JPH0335922Y2 - - Google Patents

Info

Publication number
JPH0335922Y2
JPH0335922Y2 JP1983121286U JP12128683U JPH0335922Y2 JP H0335922 Y2 JPH0335922 Y2 JP H0335922Y2 JP 1983121286 U JP1983121286 U JP 1983121286U JP 12128683 U JP12128683 U JP 12128683U JP H0335922 Y2 JPH0335922 Y2 JP H0335922Y2
Authority
JP
Japan
Prior art keywords
temperature
boiler
steam
turbine
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1983121286U
Other languages
Japanese (ja)
Other versions
JPS6032601U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP12128683U priority Critical patent/JPS6032601U/en
Publication of JPS6032601U publication Critical patent/JPS6032601U/en
Application granted granted Critical
Publication of JPH0335922Y2 publication Critical patent/JPH0335922Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】 本考案はボイラの蒸気温度をタービン負荷に応
じた温度に制御するボイラ蒸気温度制御装置に関
する。
[Detailed Description of the Invention] The present invention relates to a boiler steam temperature control device that controls the steam temperature of a boiler to a temperature that corresponds to a turbine load.

発電用等のタービンは、ボイラの過熱器、再熱
器からの蒸気により運転される。この蒸気は、過
熱器、再熱器の出口とタービン入口との間を結ぶ
蒸気配管を通つてタービンに供給されるが、一般
に、ボイラとタービンとは相当の間隔を隔てて設
置されているので、前記配管の長さも長くなり、
60〜100mの長さとなる。ところで、要求される
タービン負荷に応じた蒸気を供給するためにはタ
ービン入口蒸気温度を所定の値に保持する必要が
あり、このため、タービン入口部又は過熱器、再
熱器出口部(ボイラ出口部)に温度検出器を設け
て常に蒸気温度を監視するのが通常である。
Turbines for power generation and the like are operated by steam from the superheater and reheater of the boiler. This steam is supplied to the turbine through steam piping that connects the outlet of the superheater or reheater and the turbine inlet, but the boiler and turbine are generally installed with a considerable distance between them. , the length of the piping becomes longer,
The length will be 60-100m. By the way, in order to supply steam according to the required turbine load, it is necessary to maintain the turbine inlet steam temperature at a predetermined value. Normally, a temperature detector is installed in the section) to constantly monitor the steam temperature.

第1図はボイラとタービン間の蒸気系統図であ
る。
FIG. 1 is a steam system diagram between a boiler and a turbine.

図で、1はボイラ、2はボイラ1の火炉出口付
近に設けられた過熱器、3はタービン、4は過熱
器2の出口とタービン3の入口を結ぶ蒸気配管で
ある。5は過熱器2の出口部に設けられたボイラ
出口温度検出器、6はタービン入口部に設けられ
たタービン入口温度検出器である。過熱器2から
の蒸気は蒸気配管4を通つてタービン3に供給さ
れてこれを駆動する。
In the figure, 1 is a boiler, 2 is a superheater provided near the furnace outlet of the boiler 1, 3 is a turbine, and 4 is a steam pipe connecting the outlet of the superheater 2 and the inlet of the turbine 3. 5 is a boiler outlet temperature detector provided at the outlet of the superheater 2, and 6 is a turbine inlet temperature detector provided at the turbine inlet. Steam from the superheater 2 is supplied to the turbine 3 through a steam pipe 4 to drive it.

ところで、タービン負荷に応じて蒸気を供給す
るためには、タービン入口部の蒸気温度を所望の
値に保持することが必要である。そして、このよ
うに蒸気温度を所望の値に保持するには、タービ
ン入口温度検出器6により検出された温度に基づ
いてボイラの必要制御を行なうのが最も望まし
い。しかしながら、前述のようにボイラ出口部と
タービン入口部との間の蒸気配管4の長さは60〜
100mに達するので、タービン入口温度検出器6
で検出された温度に基づいてボイラを制御して
も、蒸気配管4の長さのためタービン入口部の温
度を所定値に制御するには時間的遅れ、即ち応答
遅れを生じていた。そこで、この応答遅れを防ぐ
ため、従来、ボイラの蒸気温度制御はボイラ出口
温度検出器5により検出された温度に基づいて行
なわれていた。
By the way, in order to supply steam according to the turbine load, it is necessary to maintain the steam temperature at the turbine inlet at a desired value. In order to maintain the steam temperature at a desired value in this manner, it is most desirable to perform necessary control of the boiler based on the temperature detected by the turbine inlet temperature detector 6. However, as mentioned above, the length of the steam pipe 4 between the boiler outlet and the turbine inlet is 60~
Since it reaches 100m, the turbine inlet temperature sensor 6
Even if the boiler is controlled based on the detected temperature, there is a time delay, that is, a response delay, in controlling the temperature at the turbine inlet to a predetermined value due to the length of the steam pipe 4. Therefore, in order to prevent this response delay, boiler steam temperature control has conventionally been performed based on the temperature detected by the boiler outlet temperature detector 5.

第2図は従来のボイラ蒸気温度制御装置のブロ
ツク図である。図で、5は第1図に示すものと同
じボイラ出口温度検出器、7は温度設定器であ
る。温度設定器7における温度の設定は、要求さ
れるタービン負荷に応じたタービン入口部の蒸気
温度に、蒸気配管4の長さその他の条件を考慮し
て決定された蒸気配管4における一定の温度降下
分を加算して設定される。したがつて、温度設定
器7で設定される温度は要求されるタービン負荷
に応じたボイラ出口部蒸気温度となる。8はボイ
ラ出口温度検出器5と温度設定器7の信号を入力
してボイラ制御信号を出力する温度調節器であ
る。温度調節器8の構成は種々のものが考えられ
るが、例えば、前記2つの信号を比較する比較器
8a、この比較器8aの出力を制御に都合のよい
信号に変換するレベル調節器8bで構成される。
9は自動/手動の切換器で、必要時には手動で制
御信号が出力される。10は蒸気温度を変化させ
る種々の装置を操作する操作部であり、温度調節
器8からの制御信号に応じてこれら装置を駆動す
る。
FIG. 2 is a block diagram of a conventional boiler steam temperature control device. In the figure, 5 is the same boiler outlet temperature detector as shown in FIG. 1, and 7 is a temperature setting device. The temperature setting in the temperature setting device 7 is based on the steam temperature at the turbine inlet according to the required turbine load, and a certain temperature drop in the steam piping 4, which is determined by taking into account the length of the steam piping 4 and other conditions. It is set by adding the minutes. Therefore, the temperature set by the temperature setting device 7 becomes the boiler outlet steam temperature in accordance with the required turbine load. Reference numeral 8 denotes a temperature regulator which inputs signals from the boiler outlet temperature detector 5 and temperature setting device 7 and outputs a boiler control signal. Various configurations are possible for the temperature controller 8, but for example, it is configured with a comparator 8a that compares the two signals, and a level controller 8b that converts the output of the comparator 8a into a signal convenient for control. be done.
Reference numeral 9 is an automatic/manual switch, which outputs a manual control signal when necessary. Reference numeral 10 denotes an operation unit for operating various devices for changing the steam temperature, and drives these devices in accordance with control signals from the temperature regulator 8.

今、ボイラ出口温度検出器5の信号と温度設定
器7の信号とが一致しないとき、温度調節器8は
操作部10へ制御信号を出力する。操作部10は
この制御信号に応じて必要な操作を行ない、ボイ
ラ出口部の蒸気温度を所要の温度値とする。操作
部10により制御される対象としては、例えばボ
イラのバーナに供給される燃料量、バーナ各段に
対する燃料量の配分比、減温器の水の流量等種々
の対象が考えられる。このようにして、タービン
入口部の蒸気温度を規定値に保持し、要求される
タービン負荷に応じた蒸気を供給することができ
る。
Now, when the signal from the boiler outlet temperature detector 5 and the signal from the temperature setting device 7 do not match, the temperature regulator 8 outputs a control signal to the operating section 10. The operating section 10 performs necessary operations in response to this control signal, and sets the steam temperature at the boiler outlet to a required temperature value. Various objects can be considered to be controlled by the operation unit 10, such as the amount of fuel supplied to the burner of the boiler, the distribution ratio of the amount of fuel to each stage of the burner, and the flow rate of water in the desuperheater. In this way, the steam temperature at the turbine inlet can be maintained at a specified value, and steam can be supplied in accordance with the required turbine load.

上記従来のボイラ蒸気温度制御装置にあつて
は、蒸気配管4の温度降下、即ちボイラ出口部蒸
気温度とタービン入口部蒸気温度との温度差を一
定値として温度設定器7における設定を行なつて
いた。しかしながら、この温度差は常に一定では
なく、例えば、タービン負荷の変動により変化す
る。即ち、タービン負荷が増加すると蒸気配管4
を流れる蒸気流量も増加し、タービン負荷が減少
すると蒸気流量も減少する。この流量の変化によ
り温度差も3〜5℃変化する。このため、例え
ば、蒸気配管4の温度降下をみこんでボイラ出口
部蒸気温度を541℃に設定した場合、タービン入
口部蒸気温度は538℃〜536℃の間で変化すること
になる。このような温度差の変動は、タービン負
荷の変動ばかりでなく他の種々の原因により生じ
る。そして、このような温度差の変動があつた場
合、従来のボイラ蒸気温度制御装置ではタービン
入口部蒸気温度を規定値に制御することは困難で
あつた。しかし、近年、熱効率向上の要求が益々
厳しくなり、このため、タービン入口部蒸気温度
を規定値に保持する必要性も益々大きくなつてき
ている。したがつて上記従来のボイラ蒸気温度制
御装置では、常にタービン入口部蒸気温度を監視
しておき、この温度が規定値を外れた場合にはボ
イラ出口温度設定値を修正する必要があつた。し
かし、これでは自動的な蒸気温度制御を行なうこ
とはできず、しかも、上記ボイラ出口温度設定値
の修正は熟練した運転者が充分に注意しながら行
なわなければボイラ出口部蒸気温度が大きく変動
し、ボイラやタービン機器を安全に運転すること
ができないという事態を発生するおそれもあつ
た。
In the conventional boiler steam temperature control device described above, the temperature setting device 7 is set by setting the temperature drop in the steam pipe 4, that is, the temperature difference between the boiler outlet steam temperature and the turbine inlet steam temperature, to a constant value. Ta. However, this temperature difference is not always constant, but changes due to fluctuations in the turbine load, for example. That is, when the turbine load increases, the steam pipe 4
The steam flow rate flowing through the turbine also increases, and as the turbine load decreases, the steam flow rate also decreases. Due to this change in flow rate, the temperature difference also changes by 3 to 5°C. For this reason, for example, if the boiler outlet steam temperature is set to 541°C taking into account the temperature drop in the steam pipe 4, the turbine inlet steam temperature will vary between 538°C and 536°C. Such temperature difference fluctuations occur not only due to turbine load fluctuations but also due to various other causes. When such a temperature difference fluctuates, it is difficult for conventional boiler steam temperature control devices to control the turbine inlet steam temperature to a specified value. However, in recent years, demands for improved thermal efficiency have become increasingly strict, and as a result, the need to maintain the turbine inlet steam temperature at a specified value has also become greater. Therefore, in the conventional boiler steam temperature control device described above, it is necessary to constantly monitor the steam temperature at the turbine inlet, and to correct the boiler outlet temperature set value when this temperature deviates from a specified value. However, automatic steam temperature control cannot be performed with this method, and furthermore, unless a skilled operator carefully adjusts the boiler outlet temperature set value, the steam temperature at the boiler outlet may fluctuate greatly. , there was a risk that a situation would occur in which the boiler and turbine equipment could not be operated safely.

本考案の目的は、上記従来の欠点を除き、ター
ビン入口部蒸気温度を確実に規定値に制御するこ
とができ、しかも、この制御を応答遅れなく行な
うことができるボイラ蒸気温度制御装置を提供す
るにある。
An object of the present invention is to provide a boiler steam temperature control device that can reliably control the turbine inlet steam temperature to a specified value and can perform this control without response delay, while eliminating the above-mentioned conventional drawbacks. It is in.

この目的を達成するため、本考案では、ボイラ
出口部とタービン入口部との間における予め定め
られた温度差に基づいて決定されるボイラ出口蒸
気温度を設定する温度設定器の設定値から前記温
度差を減算し、この減算された値とタービン入口
温度検出器からの信号との偏差を演算し、この偏
差を温度設定器の設定値に加算し、この加算され
た信号とボイラ出口部温度検出器からの信号とに
基づいて制御信号を出力してボイラ蒸気温度を制
御するようにしたことを特徴とする。
In order to achieve this objective, the present invention uses a set value of a temperature setting device to set the boiler outlet steam temperature determined based on a predetermined temperature difference between the boiler outlet and the turbine inlet. The difference is subtracted, the deviation between this subtracted value and the signal from the turbine inlet temperature sensor is calculated, this deviation is added to the set value of the temperature setting device, and this added signal and the boiler outlet temperature detection are calculated. The boiler steam temperature is controlled by outputting a control signal based on the signal from the boiler.

以下、本考案を第3図に示す実施例に基づいて
説明する。
The present invention will be explained below based on the embodiment shown in FIG.

第3図は本考案の実施例に係るボイラ蒸気温度
制御装置のブロツク図である。図で、第2図に示
す部分と同一部分には同一符号を付して説明を省
略する。6はタービン入口部の温度を検出するタ
ービン入口温度検出器である。7Aは第2図に示
す温度設定器7と同じくボイラ出口温度を所望の
温度に設定し、その設定温度に応じた信号を出力
する温度設定器である。11はボイラ出口部とタ
ービン入口部との間の温度差としてこの温度差に
応じて予め定められた値(計画ベース)が設定さ
れている第1の演算器であり、温度設定器7Aに
おける設定値を入力して、この設定値から前記予
め定められた値を減算する演算を行なう。12は
タービン入口温度検出器6と第1の演算器11と
の偏差を演算する第2の演算器、13は第2の演
算器12から出力される信号を比例積分する比例
積分器、14は温度設定器7Aの出力信号に比例
積分器13の出力信号を加算する加算器である。
加算器14の出力信号は温度調節器8に入力され
る。
FIG. 3 is a block diagram of a boiler steam temperature control device according to an embodiment of the present invention. In the figure, parts that are the same as those shown in FIG. 2 are given the same reference numerals, and explanations thereof will be omitted. 6 is a turbine inlet temperature detector that detects the temperature of the turbine inlet. 7A is a temperature setting device which, like the temperature setting device 7 shown in FIG. 2, sets the boiler outlet temperature to a desired temperature and outputs a signal corresponding to the set temperature. Reference numeral 11 denotes a first computing unit in which a predetermined value (plan base) is set as the temperature difference between the boiler outlet and the turbine inlet according to this temperature difference, and the setting in the temperature setting device 7A A value is input and an operation is performed to subtract the predetermined value from this set value. 12 is a second computing unit that computes the deviation between the turbine inlet temperature detector 6 and the first computing unit 11; 13 is a proportional integrator that proportionally integrates the signal output from the second computing unit 12; This is an adder that adds the output signal of the proportional integrator 13 to the output signal of the temperature setting device 7A.
The output signal of the adder 14 is input to the temperature controller 8.

次に、本実施例の動作を説明する。まず、ター
ビン負荷に応じて、ボイラ出口部において必要と
される温度が温度設定器7Aに設定される。温度
設定器7Aからは設定された温度に応じた信号が
出力される。第1の演算器11は温度設定器7A
からの出力信号を入力し、第1の演算器11自身
が保有する前記温度差に応じて予め定められた値
を、前記出力信号から減算する。したがつて、第
1の演算器11からの出力信号は、ボイラ出口部
温度から定められた温度差を減算して得られるタ
ービン入口部温度に応じた値となる。この第1の
演算器11の出力信号は第2の演算器12に入力
され、第2の演算器12では、この出力信号とタ
ービン入口温度検出器6から出力される実際のタ
ービン入口部温度に応じた値との偏差が演算され
る。今、ボイラ出口部の温度とタービン入口部の
温度との間の実際の温度差が、第1の演算器11
に設定されている温度差と等しければ、第2の演
算器12で演算される偏差は0となる。一方、タ
ービン負荷の変動等の原因により前記温度差に変
動を生じ、実際の温度差が第1の演算器11に設
定されている温度差と異なる値になると、第2の
演算器12はこれに応じて偏差信号を出力し、そ
の偏差分を比例積分器13を介して加算器14に
より、温度設定器7Aの出力信号に加算する。例
えば、実際の温度差が第1の演算器11に設定さ
れている温度差より2℃大きい場合には、第2の
演算器12において算出される偏差は+2℃とな
り、加算器14においてこの偏差+2℃に応じた
信号が温度設定器7Aの出力信号に加算される。
これとは逆に、実際の温度差が第1の演算器11
に設定されている温度差より2℃小さい場合に
は、偏差は−2℃となり、加算器14において偏
差−2℃に応じた信号が温度設定器7Aの出力信
号に加算される。結局、加算器14から出力され
る信号は、ボイラ出口部とタービン入口部の温度
差にいかなる変動があつても、タービン負荷に応
じたタービン入口部の温度を得るに必要なボイラ
出口部の温度に応じた信号となる。この加算器1
4の出力信号は温度調節器8に入力され、同じく
温度調節器8に入力されるボイラ出口温度検出器
5の出力信号との偏差信号が演算され、前述のよ
うに操作部10の操作によりボイラ出口部温度が
温度設定器7Aに設定された温度に制御される。
Next, the operation of this embodiment will be explained. First, the temperature required at the boiler outlet is set in the temperature setting device 7A according to the turbine load. The temperature setting device 7A outputs a signal corresponding to the set temperature. The first computing unit 11 is a temperature setting device 7A.
, and subtracts a predetermined value from the output signal held by the first arithmetic unit 11 itself according to the temperature difference. Therefore, the output signal from the first computing unit 11 has a value corresponding to the turbine inlet temperature obtained by subtracting the predetermined temperature difference from the boiler outlet temperature. The output signal of the first computing unit 11 is input to the second computing unit 12, and the second computing unit 12 combines this output signal with the actual turbine inlet temperature output from the turbine inlet temperature detector 6. The deviation from the corresponding value is calculated. Now, the actual temperature difference between the temperature at the boiler outlet and the temperature at the turbine inlet is determined by the first computing unit 11.
If the temperature difference is equal to the temperature difference set in , the deviation calculated by the second calculation unit 12 becomes 0. On the other hand, if the temperature difference changes due to a change in the turbine load or the like and the actual temperature difference becomes a value different from the temperature difference set in the first calculation unit 11, the second calculation unit 12 A deviation signal is output in accordance with the temperature setting device 7A, and the deviation is added to the output signal of the temperature setting device 7A by an adder 14 via a proportional integrator 13. For example, if the actual temperature difference is 2°C larger than the temperature difference set in the first calculator 11, the deviation calculated in the second calculator 12 will be +2°C, and the adder 14 will calculate the difference by +2°C. A signal corresponding to +2° C. is added to the output signal of the temperature setting device 7A.
On the contrary, if the actual temperature difference is
When the temperature difference is 2° C. smaller than the temperature difference set in , the deviation becomes −2° C., and the adder 14 adds a signal corresponding to the −2° C. deviation to the output signal of the temperature setting device 7A. In the end, the signal output from the adder 14 is the temperature at the boiler outlet necessary to obtain the temperature at the turbine inlet corresponding to the turbine load, regardless of any fluctuation in the temperature difference between the boiler outlet and the turbine inlet. The signal will be generated accordingly. This adder 1
The output signal of 4 is input to the temperature controller 8, and a deviation signal from the output signal of the boiler outlet temperature detector 5, which is also input to the temperature controller 8, is calculated. The outlet temperature is controlled to the temperature set in the temperature setting device 7A.

このように、本実施例では、第1の演算器に、
予め定めた温度差に応じた値を設定しておき、ボ
イラ出口部の温度を設定する温度設定器の設定値
から上記温度差に応じた値を減算し、減算により
得られた値とタービン入口温度に応じた値との偏
差を演算し、この偏差を前記温度設定器の設定値
に加算し、加算により得られた値と検出されたボ
イラ出口温度に応じた値との偏差により操作部を
操作してボイラ出口温度を制御するようにしたの
で、温度差の変動の如何にかかわらず確実にター
ビン入口温度を所要の温度に制御することがで
き、しかも、ボイラ出口部の温度を検出してこの
ボイラ出口部の温度を制御するので応答遅れはな
く、従来と同等の応答性を得ることができる。
In this way, in this embodiment, the first arithmetic unit has
Set a value according to a predetermined temperature difference, subtract the value according to the temperature difference from the set value of the temperature setting device that sets the temperature at the boiler outlet, and compare the value obtained by subtraction with the turbine inlet. The deviation from the value corresponding to the temperature is calculated, this deviation is added to the setting value of the temperature setting device, and the operating unit is operated based on the deviation between the value obtained by the addition and the value corresponding to the detected boiler outlet temperature. Since the boiler outlet temperature is controlled by operation, the turbine inlet temperature can be reliably controlled to the required temperature regardless of fluctuations in temperature difference, and the temperature at the boiler outlet can be detected. Since the temperature at the outlet of the boiler is controlled, there is no response delay and responsiveness equivalent to that of the conventional system can be obtained.

以上述べたように、本考案では、ボイラ出口部
の温度を設定する温度設定器の設定値から、予め
定められた温度差に応じた値を減算し、この減算
された値とタービン入口部の温度に応じた値との
偏差を演算し、この偏差を温度設定器の設定値に
加算し、この加算された値とボイラ出口部の温度
に応じた値とに基づいてボイラ出口部の温度を制
御する制御信号を出力するようにしたので、ター
ビン入口部の温度を確実に規定値に制御すること
ができ、しかも、これを応答遅れなく行なうこと
ができる。
As described above, in the present invention, a value corresponding to a predetermined temperature difference is subtracted from the set value of the temperature setting device that sets the temperature at the boiler outlet, and this subtracted value and the temperature at the turbine inlet are The deviation from the value corresponding to the temperature is calculated, this deviation is added to the set value of the temperature setting device, and the temperature at the boiler outlet is determined based on this added value and the value corresponding to the temperature at the boiler outlet. Since the control signal is output, the temperature at the turbine inlet can be reliably controlled to a specified value, and this can be done without response delay.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はボイラとタービン間の蒸気系統図、第
2図は従来のボイラ蒸気温度制御装置のブロツク
図、第3図は本考案の実施例に係るボイラ蒸気温
度制御装置のブロツク図である。 5……ボイラ出口温度検出器、6……タービン
入口温度検出器、7A……温度設定器、8……温
度調節器、10……操作部、11……第1の演算
器、12……第2の演算器、14……加算器。
FIG. 1 is a steam system diagram between a boiler and a turbine, FIG. 2 is a block diagram of a conventional boiler steam temperature control device, and FIG. 3 is a block diagram of a boiler steam temperature control device according to an embodiment of the present invention. 5... Boiler outlet temperature detector, 6... Turbine inlet temperature detector, 7A... Temperature setter, 8... Temperature controller, 10... Operating unit, 11... First computing unit, 12... Second arithmetic unit, 14...adder.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] ボイラと、このボイラの蒸気により駆動される
タービンと、前記ボイラから前記タービンへ蒸気
を送る配管とを備えたものにおいて、前記ボイラ
のボイラ出口部および前記タービンのタービン入
口部間の予め定められた温度差に基づいて決定さ
れるボイラ出口温度を設定する温度設定器と、こ
の温度設定器に設定された設定値から前記温度差
を減算する第1の演算器と、タービン入口部の温
度を検出する第1の温度検出器と、この第1の温
度検出器の検出値と前記第1の演算器で演算され
た値の偏差を求める第2の演算器と、この第2の
演算器で求められた偏差と前記温度設定器の設定
値を加算する加算器と、ボイラ出口部の温度を検
出する第2の温度検出器と、この第2の温度検出
器の検出器と前記加算器で加算された値に基づい
てボイラ蒸気温度を制御する制御部とを備えたこ
とを特徴とするボイラ蒸気温度制御装置。
A boiler, a turbine driven by steam from the boiler, and piping for sending steam from the boiler to the turbine, wherein a predetermined distance between the boiler outlet of the boiler and the turbine inlet of the turbine is provided. A temperature setting device that sets a boiler outlet temperature determined based on the temperature difference, a first computing unit that subtracts the temperature difference from a set value set in the temperature setting device, and a temperature detector that detects the temperature at the turbine inlet. a first temperature sensor that calculates the deviation between the detected value of the first temperature sensor and the value calculated by the first calculation unit; an adder that adds the calculated deviation and the set value of the temperature setting device; a second temperature detector that detects the temperature at the boiler outlet; and the detector of the second temperature detector and the adder. What is claimed is: 1. A boiler steam temperature control device, comprising: a control section that controls boiler steam temperature based on the determined value.
JP12128683U 1983-08-05 1983-08-05 Boiler steam temperature control device Granted JPS6032601U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12128683U JPS6032601U (en) 1983-08-05 1983-08-05 Boiler steam temperature control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12128683U JPS6032601U (en) 1983-08-05 1983-08-05 Boiler steam temperature control device

Publications (2)

Publication Number Publication Date
JPS6032601U JPS6032601U (en) 1985-03-06
JPH0335922Y2 true JPH0335922Y2 (en) 1991-07-30

Family

ID=30277654

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12128683U Granted JPS6032601U (en) 1983-08-05 1983-08-05 Boiler steam temperature control device

Country Status (1)

Country Link
JP (1) JPS6032601U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0718526B2 (en) * 1985-07-24 1995-03-06 石川島播磨重工業株式会社 Turbine inlet steam temperature controller

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5574906U (en) * 1978-11-14 1980-05-23
JPS56144902U (en) * 1980-03-31 1981-10-31

Also Published As

Publication number Publication date
JPS6032601U (en) 1985-03-06

Similar Documents

Publication Publication Date Title
KR20050010328A (en) Feedwater Control System in Nuclear Power Plant Considering Feedwater Control Valve Pressure Drop and Control Method thereof
JPS60243402A (en) Maximum efficiency steam temperature controller
JPH0335922Y2 (en)
US4213304A (en) Boiler control system
JP2509612B2 (en) Bypass controller
JP3817851B2 (en) Fuel gas pressure control method and apparatus for gas fired boiler
JPS6154927B2 (en)
JPS6123365B2 (en)
JPS6039845B2 (en) Nuclear turbine pressure control device
JP3747253B2 (en) Thermal power plant protection system
KR20010039185A (en) Apparatus controlling of steam temperature
JP2509682B2 (en) Pressure plant pressure control equipment
JP6341072B2 (en) Boiler system
JPH06317304A (en) Steam temperature controller with automatic bias circuit
JPS58205005A (en) Controller for drum level of waste heat boiler
JPS5985404A (en) Fuel flow-rate controller for combined type power generation apparatus
SU881356A1 (en) Method of controlling power unit in power generating system emergency modes
JP2000266304A (en) Controller for temperature reducer
SU966402A1 (en) Method of controlling steam generator output
KR20010018743A (en) An apparatus for controlling the water level of drum in heat recovering
JPH0718526B2 (en) Turbine inlet steam temperature controller
JPH0467212A (en) Turbine steam pressure controller
JPS63278101A (en) Process controller
JPS637247B2 (en)
JPH035665A (en) Boiler water temperature controller