JP2008063984A - Low pressure steam turbine - Google Patents

Low pressure steam turbine Download PDF

Info

Publication number
JP2008063984A
JP2008063984A JP2006241103A JP2006241103A JP2008063984A JP 2008063984 A JP2008063984 A JP 2008063984A JP 2006241103 A JP2006241103 A JP 2006241103A JP 2006241103 A JP2006241103 A JP 2006241103A JP 2008063984 A JP2008063984 A JP 2008063984A
Authority
JP
Japan
Prior art keywords
steam turbine
low
blade
pressure steam
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006241103A
Other languages
Japanese (ja)
Other versions
JP4923880B2 (en
Inventor
Hisashi Hamatake
久司 濱武
Shigeki Senoo
茂樹 妹尾
Kiyoshi Segawa
清 瀬川
Tatsuo Mitani
辰雄 三谷
Kazuyuki Yamaguchi
和幸 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2006241103A priority Critical patent/JP4923880B2/en
Publication of JP2008063984A publication Critical patent/JP2008063984A/en
Application granted granted Critical
Publication of JP4923880B2 publication Critical patent/JP4923880B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a low pressure steam turbine with a moving blade capable of reducing vibrational stress associated with superimposing of random vibration and flashback vibration, in a large low pressure steam turbine. <P>SOLUTION: This low pressure steam turbine has a plurality of paragraphs constituted of a stationary blade and the moving blade, and the moving blade in the paragraph is made in a high damping structure of a head end overall peripheral connecting blade structure, etc. in having air bleed holes of steam for feed water heating of a feed water heater immediately before and after one of the paragraphs. Additionally, a steam flow rate of a low pressure steam turbine inlet is increased by more than about 10% of rating or quantity of hot water in the feed water heater is adjusted when pressure of steam in a steam channel reaching the feed water heater from a periphery of the air bleed hole on the side immediately before the moving blade becomes higher than a specified value. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は低圧蒸気タービンに係り、特に、最終段の動翼の翼長が52インチ以上の動翼を有する低圧蒸気タービンに関する。   The present invention relates to a low-pressure steam turbine, and more particularly, to a low-pressure steam turbine having a moving blade having a blade length of 52 inches or more in the final stage.

低圧蒸気タービンでは、低負荷時に復水器側からの蒸気の逆流により、動翼にランダム振動が発生することが知られている。この知見は低圧蒸気タービン動翼の設計に反映されている。ランダム振動については、非特許文献1や2に記載されている。     In low-pressure steam turbines, it is known that random vibrations are generated in the rotor blades due to the reverse flow of steam from the condenser side at low load. This knowledge is reflected in the design of low pressure steam turbine blades. Non-patent documents 1 and 2 describe the random vibration.

ア・ヴェ・シェグリヤエフほか,池田監訳,永島訳,蒸気タービン理論と構造,三宝社,p340, 1982A Ve Shegriyaev et al., Ikeda translation, Nagashima translation, steam turbine theory and structure, Sanposha, p340, 1982 M. Gloger 他 ADVANCED LP TURBINE BLADING; A RELIABLE AND HIGHLY EFFICIENT DESIGN PWR-VOL.18, STEAM TURBINE-GENERATOR DEVELOPMENTS FORTHE POWER GENERATION INDUSTRY, ASME 1992M. Gloger et al ADVANCED LP TURBINE BLADING; A RELIABLE AND HIGHLY EFFICIENT DESIGN PWR-VOL.18, STEAM TURBINE-GENERATOR DEVELOPMENTS FORTHE POWER GENERATION INDUSTRY, ASME 1992

近年、効率向上のために低圧蒸気タービンが大型化しているが、本発明者等の検討によれば、低圧タービンが大型化した際のランダム振動については特別の配慮が必要であることが判明した。特に、蒸気タービンから給水加熱器の給水加熱用の蒸気を抽気している場合、給水加熱器からの蒸気タービン内へのフラッシュバックによる振動(フラッシュバック振動)との重畳について特別に配慮する必要があることが判明した。     In recent years, low-pressure steam turbines have been increased in size to improve efficiency. However, according to studies by the present inventors, it has been found that special consideration is necessary for random vibration when the low-pressure turbine is increased in size. . In particular, when steam for feed water heating of the feed water heater is extracted from the steam turbine, special consideration must be given to superimposing the flash back vibration (flash back vibration) from the feed water heater into the steam turbine. It turned out to be.

本発明の目的は、低圧蒸気タービンにおいて、ランダム振動とフラッシュバック振動の重畳に対して、振動応力を低減できる動翼を有する低圧蒸気タービンを提供することにある。   An object of the present invention is to provide a low-pressure steam turbine having a moving blade capable of reducing vibration stress against superposition of random vibration and flashback vibration in a low-pressure steam turbine.

上記目的を達成するために、本発明の低圧蒸気タービンは、静翼と動翼から構成される段落を複数有する低圧蒸気タービンであって、一つの段落の直前直後に給水加熱器の給水加熱用蒸気の抽気孔を有する場合において、当該段落の動翼を高減衰構造とすることを特徴とするものである。動翼の高減衰構造としては、先端カバー全周連結翼構造、または、翼先端及び/若しくは翼中間部においてスナッバで全周連結する構造、またはタイワイヤ構造が用いられる。   In order to achieve the above object, a low-pressure steam turbine according to the present invention is a low-pressure steam turbine having a plurality of paragraphs each including a stationary blade and a moving blade, and is used for feed water heating of a feed water heater immediately before and after one paragraph. In the case where steam extraction holes are provided, the moving blades in the paragraph have a high damping structure. As the highly damped structure of the moving blade, a tip cover all-around connecting blade structure, a structure in which the entire periphery is connected by a snubber at the tip of the blade and / or the middle part of the blade, or a tie wire structure is used.

また、本発明は、動翼の直前側の抽気孔周辺から給水加熱器に至る蒸気流路(配管系)の何れかの箇所において検出した蒸気圧力が所定の圧力(フラッシュバックが生じる圧力に安全率を加味した圧力値)以上となった場合、低圧蒸気タービン入口の蒸気流量を定格の約10%以上に増加させるか、または、給水加熱器内の熱水の量が減るように調整するようにしたことを特徴とするものである。この特徴は、上記の高減衰構造の動翼と組み合わせることができる。   In addition, the present invention is such that the steam pressure detected in any part of the steam flow path (piping system) from the vicinity of the bleed hole immediately before the rotor blade to the feed water heater is safe to a predetermined pressure (the pressure at which flashback occurs). If the pressure value is greater than or equal to the pressure value), increase the steam flow rate at the inlet of the low-pressure steam turbine to about 10% or more of the rating, or adjust the amount of hot water in the feed water heater to decrease. It is characterized by that. This feature can be combined with the above-described highly damped rotor blade.

また、本発明は、負荷遮断信号に基づき、低圧蒸気タービン入口の蒸気流量を定格の約10%以上とすること、または低圧蒸気タービンを停止することを特徴とするものである。この特徴は、上記の高減衰構造の動翼と組み合わせることができる。   Further, the present invention is characterized in that the steam flow rate at the inlet of the low-pressure steam turbine is set to about 10% or more of the rating based on the load cutoff signal, or the low-pressure steam turbine is stopped. This feature can be combined with the above-described highly damped rotor blade.

また、本発明は、給水加熱器から抽気孔への流路損失より、抽気孔から給水加熱器への流路損失が少ない配管を少なくとも一部に用いたことを特徴とするものである。この特徴は、上記の高減衰構造の動翼と組み合わせることができる。   Further, the present invention is characterized in that at least a part of a pipe having a flow path loss from the extraction hole to the feed water heater is smaller than a flow path loss from the feed water heater to the extraction hole. This feature can be combined with the above-described highly damped rotor blade.

一つの段落の直前直後に給水加熱器の給水加熱用蒸気の抽気孔を有する場合において、当該段落の動翼を高減衰構造とすることにより、ランダム振動とフラッシュバック振動の重畳が発生する可能性が高い段落での動翼の振動応力を低減できる。   In the case where a feed water heating steam extraction hole is provided immediately before and immediately after one paragraph, the superimposition of random vibration and flashback vibration may occur if the moving blade of the paragraph has a high damping structure. It is possible to reduce the vibration stress of the moving blade in a high paragraph.

また、動翼の高減衰構造を、先端カバー全周連結翼構造、または翼先端及びまたは翼中間部においてスナッバで全周連結する構造、またはタイワイヤ構造としたことにより、動翼振動の減衰効果を確実に高め、ランダム振動とフラッシュバック振動の重畳に対して、動翼の振動応力を低減できる。   In addition, the high-damping structure of the rotor blade is a tip cover all-around wing structure, a structure in which the entire circumference is connected with a snubber at the blade tip and / or the middle part of the blade, or a tie wire structure, thereby reducing the effect of blade vibration attenuation. The vibration stress of the rotor blade can be reduced against the superposition of random vibration and flashback vibration.

また、動翼の直前側の抽気孔周辺から給水加熱器に至る蒸気流路または配管系における蒸気の圧力変動に基づき、低圧蒸気タービン入口の蒸気流量を定格の約10%以上に増加させる、または給水加熱器内の熱水の量を調整することにより、フラッシュバック発生の予兆を捕らえて、ランダム振動とフラッシュバック振動に重畳を抑制できるので、これらの流体加振力を低減でき、動翼の振動応力を低減できる。   Further, the steam flow rate at the inlet of the low-pressure steam turbine is increased to about 10% or more of the rated value based on the steam pressure fluctuation in the steam flow path or piping system extending from the vicinity of the bleed hole immediately before the moving blade to the feed water heater, or By adjusting the amount of hot water in the feed water heater, it is possible to capture the sign of flashback occurrence and suppress superposition of random vibration and flashback vibration. Vibration stress can be reduced.

また、負荷遮断信号に基づき、低圧蒸気タービン入口の蒸気流量を定格の約10%以上とすること、または低圧蒸気タービンを停止することにより、フラッシュバック発生時のランダム振動加振力を低減でき、ランダム振動とフラッシュバック振動の重畳に対して、動翼の振動応力を低減できる。   In addition, by making the steam flow rate at the inlet of the low-pressure steam turbine about 10% or more of the rating based on the load cutoff signal, or by stopping the low-pressure steam turbine, the random vibration excitation force at the time of flashback can be reduced, The vibration stress of the moving blade can be reduced against the superposition of random vibration and flashback vibration.

また、給水加熱器から抽気孔への流路損失より、抽気孔から給水加熱器への流路損失が少ないことにより、フラッシュバック加振力を低減でき、ランダム振動とフラッシュバック振動の重畳に対して、動翼の振動応力を低減できる。   In addition, the flashback excitation force can be reduced by reducing the flow path loss from the bleed hole to the feed water heater rather than the flow path loss from the feed water heater to the bleed hole. Thus, the vibration stress of the rotor blade can be reduced.

以下に、本発明の実施例を図面を用いて説明する。   Embodiments of the present invention will be described below with reference to the drawings.

先ず、本発明に至るまでの検討について説明する。   First, the study up to the present invention will be described.

従来、最終段の動翼の翼長が43インチの低圧蒸気タービン(タービン回転数1800rpm )では、ランダム振動(初負荷運転等の無負荷および低負荷時に発生する非定常流れによる流体加振力)の影響は、最終段(L−0段)とその前の段落(L−1段)と考えられ、これらの動翼はランダム振動の影響を加味して設計されている。しかし、最終段よりも2つ前の段落(L−2段)までランダム振動が及ぶとは考えられていなかった。このため、L−2段の動翼は、作りやすさ等の観点からテノンかしめ構造等の動翼構造が通常用いられている。   Conventionally, in a low-pressure steam turbine (turbine speed 1800 rpm) with a blade length of the last stage moving blade of 43 inches, random vibration (fluid excitation force due to unsteady flow generated during no load and low load such as initial load operation) Is considered to be the last stage (L-0 stage) and the preceding paragraph (L-1 stage), and these blades are designed with the influence of random vibration taken into account. However, it was not considered that random vibration would extend to the paragraph (L-2 stage) before the last stage. For this reason, as the L-2 stage moving blade, a moving blade structure such as a tenon caulking structure is usually used from the viewpoint of ease of manufacture.

しかし、本発明者等の検討によれば、最終段の動翼の翼長が52インチ(以上)の大型化した低圧蒸気タービン(タービン回転数1800rpm )の場合、ランダム振動がL−2段まで及ぶことが判明した。蒸気タービンが更に大型化した場合には、3つ前の段落(L−3段)にもランダム振動が及ぶことがあり得る。   However, according to the study by the present inventors, in the case of a large-sized low-pressure steam turbine (turbine rotational speed 1800 rpm) with a blade length of 52 inches (or more) at the final stage, the random vibration is up to L-2 stage. It turned out to be. When the steam turbine is further increased in size, random vibrations may reach the previous three paragraphs (L-3 stage).

また、給水加熱器の給水加熱用として蒸気を蒸気タービンから抽気しているが、負荷遮断時などの負荷急変時には、給水加熱器から蒸気タービン内に熱水がフラッシュ(減圧沸騰)して逆流(フラッシュバック)することがある。即ち、負荷遮断時などの負荷急変時には、低圧蒸気タービン内の圧力が急減し、タービン内圧力と給水加熱器圧力が逆転し、蒸気の逆流が発生する。そして、給水加熱器の圧力が更に低下し、給水加熱器内に残留している高温水がフラッシュ(減圧沸騰)し、タービンに音速に近い流速で流入する。この影響により、軸方向および周方向の不均一性が発生し、流体加振力(フラッシュバック振動)が発生する。   In addition, steam is extracted from the steam turbine for heating the feedwater heater, but when the load suddenly changes, such as when the load is shut off, hot water is flushed from the feedwater heater into the steam turbine (boiling under reduced pressure) and backflow ( Flash back). That is, when the load suddenly changes such as when the load is interrupted, the pressure in the low-pressure steam turbine decreases rapidly, the turbine internal pressure and the feed water heater pressure are reversed, and steam reverse flow occurs. Then, the pressure of the feed water heater further decreases, and the high-temperature water remaining in the feed water heater is flushed (boiling under reduced pressure) and flows into the turbine at a flow velocity close to the speed of sound. Due to this influence, non-uniformity in the axial direction and the circumferential direction occurs, and fluid excitation force (flashback vibration) occurs.

このフラッシュバック振動は、抽気孔の場所に近い段落の動翼に対して影響が大きい。従来、L−1段の上流に抽気孔が設けられることが多かった。低圧蒸気タービンロータの軸長が短くなった等場合には、L−2段の上流にも抽気孔が設けられることがある。   This flashback vibration has a large effect on the moving blade in the paragraph near the location of the bleed hole. Conventionally, extraction holes are often provided upstream of the L-1 stage. When the axial length of the low-pressure steam turbine rotor is shortened, a bleed hole may be provided upstream of the L-2 stage.

本発明者等の検討によれば、これらのランダム振動とフラッシュバック振動が重畳することにより、大きな流体加振力が発生することが判明した。これを、図3を用いて説明する。   According to the study by the present inventors, it was found that a large fluid excitation force is generated by superimposing these random vibration and flashback vibration. This will be described with reference to FIG.

図3は、フラッシュバック無および有時の非定常流体力計算結果を示すものである。また、最終段の動翼が52インチの蒸気タービンで、低負荷(約5%負荷)の時の計算結果である。上図が流線、下図が流体力の時間変動を表す。左図はフラッシュバック無の結果であり、ランダム流体加振力を示している。右図はフラッシュバック有の結果であり、ランダム流体加振力とフラッシュバック流体加振力が重畳した場合の結果である。ランダム振動がL−2段まで及んでいることが分かる(渦がランダム振動を示す。L−0段の動翼根元側に大きな逆流域が,また先端部にも逆流域が見られ、L−2段の動翼根元側からL−1段を超えL−0段静翼にかけて大きな逆流域が見られる。)。そして、ランダム流体加振力とフラッシュバック流体加振力の重畳により流体加振力が1.2ないし2.0倍(L−2段に対しては2.0倍)に増大していることがわかる。   FIG. 3 shows the unsteady fluid force calculation results with and without flashback. The calculation results are obtained when the final stage blade is a 52-inch steam turbine and the load is low (about 5% load). The upper diagram shows the streamline, and the lower diagram shows the time variation of the fluid force. The figure on the left shows the results without flashback and shows random fluid excitation force. The right figure shows the result with flashback, and the result when the random fluid excitation force and the flashback fluid excitation force are superimposed. It can be seen that the random vibration extends to the L-2 stage (the vortex shows a random vibration. A large reverse flow region is seen on the rotor blade root side of the L-0 stage, and a reverse flow region is also seen at the tip. A large reverse flow region is seen from the root of the two-stage blade to the L-0 stage stationary blade beyond the L-1 stage.) The fluid excitation force is increased by 1.2 to 2.0 times (2.0 times for the L-2 stage) by superimposing the random fluid excitation force and the flashback fluid excitation force. I understand.

このフラッシュバック振動とランダム振動との重畳は、特に、20%負荷遮断時に起こりえる。即ち、20%負荷遮断時には、負荷遮断時に回転数維持のために低負荷若しくは無負荷で運転される時間があり、この時に、ランダム振動が発生し、このランダム振動に負荷遮断によるフラッシュバック振動が重畳されることになる。   This superimposition of flashback vibration and random vibration can occur particularly when a 20% load is interrupted. That is, when the load is cut off at 20%, there is a time during which the load is cut off to maintain the rotational speed at low load or no load. At this time, random vibration is generated, and flashback vibration due to load cut is caused by this random vibration. It will be superimposed.

従来、L−2段の動翼には大きな流体加振力が加わるとは考えられていなかったが、このように大きな流体加振力が加わり、また、動翼の構造上、流体加振力が加わった場合の影響は他の段落よりも大きい。従って、低圧蒸気タービンが大型化し、抽気孔がL2−段の直ぐ上流に設けられている場合には、(L−2段の直ぐ上流に抽気孔が設けられている場には、L−2段の直ぐ下流にも抽気孔が設けられている場合が多い。)L−2段の動翼の振動応力を低減させる手段が必要である。振動応力を低減させるには、動翼の構造を高減衰構造にするか、または、大きな流体加振力が加わらないように、即ち、フラッシュバック振動とランダム振動の重畳をできるだけ避けるようにすることが考えられる。本発明はこのような知見に基づきなされたものである。以下、実施例を説明する。   Conventionally, it has not been considered that a large fluid excitation force is applied to the L-2 stage moving blade. However, such a large fluid excitation force is applied to the L-2 stage moving blade. The effect of adding is greater than other paragraphs. Therefore, when the low-pressure steam turbine is enlarged and the extraction hole is provided immediately upstream of the L2-stage, (if the extraction hole is provided immediately upstream of the L-2 stage, L-2 (In many cases, a bleed hole is also provided immediately downstream of the stage.) A means for reducing the vibration stress of the L-2 stage blade is required. In order to reduce the vibration stress, the structure of the rotor blade should be highly damped, or no large fluid excitation force should be applied, i.e., the overlap of flashback vibration and random vibration should be avoided as much as possible. Can be considered. The present invention has been made based on such findings. Examples will be described below.

図1に本発明の低圧蒸気タービン1の一実施例のシステム図を示す。高圧タービンを出た蒸気は低圧蒸気タービン1に導入され、ロータ4に固定された動翼2とケーシング5に固定された静翼3の間を交互に通りながら膨張し、ロータ4を回転させる。ロータ4が高圧タービンのロータ(図示省略)等と一軸で構成されている。低圧蒸気タービン1を出た蒸気は復水器7で凝縮された後、復水ポンプ11で給水加熱器8に送られ、給水加熱器8で過熱されて蒸気発生器に導入される。給水加熱器8で給水を加熱するために、抽気孔6から蒸気が抽気されている。低圧タービンに導入される蒸気流量は、蒸気流量調整弁10により制御される。   FIG. 1 shows a system diagram of an embodiment of the low-pressure steam turbine 1 of the present invention. The steam exiting the high-pressure turbine is introduced into the low-pressure steam turbine 1 and expanded while alternately passing between the moving blade 2 fixed to the rotor 4 and the stationary blade 3 fixed to the casing 5 to rotate the rotor 4. The rotor 4 is composed of a single shaft with a rotor (not shown) of a high-pressure turbine. The steam exiting the low-pressure steam turbine 1 is condensed by the condenser 7, then sent to the feed water heater 8 by the condensate pump 11, overheated by the feed water heater 8, and introduced into the steam generator. In order to heat the feed water with the feed water heater 8, steam is extracted from the extraction holes 6. The steam flow rate introduced into the low pressure turbine is controlled by the steam flow rate adjusting valve 10.

図2に本実施例における、直前直後に給水加熱器8の給水加熱用蒸気の抽気孔6を有する段落の動翼2の構造図を示す。本実施例では、直前直後に給水加熱器8の給水加熱用蒸気の抽気孔6を有する段落の動翼2を、高減衰構造の一つである先端カバー12全周連結翼構造としている。各動翼2の先端カバー12接触部における摩擦力により、動翼2の振動の減衰効果を高めることができるため、ランダム振動とフラッシュバック振動の重畳に対して、動翼2の振動応力を低減できる。   FIG. 2 shows a structural diagram of the moving blade 2 in the paragraph having the extraction holes 6 for the feed water heating steam of the feed water heater 8 immediately before and after in the present embodiment. In this embodiment, the moving blade 2 in the paragraph having the extraction holes 6 for the feed water heating steam of the feed water heater 8 immediately before and after is used as the tip cover 12 all-around connecting blade structure which is one of the high damping structures. Since the damping effect of the vibration of the moving blade 2 can be enhanced by the frictional force at the contact portion of the tip cover 12 of each moving blade 2, the vibration stress of the moving blade 2 is reduced against the superposition of random vibration and flashback vibration. it can.

図1の抽気孔6には圧力変動検出器9が設置されている。予めフラッシュバックが生じるときの圧力を予め調べておき、この圧力に安全率を加味して予め定めた圧力値以上の圧力が圧力変動検出器9で検知されると、蒸気流量調整弁10に制御信号が送信され、蒸気流量調整弁10は、蒸気流量が定格の約10%以上の所定値に保持されるように、蒸気流量を調整する。この蒸気流量を保持する時間は、給水加熱器内の熱水の量が減少し、フラッシュバックの影響が出ない状態になるまでである。また、蒸気流量は、負荷遮断によりタービンを停止させるときであることを考慮すると、余り大きい蒸気流量とすることは現実的ではないので、約20%を上限とするのが好ましい。   A pressure fluctuation detector 9 is installed in the bleed hole 6 of FIG. The pressure at which flashback occurs in advance is examined in advance, and when the pressure fluctuation detector 9 detects a pressure equal to or higher than a predetermined pressure value by adding a safety factor to the pressure, the steam flow rate adjusting valve 10 is controlled. A signal is transmitted, and the steam flow rate adjusting valve 10 adjusts the steam flow rate so that the steam flow rate is maintained at a predetermined value of about 10% or more of the rating. The time for maintaining the steam flow rate is until the amount of hot water in the feed water heater is reduced and the flashback is not affected. Further, considering that the steam flow rate is when the turbine is stopped by shutting off the load, it is not practical to set the steam flow rate too high, so it is preferable to set the upper limit to about 20%.

図4に蒸気流量とランダム流体加振力の関係の概念図を示す。この図4は、動翼に加わるランダム加振力と蒸気流量との関係を示している。ランダム加振力が及ぶ動翼(即ち、最終段の動翼の翼長が52インチ以上の場合、L−0,L−1,L−2の各段の動翼)に共通して成立する関係である。蒸気流量が定格の約10%以下になると、ランダム流体加振力が急激に増大する。安全率を加味して、蒸気流量を約10%以上にすることにより、ランダム流体加振力を低減できる。本実施例では、圧力変動を検出することによりフラッシュバック発生の予兆を検知し、蒸気流量を定格の約10%以上に調整することにより、ランダム振動とフラッシュバック振動の重畳による動翼2の振動応力を低減できる。   FIG. 4 shows a conceptual diagram of the relationship between the steam flow rate and the random fluid excitation force. FIG. 4 shows the relationship between the random excitation force applied to the moving blade and the steam flow rate. It is common to the moving blades to which the random excitation force is applied (that is, the moving blades at the respective stages L-0, L-1, and L-2 when the blade length of the moving blade at the final stage is 52 inches or more). It is a relationship. When the steam flow rate is about 10% or less of the rating, the random fluid excitation force increases rapidly. In consideration of the safety factor, the random fluid exciting force can be reduced by setting the steam flow rate to about 10% or more. In this embodiment, a sign of flashback occurrence is detected by detecting pressure fluctuations, and by adjusting the steam flow rate to about 10% or more of the rating, vibration of the rotor blade 2 due to superposition of random vibration and flashback vibration. Stress can be reduced.

なお、圧力変動を計測する位置は、フラッシュバックを検知できる位置であれば良いので、図1のように抽気孔であっても良いし、抽気配管内であっても良く、抽気孔直後の静翼の位置であっても良い。   The position where pressure fluctuation is measured may be a position where flashback can be detected. Therefore, the pressure fluctuation may be a bleed hole as shown in FIG. It may be the position of the wing.

図5に本発明の他の実施例を示す。図5は、直前直後に給水加熱器8の給水加熱用蒸気の抽気孔6を有する段落の動翼2の構造図を示す。本実施例と図2の実施例との最大の差異は、動翼2の高減衰構造を動翼2の先端及び動翼2の中間部においてスナッバ13で全周連結する構造としたことである。各動翼2のスナッバ13間の接触部における摩擦力により、動翼2の振動の減衰効果を高めることができる。動翼2の高さ方向の複数の位置に減衰構造を設置できるため、ランダム振動とフラッシュバック振動の重畳が発生する可能性が高い段落での動翼2の振動の減衰効果を確実に高め、ランダム振動とフラッシュバック振動の重畳に対して、動翼2の振動応力を低減できる。なお、構造の簡略化のためにスナッバ13を動翼2の高さ方向の一箇所に配置してもよい。またより大きな減衰効果を得るために、動翼2の高さ方向のスナッバ13位置を増やしてもよい。   FIG. 5 shows another embodiment of the present invention. FIG. 5 shows a structural diagram of the moving blade 2 of the paragraph having the extraction holes 6 for the feed water heating steam of the feed water heater 8 immediately before and after. The greatest difference between the present embodiment and the embodiment of FIG. 2 is that the high-damping structure of the moving blade 2 is connected by a snubber 13 at the tip of the moving blade 2 and the intermediate portion of the moving blade 2. . The damping effect of the vibration of the moving blade 2 can be enhanced by the frictional force at the contact portion between the snubbers 13 of each moving blade 2. Since the damping structure can be installed at a plurality of positions in the height direction of the moving blade 2, the vibration damping effect of the moving blade 2 in the paragraph where random vibration and flashback vibration are highly likely to occur is surely enhanced, The vibration stress of the rotor blade 2 can be reduced against the superposition of random vibration and flashback vibration. Note that the snubber 13 may be disposed at one position in the height direction of the rotor blade 2 in order to simplify the structure. In order to obtain a greater damping effect, the position of the snubber 13 in the height direction of the rotor blade 2 may be increased.

図6に本発明の他の実施例を示す。図6は、直前直後に給水加熱器8の給水加熱用蒸気の抽気孔6を有する段落の動翼2の構造図を示す。本実施例の実施例1との最大の差異は、動翼2の高減衰構造をタイワイヤ14構造としたことである。タイワイヤ14と動翼2との摩擦力により、動翼2の振動の減衰効果を高めることができる。より簡単な構造で減衰効果を得ることができ、ランダム振動とフラッシュバック振動の重畳に対して、動翼2の振動応力を低減できる。なお、構造の簡略化のためにタイワイヤ14を動翼2の高さ方向の一箇所に配置してもよい。またより大きな減衰効果を得るために、動翼2の高さ方向のタイワイヤ14設置位置を増やしてもよい。   FIG. 6 shows another embodiment of the present invention. FIG. 6 shows a structural diagram of the rotor blade 2 in the paragraph having the extraction holes 6 for the feed water heating steam of the feed water heater 8 immediately before and after. The biggest difference between the present embodiment and the first embodiment is that the high damping structure of the moving blade 2 is a tie wire 14 structure. The frictional force between the tie wire 14 and the moving blade 2 can enhance the vibration damping effect of the moving blade 2. The damping effect can be obtained with a simpler structure, and the vibration stress of the rotor blade 2 can be reduced against the superposition of random vibration and flashback vibration. In order to simplify the structure, the tie wire 14 may be disposed at one position in the height direction of the rotor blade 2. In order to obtain a greater damping effect, the installation position of the tie wire 14 in the height direction of the moving blade 2 may be increased.

図7に本発明の他の実施例を示す。図7は、低圧蒸気タービン1の他のシステム構成を示す。本実施例では、給水加熱器内の熱水を復水器に戻すラインが設けられ、圧力変動検出器9が圧力変動を検知すると、ライン上に設けられた、給水加熱器の水位調整ポンプ
16に制御信号が送信され、水位調整ポンプ16を始動する。給水加熱器8内の熱水は水位調整ポンプにより吸引され、給水加熱器8内の水位が下がる。圧力変動を検出することによりフラッシュバック発生の予兆を検知し、給水加熱器8内の熱水の量を調整することにより、フラッシュバック加振力を低減でき、ランダム振動とフラッシュバック振動の重畳による動翼2の振動応力を低減できる。
FIG. 7 shows another embodiment of the present invention. FIG. 7 shows another system configuration of the low-pressure steam turbine 1. In the present embodiment, a line for returning hot water in the feed water heater to the condenser is provided, and when the pressure fluctuation detector 9 detects a pressure fluctuation, the water level adjustment pump 16 of the feed water heater provided on the line. A control signal is transmitted to the water level adjustment pump 16 to start the water level adjustment pump 16. The hot water in the feed water heater 8 is sucked by the water level adjusting pump, and the water level in the feed water heater 8 is lowered. By detecting the sign of flashback by detecting pressure fluctuations and adjusting the amount of hot water in the feed water heater 8, the flashback excitation force can be reduced, and random vibration and flashback vibration are superimposed. The vibration stress of the rotor blade 2 can be reduced.

図8に本発明の他の実施例を示す。図8は、低圧蒸気タービン1の他のシステム構成を示す。本実施例の実施例1との最大の差異は、負荷遮断信号に基づき、低圧蒸気タービン1入口の蒸気流量を定格の約10%以上とするか、蒸気の供給を停止することである。蒸気の供給を停止することにより、タービンの回転を停止する(若しくは、図示しないターニング装置によりターニング回転数での回転される。)。高圧蒸気タービンと低圧蒸気タービンとは一軸であることから、この場合、高圧蒸気タービンへの蒸気供給も停止される。負荷遮断によりフラッシュバックが発生する可能性があるが、このときに蒸気流量を調整して、図5に示すランダム流体加振力を低減することにより、ランダム振動とフラッシュバック振動の重畳による動翼2の振動応力を低減できる。   FIG. 8 shows another embodiment of the present invention. FIG. 8 shows another system configuration of the low-pressure steam turbine 1. The greatest difference of the present embodiment from the first embodiment is that the steam flow rate at the inlet of the low-pressure steam turbine 1 is set to about 10% or more of the rating or the supply of steam is stopped based on the load cutoff signal. By stopping the supply of steam, the rotation of the turbine is stopped (or rotated at a turning speed by a turning device not shown). Since the high-pressure steam turbine and the low-pressure steam turbine are uniaxial, the steam supply to the high-pressure steam turbine is also stopped in this case. There is a possibility that flashback may occur due to load interruption. At this time, by adjusting the steam flow rate and reducing the random fluid excitation force shown in FIG. 5, the moving blade by superimposing random vibration and flashback vibration 2 vibration stress can be reduced.

図9に本発明の他の実施例を示す。図9は、図1の低圧蒸気タービン1において、抽気孔6と給水加熱器8との接続に用いられる配管の断面図を示す。給水加熱器8から抽気孔6への流路損失より、抽気孔6から給水加熱器8への流路損失が少なくなっているため、フラッシュバック加振力を低減でき、ランダム振動とフラッシュバック振動の重畳に対して、動翼2の振動応力を低減できる。   FIG. 9 shows another embodiment of the present invention. FIG. 9 shows a cross-sectional view of piping used for connection between the extraction hole 6 and the feed water heater 8 in the low pressure steam turbine 1 of FIG. Since the flow path loss from the bleed hole 6 to the feed water heater 8 is less than the flow path loss from the feed water heater 8 to the bleed hole 6, the flashback excitation force can be reduced, and random vibration and flashback vibration Therefore, the vibration stress of the rotor blade 2 can be reduced.

この抽気孔から抽気された蒸気が導入される給水加熱器は復水器の中に配置されることが多い。復水器の中に給水加熱器が配置された場合、抽気配管も復水器の中に配置されることになることから、これら抽気配管には逆止弁を設けることはできない。この実施例の構造は、可動部を持たない構造であることから、復水器の中に給水加熱器を配置するシステムに好適な構造である。   The feed water heater into which the steam extracted from the extraction holes is introduced is often disposed in the condenser. When the feed water heater is disposed in the condenser, the bleed piping is also disposed in the condenser, and therefore, the bleed piping cannot be provided with a check valve. Since the structure of this embodiment is a structure having no movable part, it is a structure suitable for a system in which a feed water heater is arranged in a condenser.

本発明の低圧蒸気タービンの一実施例のシステム図である。1 is a system diagram of an embodiment of a low-pressure steam turbine according to the present invention. 本発明の低圧蒸気タービンの一実施例における、直前直後に給水加熱器の給水加熱用蒸気の抽気孔を有する段落の動翼の構造図である。It is a structural diagram of the moving blade of the paragraph which has the extraction hole of the feed water heating steam of the feed water heater immediately before and after in one embodiment of the low pressure steam turbine of the present invention. フラッシュバック無および有時の非定常流体力計算結果である。It is an unsteady hydrodynamic calculation result with and without flashback. 蒸気流量とランダム流体加振力の関係の概念図である。It is a conceptual diagram of the relationship between a steam flow rate and a random fluid exciting force. 本発明の低圧蒸気タービンの他の実施例における、直前直後に給水加熱器の給水加熱用蒸気の抽気孔を有する段落の動翼の構造図である。It is a structural diagram of the moving blade of the paragraph which has the extraction hole of the feed water heating steam of the feed water heater immediately before and after in another embodiment of the low pressure steam turbine of the present invention. 本発明の低圧蒸気タービンの他の実施例における、直前直後に給水加熱器の給水加熱用蒸気の抽気孔を有する段落の動翼の構造図である。It is a structural diagram of the moving blade of the paragraph which has the extraction hole of the feed water heating steam of the feed water heater immediately before and after in another embodiment of the low pressure steam turbine of the present invention. 本発明の低圧蒸気タービンの他の実施例のシステム図である。It is a system diagram of another embodiment of the low pressure steam turbine of the present invention. 本発明の低圧蒸気タービンの他の実施例のシステム図である。It is a system diagram of another embodiment of the low pressure steam turbine of the present invention. 本発明の低圧蒸気タービンの他の実施例において、抽気孔と給水加熱器を接続する配管の断面図である。It is sectional drawing of piping which connects an extraction hole and a feed water heater in the other Example of the low pressure steam turbine of this invention.

符号の説明Explanation of symbols

1…低圧蒸気タービン、2…動翼、3…静翼、4…ロータ、5…ケーシング、6…抽気孔、7…復水器、8…給水加熱器、9…圧力変動検出器、10…蒸気流量調整弁、11…復水ポンプ、12…先端カバー、13…スナッバ、14…タイワイヤ、15…抽気孔と給水加熱器を接続する配管。   DESCRIPTION OF SYMBOLS 1 ... Low pressure steam turbine, 2 ... Moving blade, 3 ... Static blade, 4 ... Rotor, 5 ... Casing, 6 ... Extraction hole, 7 ... Condenser, 8 ... Feed water heater, 9 ... Pressure fluctuation detector, 10 ... Steam flow control valve, 11 ... Condensate pump, 12 ... Tip cover, 13 ... Snubber, 14 ... Tie wire, 15 ... Pipe connecting the extraction hole and feed water heater.

Claims (8)

静翼と動翼から構成される段落を複数有する低圧蒸気タービンであって、前記複数段落の中の一つの段落の直前直後に給水加熱器の給水加熱用蒸気の抽気孔を有する低圧蒸気タービンにおいて、前記抽気孔が直前直後に設けられた段落の動翼を、テノンかしめ構造よりも高減衰構造の翼連結構造で構成された動翼とすることを特徴とする低圧蒸気タービン。   A low-pressure steam turbine having a plurality of paragraphs each including a stationary blade and a moving blade, and having a water extraction heating steam extraction hole immediately before and after one of the plurality of paragraphs. A low-pressure steam turbine characterized in that the moving blade of the paragraph in which the extraction holes are provided immediately before and after is a moving blade having a blade coupling structure having a higher damping structure than the tenon caulking structure. 請求項1において、前記高減衰構造の翼連結構造を、先端カバー全周連結翼構造、または、翼先端若しくは翼中間部においてスナッバで全周連結する構造、または、タイワイヤ構造としたことを特徴とする低圧蒸気タービン。   2. The blade connection structure according to claim 1, wherein the blade connection structure of the high damping structure is a tip cover all-around connection blade structure, a structure in which the entire periphery is connected by a snubber at a blade tip or a blade middle part, or a tie wire structure. Low pressure steam turbine. 静翼と動翼から構成される段落を複数有する低圧蒸気タービンであって、前記複数段落の中の一つの段落の直前直後に給水加熱器の給水加熱用蒸気の抽気孔を有する低圧蒸気タービンにおいて、
前記直前側に設けられた抽気孔の周辺から前記給水加熱器に至る蒸気流路の何れかの箇所おける蒸気の圧力を検出する圧力検出手段と、
前記圧力検出手段により検出された圧力が所定の圧力以上になった場合、低圧蒸気タービンへの蒸気流量を調整する弁の開度を、低圧蒸気タービン入口の蒸気流量が定格の10%以上となるように制御する蒸気流量制御手段とを有する低圧蒸気タービン。
A low-pressure steam turbine having a plurality of paragraphs each including a stationary blade and a moving blade, and having a water extraction heating steam extraction hole immediately before and after one of the plurality of paragraphs. ,
Pressure detecting means for detecting the pressure of steam in any part of the steam flow path from the periphery of the bleed hole provided on the immediately preceding side to the feed water heater;
When the pressure detected by the pressure detection means exceeds a predetermined pressure, the opening of the valve for adjusting the steam flow rate to the low-pressure steam turbine and the steam flow rate at the inlet of the low-pressure steam turbine become 10% or more of the rated value. A low-pressure steam turbine having steam flow rate control means for controlling in such a manner.
請求項3において、前記給水加熱器内の熱水の量を調整する熱水量調整手段を有し、前記蒸気流量制御手段に代えて、前記圧力検出手段により検出された圧力が所定の圧力以上になった場合、前記熱水の量を減らすように前記熱水量調整手段を制御する熱水量制御手段を有することを特徴とする低圧蒸気タービン。   In Claim 3, It has a hot water quantity adjustment means which adjusts the quantity of hot water in the feed water heater, and it replaces with the steam flow control means, and the pressure detected by the pressure detection means becomes more than predetermined pressure When it becomes, it has a hot water amount control means which controls the said hot water amount adjustment means so that the quantity of the said hot water may be reduced, The low pressure steam turbine characterized by the above-mentioned. 静翼と動翼から構成される段落を複数有する低圧蒸気タービンであって、前記複数段落の中の一つの段落の直前直後に給水加熱器の給水加熱用蒸気の抽気孔を有する低圧蒸気タービンにおいて、
前記低圧蒸気タービンの発電設備への負荷遮断信号に基づき、低圧蒸気タービンへの蒸気流量を調整する弁の開度を、前記蒸気流量が定格の10%以上となるように制御する手段を有することを特徴とする低圧蒸気タービン。
A low-pressure steam turbine having a plurality of paragraphs each including a stationary blade and a moving blade, and having a water extraction heating steam extraction hole immediately before and after one of the plurality of paragraphs. ,
Based on a load cutoff signal to the power generation equipment of the low-pressure steam turbine, it has means for controlling the opening degree of a valve for adjusting the steam flow rate to the low-pressure steam turbine so that the steam flow rate becomes 10% or more of the rating. Low pressure steam turbine characterized by
静翼と動翼から構成される段落を複数有する低圧蒸気タービンであって、前記複数段落の中の一つの段落の直前直後に給水加熱器の給水加熱用蒸気の抽気孔を有する低圧蒸気タービンにおいて、
前記低圧蒸気タービンの発電設備への負荷遮断信号に基づき、低圧蒸気タービンを停止するようにしたことを特徴とする低圧蒸気タービン。
A low-pressure steam turbine having a plurality of paragraphs each including a stationary blade and a moving blade, and having a water extraction heating steam extraction hole immediately before and after one of the plurality of paragraphs. ,
A low-pressure steam turbine characterized in that the low-pressure steam turbine is stopped based on a load cutoff signal to the power generation facility of the low-pressure steam turbine.
静翼と動翼から構成される段落を複数有する低圧蒸気タービンであって、前記複数段落の中の一つの段落の直前直後に給水加熱器の給水加熱用蒸気の抽気孔を有する低圧蒸気タービンにおいて、前記抽気孔から前記給水加熱器に至る配管の少なくとも一部に、給水加熱器から抽気孔への流路損失より、抽気孔から給水加熱器への流路損失が少ない配管を用いたことを特徴とする低圧蒸気タービン。   A low-pressure steam turbine having a plurality of paragraphs each including a stationary blade and a moving blade, and having a water extraction heating steam extraction hole immediately before and after one of the plurality of paragraphs. In addition, at least a part of the pipe from the extraction hole to the feed water heater uses a pipe with less flow path loss from the extraction hole to the feed water heater than the loss of flow path from the feed water heater to the extraction hole. A low-pressure steam turbine characterized. 静翼と動翼から構成される段落を複数有する低圧蒸気タービンであって、最終段の動翼の翼長が52インチ以上であり、前記最終段より2つ上流の段落の直ぐ上流に、給水加熱器の給水加熱用蒸気を抽気する抽気孔が設けられた低圧蒸気タービンにおいて、前記最終段より2つ上流の前記段落を構成する動翼を、動翼連結部材同士の摩擦力又は動翼連結部材と動翼との摩擦力により、動翼の振動を減衰させる翼構造で構成された動翼としたことをとしたことを特徴とする低圧蒸気タービン。

A low-pressure steam turbine having a plurality of paragraphs each including a stationary blade and a moving blade, wherein the blade length of the moving blade in the final stage is 52 inches or more, and the water supply is provided immediately upstream of the two upstream stages from the final stage. In the low-pressure steam turbine provided with the extraction holes for extracting the feed water heating steam of the heater, the moving blades constituting the paragraph two upstream from the final stage are connected with the frictional force between the moving blade connecting members or the moving blade connection. A low-pressure steam turbine characterized in that a moving blade having a blade structure that attenuates vibration of the moving blade by a frictional force between the member and the moving blade is used.

JP2006241103A 2006-09-06 2006-09-06 Low pressure steam turbine Expired - Fee Related JP4923880B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006241103A JP4923880B2 (en) 2006-09-06 2006-09-06 Low pressure steam turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006241103A JP4923880B2 (en) 2006-09-06 2006-09-06 Low pressure steam turbine

Publications (2)

Publication Number Publication Date
JP2008063984A true JP2008063984A (en) 2008-03-21
JP4923880B2 JP4923880B2 (en) 2012-04-25

Family

ID=39286920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006241103A Expired - Fee Related JP4923880B2 (en) 2006-09-06 2006-09-06 Low pressure steam turbine

Country Status (1)

Country Link
JP (1) JP4923880B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013170496A (en) * 2012-02-20 2013-09-02 Toshiba Corp Turning device and turning method
CN110344894A (en) * 2019-07-12 2019-10-18 中国大唐集团科学技术研究院有限公司华东电力试验研究院 A kind of calibration system and safety pre-warning system of turbine discharge volume flow

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5862105A (en) * 1981-10-09 1983-04-13 Shinetsu Kagaku Kogyo Kk Dental metallic denture base and its preparation
JPS58113804A (en) * 1981-12-28 1983-07-06 Fujitsu Ltd Film thickness controlling method
JPS59136508A (en) * 1983-01-27 1984-08-06 Mitsubishi Heavy Ind Ltd Steam turbine device
JPH03267504A (en) * 1990-03-19 1991-11-28 Refurbished Turbine Components Ltd Repairing of turbine blade
JPH04252807A (en) * 1991-01-25 1992-09-08 Mazda Motor Corp Steam turbine power generation plant
JPH08210107A (en) * 1995-02-01 1996-08-20 Fuji Electric Co Ltd Bleed steam turbine plant
JPH1061413A (en) * 1996-08-20 1998-03-03 Toshiba Corp Exhaust reburning type compound power plant
JPH10238309A (en) * 1997-02-25 1998-09-08 Mitsubishi Heavy Ind Ltd Initial pressure regulator of steam turbine
JPH1150804A (en) * 1997-08-01 1999-02-23 Mitsubishi Heavy Ind Ltd Shroud vane of steam turbine
JP2004190546A (en) * 2002-12-10 2004-07-08 Toshiba Corp Steam power plant
JP2004308522A (en) * 2003-04-04 2004-11-04 Toshiba Corp Method and device for reducing deterioration of turbine moving blade of steam turbine
JP2004353603A (en) * 2003-05-30 2004-12-16 Toshiba Corp Steam turbine

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5862105A (en) * 1981-10-09 1983-04-13 Shinetsu Kagaku Kogyo Kk Dental metallic denture base and its preparation
JPS58113804A (en) * 1981-12-28 1983-07-06 Fujitsu Ltd Film thickness controlling method
JPS59136508A (en) * 1983-01-27 1984-08-06 Mitsubishi Heavy Ind Ltd Steam turbine device
JPH03267504A (en) * 1990-03-19 1991-11-28 Refurbished Turbine Components Ltd Repairing of turbine blade
JPH04252807A (en) * 1991-01-25 1992-09-08 Mazda Motor Corp Steam turbine power generation plant
JPH08210107A (en) * 1995-02-01 1996-08-20 Fuji Electric Co Ltd Bleed steam turbine plant
JPH1061413A (en) * 1996-08-20 1998-03-03 Toshiba Corp Exhaust reburning type compound power plant
JPH10238309A (en) * 1997-02-25 1998-09-08 Mitsubishi Heavy Ind Ltd Initial pressure regulator of steam turbine
JPH1150804A (en) * 1997-08-01 1999-02-23 Mitsubishi Heavy Ind Ltd Shroud vane of steam turbine
JP2004190546A (en) * 2002-12-10 2004-07-08 Toshiba Corp Steam power plant
JP2004308522A (en) * 2003-04-04 2004-11-04 Toshiba Corp Method and device for reducing deterioration of turbine moving blade of steam turbine
JP2004353603A (en) * 2003-05-30 2004-12-16 Toshiba Corp Steam turbine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013170496A (en) * 2012-02-20 2013-09-02 Toshiba Corp Turning device and turning method
CN110344894A (en) * 2019-07-12 2019-10-18 中国大唐集团科学技术研究院有限公司华东电力试验研究院 A kind of calibration system and safety pre-warning system of turbine discharge volume flow

Also Published As

Publication number Publication date
JP4923880B2 (en) 2012-04-25

Similar Documents

Publication Publication Date Title
US8365583B2 (en) Method and system for testing an overspeed protection system of a powerplant machine
JP6563532B2 (en) Surge margin control method for gas turbine and gas turbine bleeder
US8756939B2 (en) Method and system for testing an overspeed protection system of a powerplant machine
JP5883568B2 (en) Method and system for testing a power plant overspeed protection system
JP2006183666A (en) Control method for steam turbine thrust pressure
WO2015141458A1 (en) Combined cycle plant, method for controlling same, and device for controlling same
JP4923880B2 (en) Low pressure steam turbine
JP2008101494A (en) Low-pressure steam turbine system and control method
JP2009036118A (en) Axial-flow exhaust gas turbine
EP3619404B1 (en) Systems and methods for dynamic balancing of steam turbine rotor thrust
US20100226768A1 (en) Axial-flow turbine
JP2010196473A (en) Electric power plant water supply device, and method for controlling the same
JP2008075526A (en) Low-pressure steam turbine system and control method
JP2006316759A (en) Compression device
JP5959454B2 (en) Steam turbine system
JP2008075580A (en) Low-pressure steam turbine system and method of controlling it
US20150020527A1 (en) Steam turbomachine having a bypass circuit for throttle flow capacity adjustment
JP5289068B2 (en) Steam turbine power plant
JP6970756B2 (en) Steam turbine
JP6862335B2 (en) Combination valve and power plant
KR20180030214A (en) Introduce overload into the steam turbine
JP3909466B2 (en) Steam turbine operation method
JPH11132057A (en) Gas turbine for pressurized fluid bed boiler
JPS6179809A (en) Turbine plant
JP2015059512A (en) Hydraulic machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090827

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120110

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120123

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150217

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees