JPH0412329Y2 - - Google Patents
Info
- Publication number
- JPH0412329Y2 JPH0412329Y2 JP1983070483U JP7048383U JPH0412329Y2 JP H0412329 Y2 JPH0412329 Y2 JP H0412329Y2 JP 1983070483 U JP1983070483 U JP 1983070483U JP 7048383 U JP7048383 U JP 7048383U JP H0412329 Y2 JPH0412329 Y2 JP H0412329Y2
- Authority
- JP
- Japan
- Prior art keywords
- attemperator
- capacity
- steam
- control
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 3
- 238000002347 injection Methods 0.000 claims description 2
- 239000007924 injection Substances 0.000 claims description 2
- 238000011144 upstream manufacturing Methods 0.000 claims description 2
- 239000000498 cooling water Substances 0.000 description 7
- 238000001514 detection method Methods 0.000 description 6
- 238000001816 cooling Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000002485 combustion reaction Methods 0.000 description 2
- 230000001934 delay Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000003134 recirculating effect Effects 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
Landscapes
- Control Of Temperature (AREA)
Description
【考案の詳細な説明】
この考案は蒸気温度を制御する装置に係り、特
にボイラの全負荷範囲にわたつて良好な制御を行
える装置に関する。DETAILED DESCRIPTION OF THE INVENTION This invention relates to a device for controlling steam temperature, and more particularly to a device that can perform good control over the entire load range of a boiler.
最近、火力発電プラントにおけるボイラはます
ます大型化し、かつ高温、高圧型となつてきてい
る。この様な高温、高圧型のボイラにおいては蒸
気温度の許容変動幅はボイラの材質やタービンの
熱応力の点からきびしく制限されており、蒸気温
度の制御を精密に行う必要がある。蒸気温度の制
御は、バーナ角度の変更、排ガスの再循環等ボイ
ラにおける燃焼状態を制御することにより行う方
法と、蒸気を冷却することにより行う方法とがあ
る。このうち燃焼状態を制御することにより温度
制御を行う方法は応答性が悪く精密な制御を行う
ことができず、精密な制御はもつぱら蒸気を冷却
する方法により行われている。 In recent years, boilers in thermal power plants have become larger and larger, and have become high-temperature and high-pressure types. In such high-temperature, high-pressure boilers, the permissible fluctuation range of steam temperature is severely limited due to the material of the boiler and the thermal stress of the turbine, and it is necessary to precisely control the steam temperature. Steam temperature can be controlled either by controlling the combustion state in the boiler, such as by changing the burner angle or by recirculating exhaust gas, or by cooling the steam. Among these methods, the method of controlling the temperature by controlling the combustion state has poor responsiveness and cannot perform precise control, and precise control is mainly performed by a method of cooling the steam.
第1図は蒸気冷却方式による蒸気温度制御の従
来例の一つを示す。この蒸気冷却系において、大
容量減温器の外に小容量減温器に設けてあり、大
容量減温器入口における蒸気温度をある程度低下
させておくことにより大容量減温器内での蒸気流
速を一定値以上に保持し、大容量減温器内での冷
却水の混合を良好にし、また大容量のスタートを
可能にするようにしている。図において蒸気Sの
一部は第1蒸気管路1を経て小容量減温器2に流
入する。この減温器2においては減温器出口の蒸
気温度を温度調節器3において検知し、この検知
結果をフイードバツクすることにより冷却水管路
4に設けた弁5及び6を調節し、減温器2内に噴
霧する冷却水W1の量を調節する。この様にして
水容量減温器2において所定の温度に調節された
蒸気は、第2蒸気管路7から供給された蒸気と合
流し大容量減温器8に流入する。この大容量減温
器8においても、減温器出口蒸気温度を温度調節
器9において検知し、かつこの検知結果をフイー
ドバツクすることにより冷却水管路10の弁1
1,12を調節する。これにより減温器8内に噴
霧する冷却水Wの量を調節し、蒸気温度の制御を
行う。この様に各減温器毎に独立して制御を行う
と、各減温器における温度制御は正確に行える
が、各減温器間でのインターロツクがないため、
全体としての制御が不安定となり、特に低負荷時
においてこの傾向が顕著となつて温度制御が不正
確となるという問題がある。 FIG. 1 shows one conventional example of steam temperature control using a steam cooling method. In this steam cooling system, a small-capacity attemperator is installed outside the large-capacity attemperator, and by lowering the steam temperature at the inlet of the large-capacity attemperator to a certain extent, the steam inside the large-capacity attemperator is The flow rate is maintained above a certain value to ensure good mixing of cooling water within the large-capacity desuperheater and to enable large-capacity starts. In the figure, a portion of the steam S flows into the small capacity attemperator 2 via the first steam line 1. In this attemperator 2, the temperature regulator 3 detects the steam temperature at the outlet of the attemperator, and by feeding back this detection result, the valves 5 and 6 provided in the cooling water pipe 4 are adjusted. Adjust the amount of cooling water W1 sprayed inside. The steam adjusted to a predetermined temperature in the water capacity attemperator 2 in this manner merges with the steam supplied from the second steam pipe line 7 and flows into the large capacity attemperator 8. In this large-capacity attemperator 8 as well, the temperature regulator 9 detects the steam temperature at the outlet of the attemperator, and the detection result is fed back to the valve 1 of the cooling water pipe 10.
Adjust 1 and 12. Thereby, the amount of cooling water W sprayed into the desuperheater 8 is adjusted, and the steam temperature is controlled. If each desuperheater is controlled independently in this way, the temperature in each desuperheater can be accurately controlled, but since there is no interlock between each desuperheater,
There is a problem in that the control as a whole becomes unstable, and this tendency becomes particularly noticeable at low loads, resulting in inaccurate temperature control.
第2図は別の制御例を示す。この制御例の場合
は、小容量減温器2の制御を行う温度調節器3に
対して、大容量減温器8の下流側に配置した別の
温度調節器9において検知した結果を関数発生器
13を介して入力することによりカスケード制御
を行うようにしたものである。これによつて前記
の制御例に比較して、特に低負荷時の制御制度は
飛躍的に向上するが、反面インターロツクが複雑
となり、装置が複雑かつ高価になるという問題が
ある。 FIG. 2 shows another example of control. In this control example, the temperature controller 3 that controls the small-capacity attemperator 2 generates a function based on the result detected by another temperature regulator 9 placed downstream of the large-capacity attemperator 8. The cascade control is performed by inputting the data through the device 13. This dramatically improves the control accuracy, especially at low loads, compared to the control example described above, but on the other hand, there is a problem that the interlock becomes complicated and the device becomes complicated and expensive.
この考案は上述した問題点に鑑み構成したもの
であり、制御遅れがなく、広い負荷範囲にわたつ
て正確な蒸気温度制御を行える蒸気温度制御装置
を提供することにある。 This invention was constructed in view of the above-mentioned problems, and the object is to provide a steam temperature control device that can accurately control steam temperature over a wide load range without delay in control.
要するにこの考案は、過熱蒸気の主流路に大容
量減温器を設け、その上流の主流路をバイパスす
る側路に小容量減温器を設け、前記小容量減温器
の出口蒸気温度の信号と、前記大容量減温器の出
口蒸気温度の信号を比率設定器に入れ、その比率
設定器の指令信号によりそれぞれの注水管路に設
けた制御弁を制御する信号回路を設けたこと特徴
とする制御性を高めた蒸気温度制御装置である。 In short, this invention provides a large-capacity attemperator in the main channel of superheated steam, a small-capacity attemperator in a side channel that bypasses the main channel upstream, and a signal indicating the outlet steam temperature of the small-capacity attemperator. and a signal circuit is provided for inputting a signal of the outlet steam temperature of the large capacity attemperator to a ratio setting device and controlling a control valve provided in each water injection pipe by a command signal from the ratio setting device. This is a steam temperature control device with improved controllability.
以下この考案の一実施例を図面により説明す
る。 An embodiment of this invention will be described below with reference to the drawings.
第3図において、大容量減温器8の下流側に設
けた温度調節器9と、各減温器2及び8に対して
冷却水W1,W2を供給する管路に設けた弁5,
6,11,12とは各々指令信号回路20で接続
してある。15はこの指令信号回路に対して設け
た比率設定器であり、小容量減温器2の下流側に
設けた温度調節器3と回路接続している。 In FIG. 3, a temperature regulator 9 provided on the downstream side of the large-capacity attemperator 8 and a valve 5 provided in the pipe line that supplies cooling water W 1 and W 2 to each attemperator 2 and 8 are shown. ,
6, 11, and 12 are connected to each other by a command signal circuit 20. Reference numeral 15 denotes a ratio setting device provided for this command signal circuit, and the circuit is connected to the temperature regulator 3 provided on the downstream side of the small capacity attemperator 2.
以上の構成において、温度調節器9は大容量減
温器8の出口蒸気温度を検知し、この検知結果に
基づいて各弁5,6,11,12を調節する。こ
の場合、温度調節器3による小容量減温器2の出
口蒸気温度を検知し、この検知結果を補正値とし
て比率設定器15に入力し、この補正値により温
度調節器9からの温度変化信号が入力する前に各
弁5,6,11,12の制御を行い、フイードフ
オワード制御を行う。これによつて大容量減温器
出口蒸気温度の検知、つまり最終蒸気温度検知に
よる制御遅れを防止し得る。 In the above configuration, the temperature regulator 9 detects the outlet steam temperature of the large-capacity attemperator 8, and adjusts each valve 5, 6, 11, 12 based on the detection result. In this case, the outlet steam temperature of the small capacity attemperator 2 is detected by the temperature controller 3, and this detection result is inputted to the ratio setting device 15 as a correction value, and the temperature change signal from the temperature controller 9 is generated using this correction value. Each valve 5, 6, 11, 12 is controlled before inputting the input signal to perform feed forward control. This can prevent control delays due to detection of the large-capacity attemperator outlet steam temperature, that is, final steam temperature detection.
この考案を実施することにより、最終蒸気温度
の外に小容量減温器出口蒸気温度信号も入力し、
フイードフオワード制御を行うので制御遅れがな
く、またフイードバツク制御の如く、系に加わつ
た外乱の影響が制御量に現われることもなく、常
に正確な蒸気温度制御を行うことができる。 By implementing this idea, a small capacity desuperheater outlet steam temperature signal is also input in addition to the final steam temperature.
Since feedback control is performed, there is no control delay, and unlike feedback control, the influence of disturbances applied to the system does not appear on the control amount, making it possible to always perform accurate steam temperature control.
第1図は従来の蒸気温度制御のうち単独制御を
示す系統図、第2図は別の従来方式の制御方法た
るカスケード制御の系統図、第3図はこの考案に
係る制御装置の系統図である。
2……小容量減温器、3,9……温度調節器、
5,6,11,12……流量制御弁、8……大容
量減温器、20……指令信号回路、S……蒸気、
W1,W2……冷却水。
Figure 1 is a system diagram showing single control in conventional steam temperature control, Figure 2 is a system diagram of cascade control, which is another conventional control method, and Figure 3 is a system diagram of the control device according to this invention. be. 2...Small capacity desuperheater, 3,9...Temperature controller,
5, 6, 11, 12...Flow rate control valve, 8...Large capacity desuperheater, 20...Command signal circuit, S...Steam,
W 1 , W 2 ...cooling water.
Claims (1)
上流の主流路をバイパスする側路に小容量減温器
を設け、前記小容量減温器の出口蒸気温度の信号
と、前記大容量減温器の出口蒸気温度の信号を比
率設定器に入れ、その比率設定器の指令信号によ
りそれぞれの注水管路に設けた制御弁を制御する
信号回路を設けたこと特徴とする制御性を高めた
蒸気温度制御装置。 A large-capacity attemperator is provided in the main channel of superheated steam, and a small-capacity attemperator is provided in a side channel that bypasses the main channel upstream thereof, and a signal of the outlet steam temperature of the small-capacity attemperator and the large-capacity attemperator are provided in the main channel of the superheated steam. Improved controllability, characterized by the provision of a signal circuit that inputs the steam temperature signal at the outlet of the desuperheater into a ratio setting device and controls the control valves installed in each water injection pipe using the command signal from the ratio setting device. steam temperature control device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7048383U JPS59175813U (en) | 1983-05-13 | 1983-05-13 | Steam temperature control device with improved controllability |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7048383U JPS59175813U (en) | 1983-05-13 | 1983-05-13 | Steam temperature control device with improved controllability |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59175813U JPS59175813U (en) | 1984-11-24 |
JPH0412329Y2 true JPH0412329Y2 (en) | 1992-03-25 |
Family
ID=30200634
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7048383U Granted JPS59175813U (en) | 1983-05-13 | 1983-05-13 | Steam temperature control device with improved controllability |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59175813U (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8347827B2 (en) * | 2009-04-16 | 2013-01-08 | General Electric Company | Desuperheater for a steam turbine generator |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5162202A (en) * | 1974-11-27 | 1976-05-29 | Hitachi Ltd | DORAMUGATABOIRANIOKERU KANETSUKIGENONKIDEGUCHINO ONDOSEIGYO SOCHI |
JPS54148902A (en) * | 1978-05-15 | 1979-11-21 | Hitachi Ltd | Temperature control device for miscible burning type boiler |
JPS5640007A (en) * | 1979-09-07 | 1981-04-16 | Hitachi Ltd | Boiler steam temperature controlling method |
-
1983
- 1983-05-13 JP JP7048383U patent/JPS59175813U/en active Granted
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5162202A (en) * | 1974-11-27 | 1976-05-29 | Hitachi Ltd | DORAMUGATABOIRANIOKERU KANETSUKIGENONKIDEGUCHINO ONDOSEIGYO SOCHI |
JPS54148902A (en) * | 1978-05-15 | 1979-11-21 | Hitachi Ltd | Temperature control device for miscible burning type boiler |
JPS5640007A (en) * | 1979-09-07 | 1981-04-16 | Hitachi Ltd | Boiler steam temperature controlling method |
Also Published As
Publication number | Publication date |
---|---|
JPS59175813U (en) | 1984-11-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0198502B1 (en) | Method of and apparatus for controlling fuel of gas turbine | |
US7668623B2 (en) | Steam temperature control using integrated function block | |
JP2007071416A (en) | Reheat steam system of boiler, and control method of reheat steam temperature | |
JPH0412329Y2 (en) | ||
JPH0942606A (en) | Once-through boiler steam temperature control device | |
JPH0412330Y2 (en) | ||
JPH0318082B2 (en) | ||
JPH06159603A (en) | Control device for waste heat steam generator | |
JPS634096B2 (en) | ||
JP2002323203A (en) | Vapor temperature control method and device for once- through boiler | |
JPH0722563Y2 (en) | Boiler equipment | |
JPS61107007A (en) | Method of controlling temperature of steam of steam superheater | |
JPH0493501A (en) | Method of controlling spray flow rate for boiler | |
JPS59138705A (en) | Controller for temperature of supplied water | |
JPS621161B2 (en) | ||
JP2670064B2 (en) | Steam temperature controller | |
JPS6252122B2 (en) | ||
JPS621162B2 (en) | ||
JPS5856050B2 (en) | Boiler combustion control device | |
SU580402A1 (en) | Device for automatic control of uniflow steam boiler | |
SU1129459A1 (en) | Device for controlling steam temperature | |
JPH1073205A (en) | Controller for once-through boiler | |
JPS59164820A (en) | Fuel system control of coal-fired power plant | |
JPS60171308A (en) | Method of burning fuel in burner with reduced amount of generated nox | |
JPH0364681B2 (en) |