JPH0412330Y2 - - Google Patents

Info

Publication number
JPH0412330Y2
JPH0412330Y2 JP1983073058U JP7305883U JPH0412330Y2 JP H0412330 Y2 JPH0412330 Y2 JP H0412330Y2 JP 1983073058 U JP1983073058 U JP 1983073058U JP 7305883 U JP7305883 U JP 7305883U JP H0412330 Y2 JPH0412330 Y2 JP H0412330Y2
Authority
JP
Japan
Prior art keywords
steam
flow rate
attemperator
capacity
cooling water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1983073058U
Other languages
Japanese (ja)
Other versions
JPS59181910U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP7305883U priority Critical patent/JPS59181910U/en
Publication of JPS59181910U publication Critical patent/JPS59181910U/en
Application granted granted Critical
Publication of JPH0412330Y2 publication Critical patent/JPH0412330Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Control Of Temperature (AREA)

Description

【考案の詳細な説明】 この考案は蒸気温度を制御する装置に係り、特
に蒸気温度の制御を精密に行うことのできる装置
に関する。
[Detailed Description of the Invention] This invention relates to a device for controlling steam temperature, and particularly to a device that can precisely control steam temperature.

最近、火力発電プラントにおけるボイラはます
ます大型化し、かつ高温、高圧型となつてきてい
る。この様な高温、高圧型のボイラにおいては蒸
気温度の許容変動幅はボイラの材質やタービンの
熱応力の点からきびしく制限されており、蒸気温
度の制御を精密に行う必要がある。蒸気温度の制
御は、バーナ角度の変更、排ガスの再循環等ボイ
ラにおける燃焼状態を制御することにより行う方
法と、蒸気を冷却することにより行う方法とがあ
る。このうち燃焼状態を制御することにより温度
制御を行う方法は応答性が悪く精密な制御を行う
ことができず、精密な制御はもつぱら蒸気を冷却
する方法により行われている。
In recent years, boilers in thermal power plants have become larger and larger, and have become high-temperature and high-pressure types. In such high-temperature, high-pressure boilers, the permissible fluctuation range of steam temperature is severely limited due to the material of the boiler and the thermal stress of the turbine, and it is necessary to precisely control the steam temperature. Steam temperature can be controlled either by controlling the combustion state in the boiler, such as by changing the burner angle or by recirculating exhaust gas, or by cooling the steam. Among these methods, the method of controlling the temperature by controlling the combustion state has poor responsiveness and cannot perform precise control, and precise control is mainly performed by a method of cooling the steam.

第1図は蒸気冷却方式による蒸気温度制御の従
来例の一つを示す。
FIG. 1 shows one conventional example of steam temperature control using a steam cooling method.

この蒸気冷却系においては、大容量減温器の外
に小容量減温器に設けてあり、大容量減温器入口
における蒸気温度をある程度低下させておくこと
により大容量減温器内での蒸気流速を一定値以上
に保持しておき、大容量減温器内での冷却水の混
合を良好にし、また大容量のスタートを可能にし
ている。
In this steam cooling system, a small-capacity desuperheater is installed in addition to the large-capacity desuperheater, and by lowering the steam temperature at the inlet of the large-capacity desuperheater to a certain extent, The steam flow rate is maintained above a certain value, allowing good mixing of cooling water in the large-capacity desuperheater and enabling large-capacity starts.

第1図において蒸気Sの一部は第1蒸気管路1
を経て小容量減温器2に流入する。この減温器2
においては減温器出口の蒸気温度を温度調節器3
において検知し、この検知結果をフイードバツク
することにより冷却水管路4に設けた弁5及び6
を調節し、減温器2内に噴霧する冷却水W1の量
を調節する。この様にして水容量減温器2におい
て所定の温度に調節された蒸気は第2蒸気管路7
から供給された蒸気と合流し大容量減温器8に流
入する。この大容量減温器8においても、減温器
出口蒸気温度を温度調節器9において検知し、か
つこの検知結果をフイードバツクすることにより
冷却水管路10の弁11,12を調節する。これ
により減温器8内に噴霧する冷却水W2の量を調
節し、蒸気温度の制御を行う。この様に各減温器
毎に独立して制御を行うと、各減温器における温
度制御は正確に行えるが、各減温器間でのインタ
ーロツクがないため、全体としての制御が不安定
となり、特に低負荷時においてこの傾向が顕著と
なつて温度制御が不正確となるという問題があ
る。
In FIG. 1, part of the steam S is in the first steam pipe 1
It flows into the small capacity attemperator 2 through the. This desuperheater 2
In this case, the steam temperature at the outlet of the desuperheater is controlled by temperature controller 3.
The valves 5 and 6 provided in the cooling water pipe 4 are detected by
and adjust the amount of cooling water W1 sprayed into the desuperheater 2. The steam adjusted to a predetermined temperature in the water capacity desuperheater 2 in this way is transferred to the second steam pipe line 7.
It joins with the steam supplied from and flows into the large-capacity attemperator 8. In this large-capacity attemperator 8 as well, the temperature regulator 9 detects the steam temperature at the outlet of the attemperator, and the valves 11 and 12 of the cooling water pipe 10 are adjusted by feeding back the detection result. Thereby, the amount of cooling water W 2 sprayed into the attemperator 8 is adjusted, and the steam temperature is controlled. If each desuperheater is controlled independently in this way, the temperature in each desuperheater can be accurately controlled, but since there is no interlock between each desuperheater, the overall control becomes unstable. There is a problem in that this tendency becomes remarkable especially when the load is low, and temperature control becomes inaccurate.

第2図は別の制御例を示す。この制御例の場合
は、小容量減温器2の制御を行う温度調節器3に
対して、大容量減温器8の下流側に配置した別の
温度調節器9において検知した結果を関数発生器
13を介して入力することによりカスケード制御
を行うようにしたものである。これによつて前記
の制御例に比較して、特に低負荷時の制御精度は
飛躍的に向上するが、反面インターロツクが複雑
となり、装置が複雑かつ高価になるという問題が
ある。
FIG. 2 shows another example of control. In this control example, the temperature controller 3 that controls the small-capacity attemperator 2 generates a function based on the result detected by another temperature regulator 9 placed downstream of the large-capacity attemperator 8. The cascade control is performed by inputting the data through the device 13. This dramatically improves the control accuracy especially at low loads compared to the control example described above, but on the other hand, there is a problem that the interlock becomes complicated and the device becomes complicated and expensive.

この考案の目的は上述した問題点に鑑み広い負
荷範囲にわたつて蒸気温度を精密に制御すること
のできる装置を提供することにある。
In view of the above-mentioned problems, the purpose of this invention is to provide a device that can precisely control steam temperature over a wide load range.

要するにこの考案は、過熱蒸気の主流路に大容
量減温器を設け、この上流の主流路をバイパスす
る側路に小容量減温器を設けた蒸気温度制御装置
において、冷却水流量調節器22付きの冷却水本
管21を、該冷却水流量調節器22の下流で二本
の弁付き注水管路に分岐させ、それぞれ前記小容
量減温器2と前記大容量減温器8とに接続し、前
記大容量減温器の下流の蒸気流量調節器23の流
量信号と温度検知器24の温度信号を比較設定器
25経由前記冷却水流量調節器22に送り、該冷
却水流量調節器の信号で大容量減温器の注水用弁
11,12を制御する信号回路を設けたことを特
徴とする精密制御型蒸気温度制御装置である。
In short, this invention provides a steam temperature control device in which a large-capacity attemperator is provided in the main channel of superheated steam, and a small-capacity attemperator is provided in the side channel that bypasses the main channel upstream. The cooling water main pipe 21 with a cooling water flow rate regulator 22 is branched into two water injection pipes with valves downstream of the cooling water flow rate regulator 22, and each of the pipes is connected to the small capacity attemperator 2 and the large capacity attemperator 8. Then, the flow rate signal of the steam flow rate regulator 23 and the temperature signal of the temperature detector 24 downstream of the large-capacity attemperator are sent to the cooling water flow rate regulator 22 via the comparison setting device 25, This is a precision control type steam temperature control device characterized by providing a signal circuit that controls water injection valves 11 and 12 of a large capacity desuperheater with a signal.

以下この考案の実施例を第3図により説明す
る。図において小容量減温器2および大容量減温
器8に対して冷却水を供給する管路は一本の冷却
水供給本管21となつており、この本管21から
各減温器2及び8に対して冷却水を供給する管路
4及び10が分岐している。各分岐管の上流部の
本管に対しては冷却水Wの流量を検知しかつ流量
制御を行う流量調節器22が取り付けてある。一
方大容量減温器8の下流の蒸気管路に対しては蒸
気流量を検知する流量調節器23及び蒸気温度を
検知する温度検知器24が取り付けてある。流量
調節器23は比率設定器25を介して前記流量調
節器22に回路接続し、かつ比率設定器25に対
して温度検知器24が回路接続している。また流
量調節器22と、大容量減温器8に対して冷却水
を供給する管路10の弁11及び12とは指令信
号回路によつて接続している。
An embodiment of this invention will be described below with reference to FIG. In the figure, the pipe line that supplies cooling water to the small-capacity attemperator 2 and the large-capacity attemperator 8 is a single cooling water supply main pipe 21, and from this main pipe 21 to each attemperator 2. Pipes 4 and 10 for supplying cooling water to and 8 are branched. A flow rate regulator 22 that detects the flow rate of the cooling water W and controls the flow rate is attached to the main pipe upstream of each branch pipe. On the other hand, a flow rate regulator 23 for detecting the steam flow rate and a temperature detector 24 for detecting the steam temperature are attached to the steam pipe downstream of the large-capacity attemperator 8. The flow rate regulator 23 is connected to the flow rate regulator 22 via a ratio setter 25, and a temperature sensor 24 is connected to the ratio setter 25. Further, the flow rate regulator 22 and the valves 11 and 12 of the conduit 10 that supplies cooling water to the large-capacity attemperator 8 are connected by a command signal circuit.

以上の装置において、小容量減温器2において
は冷却水の噴霧(注水)量は一定にしておき蒸気
管路1から供給される蒸気を冷却し、第2蒸気管
路7から供給される蒸気と合流して大容量減温器
8に流入し冷却される。大容量減温器8の下流で
は流量調節器23により冷却された蒸気の流量を
計測し、この結果を冷却水の流量調節器22に入
力する。流量調節器22はこの蒸気流量に比例し
て弁11及び12の開度を調節し、大容量減温器
8に対する冷却水噴霧量を調節し、蒸気温度の制
御を行う。この場合、温度検知器24において最
終蒸気温度を検知し、この検知結果を補正値とし
て入力することにより弁11,12の開度の調節
を行う。
In the above device, in the small-capacity desuperheater 2, the amount of cooling water sprayed (injected) is kept constant and the steam supplied from the steam pipe line 1 is cooled, and the steam supplied from the second steam pipe line 7 is and flows into the large-capacity attemperator 8 where it is cooled. Downstream of the large-capacity attemperator 8 , a flow rate regulator 23 measures the flow rate of the cooled steam, and this result is input to the cooling water flow rate regulator 22 . The flow rate regulator 22 adjusts the opening degrees of the valves 11 and 12 in proportion to the steam flow rate, adjusts the amount of cooling water sprayed to the large-capacity attemperator 8, and controls the steam temperature. In this case, the final steam temperature is detected by the temperature detector 24, and the opening degrees of the valves 11 and 12 are adjusted by inputting this detection result as a correction value.

この考案を実施することにより、蒸気流量に比
例して冷却水噴霧量を調節するので蒸気温度制御
の遅れが生ぜず、しかも蒸気温度自体も補正値と
して入力するので制御が正確となる。
By implementing this idea, the cooling water spray amount is adjusted in proportion to the steam flow rate, so there is no delay in steam temperature control, and the steam temperature itself is also input as a correction value, making the control more accurate.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の温度制御装置のうち単独制御を
示す系統図、第2図は別の従来方式の制御方法た
るカスケード制御の系統図、第3図はこの考案に
係る制御装置の系統図である。 2……小容量減温器、8……大容量減温器、2
1……冷却水本管、22……冷却水流量調節器、
23……蒸気流量調節器、24……温度検知器、
S……蒸気、W……冷却水。
Fig. 1 is a system diagram showing independent control among conventional temperature control devices, Fig. 2 is a system diagram of cascade control, which is another conventional control method, and Fig. 3 is a system diagram of the control device according to this invention. be. 2...Small capacity desuperheater, 8...Large capacity desuperheater, 2
1... Cooling water main pipe, 22... Cooling water flow rate regulator,
23...Steam flow rate regulator, 24...Temperature detector,
S...Steam, W...Cooling water.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 過熱蒸気の主流路に大容量減温器を設け、この
上流の主流路をバイパスする側路に小容量減温器
を設けた蒸気温度制御装置において、冷却水流量
調節器22付きの冷却水本管21を、該冷却水流
量調節器22の下流で二本の弁付き注水管路に分
岐させ、それぞれ前記小容量減温器2と前記大容
量減温器8とに接続し、前記大容量減温器の下流
の蒸気流量調節器23の流量信号と温度検知器2
4の温度信号を比較設定器25経由前記冷却水流
量調節器22に送り、該冷却水流量調節器の信号
で大容量減温器の注水用弁11,12を制御する
信号回路を設けたことを特徴とする精密制御型蒸
気温度制御装置。
In a steam temperature control device in which a large-capacity attemperator is provided in the main channel of superheated steam and a small-capacity attemperator is provided in a side channel that bypasses the main channel upstream, a cooling water main with a cooling water flow rate regulator 22 is provided. The pipe 21 is branched into two valved water injection pipes downstream of the cooling water flow rate regulator 22 and connected to the small capacity attemperator 2 and the large capacity attemperator 8, respectively. Flow rate signal of steam flow regulator 23 downstream of the attemperator and temperature sensor 2
A signal circuit is provided for sending the temperature signal of No. 4 to the cooling water flow rate regulator 22 via the comparison setting device 25 and controlling the water injection valves 11 and 12 of the large capacity desuperheater with the signal from the cooling water flow rate regulator. A precision control steam temperature control device featuring:
JP7305883U 1983-05-18 1983-05-18 Precision control steam temperature control device Granted JPS59181910U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7305883U JPS59181910U (en) 1983-05-18 1983-05-18 Precision control steam temperature control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7305883U JPS59181910U (en) 1983-05-18 1983-05-18 Precision control steam temperature control device

Publications (2)

Publication Number Publication Date
JPS59181910U JPS59181910U (en) 1984-12-04
JPH0412330Y2 true JPH0412330Y2 (en) 1992-03-25

Family

ID=30203195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7305883U Granted JPS59181910U (en) 1983-05-18 1983-05-18 Precision control steam temperature control device

Country Status (1)

Country Link
JP (1) JPS59181910U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100263605A1 (en) * 2009-04-17 2010-10-21 Ajit Singh Sengar Method and system for operating a steam generation facility

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5596807A (en) * 1979-01-17 1980-07-23 Hitachi Ltd Boiler steam temperature controller
JPS586306A (en) * 1981-07-03 1983-01-13 株式会社東芝 Controller for temperature of steam

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5596807A (en) * 1979-01-17 1980-07-23 Hitachi Ltd Boiler steam temperature controller
JPS586306A (en) * 1981-07-03 1983-01-13 株式会社東芝 Controller for temperature of steam

Also Published As

Publication number Publication date
JPS59181910U (en) 1984-12-04

Similar Documents

Publication Publication Date Title
EP0198502B1 (en) Method of and apparatus for controlling fuel of gas turbine
US7668623B2 (en) Steam temperature control using integrated function block
JP2007071416A (en) Reheat steam system of boiler, and control method of reheat steam temperature
JPH0412330Y2 (en)
JPH0412329Y2 (en)
JPH0318082B2 (en)
JPH11159756A (en) Water injection control device for oil fired dln combustor
JP2002323203A (en) Vapor temperature control method and device for once- through boiler
JP2670064B2 (en) Steam temperature controller
JPH0330761B2 (en)
JPS5923921Y2 (en) Temperature control device for heated fluid
JPS59138705A (en) Controller for temperature of supplied water
US4271673A (en) Steam turbine plant
JPH10228322A (en) Method and device for controlling flow rate
JPS6252122B2 (en)
JP2863645B2 (en) Feedwater flow control system for an exhaust gas reburning combined cycle power plant
JPH0335922Y2 (en)
JP2504939Y2 (en) Boiler level controller
JP2877298B2 (en) Cooling steam control method for gas turbine combustor
JPS61107007A (en) Method of controlling temperature of steam of steam superheater
JPH0364681B2 (en)
JPS61262508A (en) Boiler water feeder
JPS6235002B2 (en)
JPS58145803A (en) Controller for drum level of waste-heat boiler
JPH03260503A (en) Drain water level controller for water supplying and heating device