御弁の開度要求を出力する抽気流量制御器を備えることで、
前記原子炉の第2運転サイクルにおける第2原子炉熱出力を、該第2運転サイクルより前の第1運転サイクルにおける第1原子炉熱出力よりも増大させ、
前記原子炉の第2運転サイクルにおける第2給水温度を、該第2運転サイクルより前の第1運転サイクルにおける第1給水温度よりも減少させた運転を行うことを特徴とする原子力発電プラント。
A nuclear reactor,
A steam generator that generates steam using a coolant heated in the nuclear reactor as a heat source;
A steam system including a high-pressure turbine and a low-pressure turbine to which steam generated by the steam generator is supplied;
A condenser for condensing steam discharged from the low-pressure turbine;
A feed water heater for heating the feed water supplied from the condenser;
Including at least one extraction pipe for extracting steam from the middle of the steam system and connecting to the feed water heater;
In a nuclear power plant comprising a water supply system that guides the feed water toward the steam generator after passing through the feed water heater from the double water generator,
A bleed flow control valve is provided in the middle of at least one of the bleed pipes, and at least one main steam flow measuring means is provided downstream from the steam generator and upstream from the high-pressure turbine,
By using a measurement value of the main steam flow rate measuring means and a set value of the main steam flow rate as inputs, and including a bleed flow rate controller that outputs an opening degree request of the bleed flow rate control valve,
Increasing the second reactor heat output in the second operating cycle of the reactor above the first reactor heat output in the first operating cycle prior to the second operating cycle;
A nuclear power plant that performs an operation in which a second feed water temperature in a second operation cycle of the nuclear reactor is decreased from a first feed water temperature in a first operation cycle prior to the second operation cycle.
抽気流量制御弁を備える抽気管は、高圧タービン入口よりも下流側で低圧タービン入口よりも上流側から蒸気を抽気する抽気管である請求項1ないし請求項6のいずれか1項に記載の原子力発電プラント。   The nuclear power extraction unit according to any one of claims 1 to 6, wherein the extraction pipe including the extraction flow control valve is an extraction pipe for extracting steam from a downstream side of the high-pressure turbine inlet and an upstream side of the low-pressure turbine inlet. Power plant. 原子炉の第2運転サイクルにおける第2原子炉熱出力は、該第2運転サイクルより前の第1運転サイクルにおける第1原子炉熱出力よりも2%以上5%未満の範囲で大きいことを特徴とする請求項1ないし請求項7のいずれか1項に記載の原子力発電プラント。   The second reactor heat output in the second operation cycle of the nuclear reactor is larger than the first reactor heat output in the first operation cycle before the second operation cycle in a range of 2% or more and less than 5%. A nuclear power plant according to any one of claims 1 to 7. 原子炉の第2運転サイクルにおける第2原子炉熱出力は、該第2運転サイクルより前の第1運転サイクルにおける第1原子炉熱出力よりも5%〜20%の範囲で大きいことを特徴とする請求項1ないし請求項8のいずれか1項に記載の原子力発電プラント。

The second reactor heat output in the second operation cycle of the reactor is larger in the range of 5% to 20% than the first reactor heat output in the first operation cycle prior to the second operation cycle. A nuclear power plant according to any one of claims 1 to 8.

JP2005066498A 2005-01-28 2005-03-10 Nuclear power plant Active JP4431512B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2005066498A JP4431512B2 (en) 2005-03-10 2005-03-10 Nuclear power plant
US11/340,643 US7614233B2 (en) 2005-01-28 2006-01-27 Operation method of nuclear power plant
US12/574,219 US7997078B2 (en) 2005-01-28 2009-10-06 Operation method of nuclear power plant
US13/046,329 US8291704B2 (en) 2005-01-28 2011-03-11 Operation method of nuclear power plant
US13/046,294 US8453451B2 (en) 2005-01-28 2011-03-11 Operation method of nuclear power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005066498A JP4431512B2 (en) 2005-03-10 2005-03-10 Nuclear power plant

Publications (2)

Publication Number Publication Date
JP2006250658A JP2006250658A (en) 2006-09-21
JP4431512B2 true JP4431512B2 (en) 2010-03-17

Family

ID=37091330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005066498A Active JP4431512B2 (en) 2005-01-28 2005-03-10 Nuclear power plant

Country Status (1)

Country Link
JP (1) JP4431512B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8705682B2 (en) * 2007-07-13 2014-04-22 Ge-Hitachi Nuclear Energy Americas Llc Feedwater temperature control methods and systems

Also Published As

Publication number Publication date
JP2006250658A (en) 2006-09-21

Similar Documents

Publication Publication Date Title
US8887747B2 (en) System and method for drum level control
KR20210009279A (en) Steam power generation plant, method for modifying steam power generation plant and method for operating steam power generation
JP4504231B2 (en) Power plant reheat system
JP4794254B2 (en) Steam turbine plant and operation method thereof
JP4818391B2 (en) Steam turbine plant and operation method thereof
JP5783458B2 (en) Increased output operation method in steam power plant
JP2007309194A (en) Steam turbine plant
JP5591377B2 (en) Steam rankin plant
US10287922B2 (en) Steam turbine plant, combined cycle plant provided with same, and method of operating steam turbine plant
JP4431512B2 (en) Nuclear power plant
CN209978005U (en) Primary frequency modulation control system for secondary reheating unit
JP5667435B2 (en) Cogeneration nuclear power generation system
CN115468157A (en) Method and apparatus for controlling heat exchange in heat recovery steam generator
CN104074561B (en) Throttling adjusting system of cogeneration turbine unit and method of ordering power by heat
KR101520238B1 (en) Gas turbine cooling system, and gas turbine cooling method
JP4415189B2 (en) Thermal power plant
JP5792087B2 (en) Steam supply system and control method thereof
JP5985737B2 (en) Method for operating a power plant and power plant equipment
JP4399381B2 (en) Operation method of nuclear power plant
US10422251B2 (en) Method for cooling a steam turbine
JP2008304264A (en) Nuclear power plant and its operation method
JP4449620B2 (en) Nuclear power plant and operation method thereof
RU2600655C2 (en) Method of operating thermal power plant with open heat extraction system and device therefor
JP4516438B2 (en) Operation method of nuclear power plant
JP4127541B2 (en) Power generation / desalination complex plant and operation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070612

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20071122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091208

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091221

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121225

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4431512

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131225

Year of fee payment: 4