JPH086891B2 - Boiler forced cooling control method - Google Patents

Boiler forced cooling control method

Info

Publication number
JPH086891B2
JPH086891B2 JP5655688A JP5655688A JPH086891B2 JP H086891 B2 JPH086891 B2 JP H086891B2 JP 5655688 A JP5655688 A JP 5655688A JP 5655688 A JP5655688 A JP 5655688A JP H086891 B2 JPH086891 B2 JP H086891B2
Authority
JP
Japan
Prior art keywords
boiler
temperature
valve
signal
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5655688A
Other languages
Japanese (ja)
Other versions
JPH01230903A (en
Inventor
一郎 田代
Original Assignee
石川島播磨重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 石川島播磨重工業株式会社 filed Critical 石川島播磨重工業株式会社
Priority to JP5655688A priority Critical patent/JPH086891B2/en
Publication of JPH01230903A publication Critical patent/JPH01230903A/en
Publication of JPH086891B2 publication Critical patent/JPH086891B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は再循環形ボイラの停止後におけるボイラ強制
冷却制御方法に関するものである。
TECHNICAL FIELD The present invention relates to a boiler forced cooling control method after a recirculation type boiler is stopped.

[従来の技術] ボイラの点検等を行う際は、ボイラの稼動を停止した
後、ボイラの冷却を待って行うようにしている。しか
し、上記ボイラが自然に冷却されるのを待っていたので
は時間が掛り過ぎるため、従来よりボイラを強制冷却す
ることが行われている。
[Prior Art] When inspecting a boiler, the operation of the boiler is stopped and then the cooling of the boiler is waited for. However, waiting for the boiler to cool naturally takes too much time, so that the boiler is forcedly cooled than before.

従来の再循環形ボイラにおけるボイラの強制冷却方法
は、手動によって行われており、ボイラはその健全性を
保持するために或る温度降下率以上で冷却させることは
できないので、火炉パス出口温度などを見ながらQ弁を
開けて第2図Aに示すように再循環ポンプによる再循環
流量を段階的に絞って行き、それに伴って給水ポンプに
よる給水量を段階的に増やしていって、冷却速度が例え
ば略50〜60℃/hとなるように制御している。
The conventional forced cooling method of the boiler in the recirculation type boiler is performed manually, and since the boiler cannot be cooled at a certain temperature drop rate or higher to maintain its soundness, the furnace pass outlet temperature, etc. While watching Q, open the Q valve and gradually reduce the recirculation flow rate by the recirculation pump as shown in FIG. 2A, and gradually increase the water supply amount by the water supply pump accordingly, and the cooling rate. Is controlled to be, for example, approximately 50 to 60 ° C./h.

[発明が解決しようとする課題] しかし、上記従来方法においては、再循環流量と給水
流量の調整を運転員が手動により段階的に行うようにし
ているために、温度降下が第2図A′で示すように変動
して安定せず、しかも一定の温度降下率以上にならない
ように細心の注意を払う必要があり、このために通常は
温度降下率に余裕を持たせてゆっくり降下させるように
しているために冷却に時間が掛る等の問題を有してい
た。
[Problems to be Solved by the Invention] However, in the above-mentioned conventional method, since the operator manually adjusts the recirculation flow rate and the feed water flow rate stepwise, the temperature drop is caused by A'in FIG. It is necessary to pay close attention so that it does not fluctuate and stabilize as shown in Fig. 4, and it does not exceed a certain temperature drop rate. Therefore, there is a problem that it takes time to cool.

本発明は、上記従来の問題点に着目してなしたもの
で、ボイラの強制冷却を安全性を保持しつつ最短の時間
で効率良く行わしめることを目的としている。
The present invention has been made in view of the above-mentioned conventional problems, and an object thereof is to efficiently perform forced cooling of a boiler in the shortest time while maintaining safety.

[課題を解決するための手段] 本発明は、上記技術的課題を解決しようとしたもの
で、再循環ボイラ強制冷却時、ボイラの火炉パス出口温
度を検出し、該火炉パス出口温度からボイラ再循環流路
のQ弁の開度をプログラム設定して再循環流量を制御す
ると共に、前記火炉パス出口温度が設定した温度降下率
になるように前記Q弁の開度を調整することを特徴とす
るボイラ強制冷却制御方法、に係るものである。
[Means for Solving the Problem] The present invention is intended to solve the above technical problem, and detects the furnace path outlet temperature of the boiler at the time of forced cooling of the recirculation boiler, and detects the boiler temperature from the furnace path outlet temperature. The opening degree of the Q valve of the circulation passage is programmed to control the recirculation flow rate, and the opening degree of the Q valve is adjusted so that the temperature of the exit of the furnace pass becomes a set temperature drop rate. And a boiler forced cooling control method.

[作用] 従って、本発明では、ボイラ強制冷却時、火炉パス出
口温度に基づいた開度プログラムによってQ弁の開度が
減少するように調節することによって循環流量を制御
し、更に前記火炉パス出口温度が設定した温度降下率に
なるように前記Q弁の開度を調整することによって、ボ
イラを短時間内に効率良く安定して冷却する。
[Operation] Therefore, in the present invention, during forced boiler cooling, the circulation flow rate is controlled by adjusting the opening degree program based on the furnace path outlet temperature so that the opening degree of the Q valve decreases. By adjusting the opening degree of the Q valve so that the temperature becomes the set temperature drop rate, the boiler is efficiently and stably cooled within a short time.

[実 施 例] 以下本発明の実施例を図面を参照しつつ説明する。[Examples] Examples of the present invention will be described below with reference to the drawings.

第1図は本発明の方法を実施する装置の一例を示すも
ので、給水ポンプ1からの給水が、給水管2を介してボ
イラ3の節炭器4、火炉パス5を経て蒸気となって気水
分離器6に導かれ、蒸気は図示しない過熱器に導かれ
る。一方、気水分離器6で分離された熱水は、分離タン
ク7に導かれ、更に再循環ポンプ8及びQ弁9を介して
前記給水管2に合流されて再びボイラ3に導かれるよう
になっている。又、前記分離タンク7内のレベルがレベ
ル制御装置10によって検出され、熱水を復水器に導くP
弁11を調整することにより分離タンク7内のレベルを一
定に制御するようにしている。
FIG. 1 shows an example of an apparatus for carrying out the method of the present invention, in which water supplied from a water supply pump 1 becomes steam through a water supply pipe 2, a economizer 4 of a boiler 3 and a furnace path 5. The steam is guided to the steam separator 6, and the steam is guided to a superheater (not shown). On the other hand, the hot water separated by the steam separator 6 is introduced into the separation tank 7, and further merged with the water supply pipe 2 through the recirculation pump 8 and the Q valve 9 to be introduced again into the boiler 3. Has become. Further, the level in the separation tank 7 is detected by the level control device 10, and the hot water is guided to the condenser P.
The level in the separation tank 7 is controlled to be constant by adjusting the valve 11.

上記において、ボイラ3の給水入口部に流量計12を設
けると共に、Q弁9の出口に流量計13を設け、該両流量
計12,13からの流量信号14,15を加算器16で加算し、その
加算信号を引算器17に入力して予め設定された最低給水
量18と比較し、その差が零になるようにコントローラ19
を介して給水ポンプ1を制御する。
In the above, a flow meter 12 is provided at the feed water inlet of the boiler 3 and a flow meter 13 is provided at the exit of the Q valve 9, and flow rate signals 14 and 15 from both flow meters 12 and 13 are added by an adder 16. , The addition signal is input to the subtractor 17 and compared with a preset minimum water supply amount 18, and the controller 19 is set so that the difference becomes zero.
The water supply pump 1 is controlled via.

一方、ボイラ3の火炉パス出口に温度計20を設けて、
該温度計20の温度信号21を一次遅れ回路22を介して引算
器23に導くと共に、予め設定された冷却目標値24(例え
ば100℃まで温度を下げる)を変化率制限器25に入力し
て変化率制限(例えば50〜60℃/h)を与えた信号を引算
器23に入力して引算を行う。更に、引算器23の下信号を
関数発生器26に導いてQ弁9の開度に変換し、その開度
調整信号27をコントローラ28によりゲイン調整して加算
器29に導入し、前記温度計20からの温度信号21により開
度プログラムを設定するようにした関数発生器31からの
開度プログラム信号30に加算することにより、その加算
信号でQ弁9の開度を制御する。
On the other hand, a thermometer 20 is installed at the furnace pass outlet of the boiler 3,
A temperature signal 21 of the thermometer 20 is led to a subtractor 23 via a first-order delay circuit 22, and a preset cooling target value 24 (for example, lowering the temperature to 100 ° C.) is input to a rate-of-change limiter 25. The signal subjected to the rate of change limitation (for example, 50 to 60 ° C./h) is input to the subtractor 23 to perform the subtraction. Further, the lower signal of the subtractor 23 is guided to the function generator 26 to be converted into the opening of the Q valve 9, and the opening adjustment signal 27 is gain-adjusted by the controller 28 to be introduced into the adder 29, where The opening signal of the Q valve 9 is controlled by the addition signal by adding it to the opening program signal 30 from the function generator 31 in which the opening program is set by the temperature signal 21 from the total 20.

又、前記温度計20からの温度信号21を関数変換器32に
導いてボイラ冷却時の空気流量指令33を出力させ、該指
令33と空気流量検出器34からの空気流量信号とを引算器
35により比較し、その差が零になるようにコントローラ
36を介して通風機(FDF)の制御を行うよう構成する。
Further, the temperature signal 21 from the thermometer 20 is guided to the function converter 32 to output the air flow rate command 33 for cooling the boiler, and the command 33 and the air flow rate signal from the air flow rate detector 34 are subtracted.
Compare with 35 and controller so that the difference becomes zero
It is configured to control the fan (FDF) via 36.

前記給水ポンプ1は、ボイラ3入口の流量計12の流量
信号14とQ弁9出口の流量計13の流量信号15の和が最低
給水流量18と同一になるように、コントローラ19により
制御される。従って、Q弁9からの再循環流量が増加す
るとボイラ入力流量がその分減少し、再循環流量が減少
するとその分ボイラ入口流量が増加するように給水ポン
プ1が自動制御される。
The water supply pump 1 is controlled by the controller 19 so that the sum of the flow signal 14 of the flow meter 12 at the inlet of the boiler 3 and the flow signal 15 of the flow meter 13 at the outlet of the Q valve 9 becomes equal to the minimum water supply flow rate 18. . Therefore, when the recirculation flow rate from the Q valve 9 increases, the boiler input flow rate decreases correspondingly, and when the recirculation flow rate decreases, the boiler inlet flow rate increases correspondingly, so that the feed water pump 1 is automatically controlled.

ボイラ3が停止された状態では、Q弁9が開かれてい
てボイラ3、分離タンク7間で再循環が行われており、
且つ分離タンク7のレベルが下らない程度(P弁11が開
かない程度)の少量の給水が給水ポンプ1により給水さ
れている。
In the state where the boiler 3 is stopped, the Q valve 9 is opened and recirculation is performed between the boiler 3 and the separation tank 7,
A small amount of water is supplied by the water supply pump 1 such that the level of the separation tank 7 does not drop (the P valve 11 does not open).

この状態で、温度計20による火炉パス出口温度の温度
信号21に基づいて関数発生器31により界度プログラム信
号30を設定し、この信号30によりQ弁3の界度を所定の
速度で絞るように制御する。これにより、再循環流量が
徐々に減少されてその分給水ポンプ1による給水量が増
加されるので、火炉パス出口温度も徐々に降下される。
In this state, the function generator 31 sets the field program signal 30 based on the temperature signal 21 of the furnace path outlet temperature from the thermometer 20, and the field 30 of the Q valve 3 is throttled at a predetermined speed by this signal 30. To control. As a result, the recirculation flow rate is gradually decreased and the amount of water supplied by the water supply pump 1 is increased accordingly, so that the furnace path outlet temperature is also gradually decreased.

しかし、単に開度プログラム信号30によってQ弁9の
開度を制御しただけでは、火炉パス出口温度が変動し、
50〜60℃/hの安定した温度降下率で降下させることがで
きない。
However, if the opening degree of the Q valve 9 is simply controlled by the opening degree program signal 30, the furnace pass outlet temperature fluctuates,
It cannot be lowered at a stable temperature drop rate of 50-60 ° C / h.

このために、温度計20からの温度信号21を一次遅れ回
路22を介して引算器23に入力し、冷却目標値24(例えば
100℃)までの温度が50〜60℃/hになるように設定した
変化率制限器25からの信号と比較してその差を求め、そ
の差信号を関数発生器26により開度の調整信号27に変換
し、該開度調整信号27をコントローラ28によりゲインを
調整して加算器29に導入し、前記開度プログラム信号30
に加算する。
For this purpose, the temperature signal 21 from the thermometer 20 is input to the subtractor 23 via the primary delay circuit 22, and the cooling target value 24 (for example,
(100 ° C), the difference is calculated by comparing with the signal from the rate-of-change limiter 25 that is set so that the temperature up to 50-60 ° C / h, and the difference signal is output by the function generator 26 to adjust the opening. 27, the gain of the opening adjustment signal 27 is adjusted by the controller 28, and the result is introduced into the adder 29.
Add to.

上記において、Q弁9を調整しても直ぐには火炉パス
出口温度は変化しない。このため温度信号21に一次遅れ
を与えたその温度の降下の状態と、所定の降下率(50〜
60℃/h)で降下する設定降下温度とを比較してその差に
基づいて前記開度プログラム信号30を補正するようにし
ている。
In the above, even if the Q valve 9 is adjusted, the furnace pass outlet temperature does not change immediately. For this reason, the state of the temperature drop in which the temperature signal 21 is delayed by a first order and a predetermined drop rate (50 to
The set opening temperature which drops at 60 ° C./h) is compared and the opening degree program signal 30 is corrected based on the difference.

従って、Q弁9による再循環流量と給水ポンプ1によ
る給水流量の割合が第2図中破線Bで示すように略直線
的に制御されることになり、火炉パス出口温度が破線
B′で示すように許容可能な最短時間内で安定して目標
温度まで降下するように、ボイラ3の冷却を行うことが
できる。
Therefore, the ratio between the recirculation flow rate by the Q valve 9 and the feed water flow rate by the feed water pump 1 is controlled substantially linearly as shown by the broken line B in FIG. 2, and the furnace pass outlet temperature is shown by the broken line B '. Thus, the boiler 3 can be cooled so as to stably drop to the target temperature within the shortest allowable time.

又、前記温度計20からの温度信号21を関数発生器32に
よって必要な空気流量に関数変換し、その信号と空気流
量検出器34からの検出信号と引算器35で引算を行って差
を求め、その差に基づいてコントローラ19を介して通風
機(FDF)を制御することにより、空気流量の制御を自
動的に行って過熱器の冷却も並行して行うことができ
る。
Further, the temperature signal 21 from the thermometer 20 is function-converted into a required air flow rate by the function generator 32, and the signal is subtracted from the detection signal from the air flow rate detector 34 by the subtractor 35 to obtain a difference. Is obtained, and the fan (FDF) is controlled via the controller 19 based on the difference, the air flow rate can be automatically controlled and the superheater can be cooled in parallel.

尚、本発明は上記実施例にのみ限定されるものではな
く、本発明の要旨を逸脱しない範囲内において種々変更
を加え得る。
It should be noted that the present invention is not limited to the above embodiments, and various changes can be made without departing from the scope of the present invention.

[発明の効果] 上記したように、本発明のボイラ強制冷却制御方法に
よれば、火炉パス出口温度が設定した温度降下率になる
ようにQ弁の開度を調整して再循環流量を制御するよう
にしているので、ボイラの強制冷却を、安定させて安全
性を保持しつつ、最短時間内において効率的に行うこと
ができる優れた効果を奏し得る。
[Advantages of the Invention] As described above, according to the boiler forced cooling control method of the present invention, the recirculation flow rate is controlled by adjusting the opening degree of the Q valve so that the furnace pass outlet temperature has the set temperature drop rate. Therefore, it is possible to achieve the excellent effect that the forced cooling of the boiler can be efficiently performed in the shortest time while stabilizing and maintaining safety.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の方法を実施する装置の一例を示す説明
図、第2図はボイラ冷却時における火炉パス給水流量と
火炉パス出口温度の変化を示す線図である。 1は給水ポンプ、3はボイラ、8は再循環ポンプ、9は
Q弁、12,13は流量計、20は温度計、21は温度信号、22
は一次遅れ回路、23は引算器、24は冷却目標値、25は変
化率制御器、26は関数発生器、29は加算器、30は開度プ
ログラム信号、31は関数発生器を示す。
FIG. 1 is an explanatory view showing an example of an apparatus for carrying out the method of the present invention, and FIG. 2 is a diagram showing changes in the flow rate of water supplied to the furnace and the temperature at the exit of the furnace when the boiler is cooled. 1 is a water supply pump, 3 is a boiler, 8 is a recirculation pump, 9 is a Q valve, 12 and 13 are flow meters, 20 is a thermometer, 21 is a temperature signal, 22
Is a primary delay circuit, 23 is a subtractor, 24 is a cooling target value, 25 is a change rate controller, 26 is a function generator, 29 is an adder, 30 is an opening program signal, and 31 is a function generator.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】再循環形ボイラのボイラ強制冷却時、ボイ
ラの火炉パス出口温度を検出し、該火炉パス出口温度か
らボイラ再循環流炉のQ弁の開度をプログラム設定して
再循環流量を制御すると共に、前記火炉パス出口温度が
設定した温度降下率になるように前記Q弁の開度を調整
することを特徴とするボイラ強制冷却制御方法。
Claim: What is claimed is: 1. When forcedly cooling a boiler of a recirculation type boiler, the temperature of the exit of the furnace pass of the boiler is detected, and the opening of the Q valve of the boiler recirculation flow furnace is programmed from the temperature of the exit of the furnace pass to set the recirculation flow rate. And controlling the opening degree of the Q valve so that the furnace pass outlet temperature has a set temperature drop rate.
JP5655688A 1988-03-10 1988-03-10 Boiler forced cooling control method Expired - Lifetime JPH086891B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5655688A JPH086891B2 (en) 1988-03-10 1988-03-10 Boiler forced cooling control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5655688A JPH086891B2 (en) 1988-03-10 1988-03-10 Boiler forced cooling control method

Publications (2)

Publication Number Publication Date
JPH01230903A JPH01230903A (en) 1989-09-14
JPH086891B2 true JPH086891B2 (en) 1996-01-29

Family

ID=13030387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5655688A Expired - Lifetime JPH086891B2 (en) 1988-03-10 1988-03-10 Boiler forced cooling control method

Country Status (1)

Country Link
JP (1) JPH086891B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5127188B2 (en) * 2006-09-08 2013-01-23 中国電力株式会社 Water heater leak test method
JP4969200B2 (en) * 2006-10-26 2012-07-04 中国電力株式会社 Stopping method and system of ventilation cooling system during forced cooling of boiler furnace
JP5164580B2 (en) * 2008-01-11 2013-03-21 中国電力株式会社 Control method of power generator when power generation is stopped
JP5183649B2 (en) * 2010-01-28 2013-04-17 中国電力株式会社 Forced cooling method for once-through boiler
JP6103347B2 (en) * 2012-12-05 2017-03-29 中国電力株式会社 Boiler forced cooling method after fire extinguishing of boiler in power generation equipment

Also Published As

Publication number Publication date
JPH01230903A (en) 1989-09-14

Similar Documents

Publication Publication Date Title
JPH086891B2 (en) Boiler forced cooling control method
US8526562B2 (en) Reactor power control apparatus of natural circulation reactor, generation system of natural circulation reactor and method for controlling reactor power of natural circulation reactor
JPH06159603A (en) Control device for waste heat steam generator
JPH0223928Y2 (en)
JPS634096B2 (en)
JPS5843310A (en) Controller for feedwater
JP2000161606A (en) Steaming prevention control method nd apparatus for coal saving apparatus
JPH0587325A (en) Control of steam pressure for soot blower
JPH0412329Y2 (en)
JPH0593545A (en) Controlling method for hot water supplying apparatus
JPH11337049A (en) Control method and apparatus for controlling mill primary air damper of a pulverized coal fired boiler
JPH06159608A (en) Recirculation flow rate control device for water-feeding pump
JP2645129B2 (en) Condensate recirculation flow control device
JPH0241720B2 (en)
JP2866171B2 (en) Boiler gas recirculation control device
JPS6235002B2 (en)
JPS6023699A (en) Hammering inhibiting controller for emergency drain discharge system
JP2670059B2 (en) Drum level controller for waste heat recovery boiler
JPS60223948A (en) Feed water control device for tap-controlled water heater
JPH06105132B2 (en) Gas water heater temperature control device
JPS582795A (en) Reheater control device for atomic power turbine plant
JPH02185604A (en) Generator output control method
JPH0989209A (en) Steam temperature controller for boiler
JPS58205005A (en) Controller for drum level of waste heat boiler
JPH0587302A (en) Controlling method for auxiliary steam extraction valve for starting boiler