JPH0467212A - Turbine steam pressure controller - Google Patents

Turbine steam pressure controller

Info

Publication number
JPH0467212A
JPH0467212A JP17860890A JP17860890A JPH0467212A JP H0467212 A JPH0467212 A JP H0467212A JP 17860890 A JP17860890 A JP 17860890A JP 17860890 A JP17860890 A JP 17860890A JP H0467212 A JPH0467212 A JP H0467212A
Authority
JP
Japan
Prior art keywords
pressure
steam
turbine
value
reservoir
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17860890A
Other languages
Japanese (ja)
Inventor
Hiromitsu Ozawa
尾沢 広充
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP17860890A priority Critical patent/JPH0467212A/en
Publication of JPH0467212A publication Critical patent/JPH0467212A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Turbines (AREA)

Abstract

PURPOSE:To reduce the pressure loss and increase the generated output by obtaining an operation signal from the pressure target value and the detected value of the inlet pressure of a steam turbine and controlling a pressure control valve. CONSTITUTION:In regard of the target value of the steam quantity Q supplied to a turbine generator 2, the steam flow rate signal obtained from the target value PS of a steam tank 1 through a flow rate meter 12 is inputted to a computing element 13. Thus the pressure loss DP is operated. An adder/subtractor 14 subtracts the loss DP from the value PS to obtain the target value SV and inputs this value to a pressure controller 16, together with the turbine steam inlet pressure P2 detected by a pressure gauge 15. Then a pressure control valve 17 is operated in response to an operation signal MV and the steam inlet pressure is controlled at a constant level. Meanwhile a bypass operation valve 7 is operated by the operation signal MV of a pressure controller 6. Then the steam pressure is controlled to a fixed level for the steam quantity Q of a bypass pipeline system 4 so that the steam pressure of the tank 1 is equal to the set value PS of the steam tank pressure.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、ボイラーなどからの蒸気をタービン発電機に
供給するプラントに適用されるタービン蒸気圧力制御装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a turbine steam pressure control device applied to a plant that supplies steam from a boiler or the like to a turbine generator.

(従来の技術) 従来この種のタービン蒸気圧力制御装置として、第3図
のように構成されたものがある。これは、ボイラーによ
り生成される余剰蒸気は、高圧蒸気溜め1に溜められ、
この蒸気は蒸気配管3を介してタービン発電機2に供給
される蒸気供給系と、この蒸気供給系に並列に形成され
、蒸気溜め1からの蒸気を、タービン発電機2の故障時
のバ、ツクアップ用として使用するためのバイパス配管
系4とを備えている。
(Prior Art) As a conventional turbine steam pressure control device of this type, there is one constructed as shown in FIG. This means that excess steam generated by the boiler is stored in the high-pressure steam reservoir 1,
This steam is formed in parallel with a steam supply system that is supplied to the turbine generator 2 via the steam piping 3 and this steam supply system, and the steam from the steam reservoir 1 is transferred to the turbine generator 2 when the turbine generator 2 fails. A bypass piping system 4 is provided for use as a pickup.

そして、蒸気溜め1内の圧力を検出する蒸気圧力計5と
、この蒸気圧力計5で検出された蒸気圧力P1を蒸気溜
め圧力設定値PSに調節し、これに対応する操作信号M
Vを出力する第1の圧力調節計6と、バイパス配管系4
の途中に設けられ、圧力調節計6からの操作信号MVに
応じて操作されるバイパス操作弁7とからなり、閉ルー
プを構成する第1の制御系を備えている。
Then, the steam pressure gauge 5 detects the pressure inside the steam reservoir 1, and the steam pressure P1 detected by the steam pressure gauge 5 is adjusted to the steam reservoir pressure set value PS, and the corresponding operation signal M
A first pressure regulator 6 that outputs V, and a bypass piping system 4
The first control system includes a bypass operation valve 7 which is provided in the middle of the pressure regulator 6 and is operated in response to an operation signal MV from the pressure regulator 6, and constitutes a closed loop.

また、蒸気溜め圧力設定値PSと圧力損失DPを減算す
る減算器8と、蒸気配管3内のタービン入口の蒸気圧力
P2を検出するタービン蒸気入口圧力計9と、このター
ビン蒸気入口圧力計9で検出された蒸気圧力P2と前記
減算器8の出力SVを入力し操作信号MVを出力する第
2の圧力調節計9と、蒸気配管3の途中に設けられ、前
記2の圧力調節計9からの操作信号MVに応じた開度に
操作される圧力調節弁10とからなり、閉ループを構成
する第2の制御系を備えている。
Further, a subtractor 8 that subtracts the steam reservoir pressure set value PS and pressure loss DP, a turbine steam inlet pressure gauge 9 that detects the steam pressure P2 at the turbine inlet in the steam piping 3, and this turbine steam inlet pressure gauge 9 A second pressure regulator 9 inputs the detected steam pressure P2 and the output SV of the subtractor 8 and outputs an operation signal MV, and a A second control system comprising a pressure regulating valve 10 that is operated to an opening degree according to an operation signal MV and forming a closed loop is provided.

このように第1の制御系か構成されているので、圧力調
節計6の操作信号MVによってバイパス操作弁7が操作
されることからバイパス配管系4に流れる蒸気量は、蒸
気溜め1の蒸気圧力が蒸気溜め圧力設定値PSとなるよ
うに、蒸気圧カー定制御が行われる。
Since the first control system is configured in this way, the bypass operation valve 7 is operated by the operation signal MV of the pressure regulator 6, so the amount of steam flowing into the bypass piping system 4 is determined by the steam pressure in the steam reservoir 1. Steam pressure constant control is performed so that the steam reservoir pressure set value PS becomes the steam reservoir pressure setting value PS.

また、第2の制御系か構成されているので、圧力調節計
9の操作信号MVによって圧力調節弁10が操作される
ことから蒸気供給系3に流れる蒸気量は、蒸気入口圧力
が蒸気溜め圧力設定値PSとなるように、蒸気式ロ圧カ
一定制御か行われる。
In addition, since the second control system is configured, the pressure control valve 10 is operated by the operation signal MV of the pressure regulator 9, so that the amount of steam flowing into the steam supply system 3 is such that the steam inlet pressure is equal to the steam reservoir pressure. Steam type low pressure constant control is performed so that the set value PS is reached.

(発明が解決しようとする課題) 以上述べた従来のタービン蒸気圧力制御装置では、蒸気
溜め1からの蒸気量が多く発生すれば、する程タービン
発電機2の発電出力が多くなる。
(Problems to be Solved by the Invention) In the conventional turbine steam pressure control device described above, the greater the amount of steam generated from the steam reservoir 1, the greater the power generation output of the turbine generator 2.

そして、圧力損失DPをできるだけ0にすることが蒸気
の有効利用につながる。ところが、従来の装置にあって
は圧力損失DPを固定パラメータとして設定しているた
め、蒸気溜め1の蒸気圧力が高くなっても、同じ蒸気量
しかタービン発電機2に送られない。
Further, reducing the pressure loss DP to 0 as much as possible leads to effective utilization of steam. However, in the conventional device, the pressure loss DP is set as a fixed parameter, so even if the steam pressure in the steam reservoir 1 increases, only the same amount of steam is sent to the turbine generator 2.

本発明は、蒸気溜めの蒸気圧力が高くなれば高い程、タ
ービン発電機側への蒸気量を多く送ることか可能となり
、タービン発電機の発電量が多くなるタービン蒸気圧力
制御装置を提供することを目的とする。
The present invention provides a turbine steam pressure control device in which the higher the steam pressure in the steam reservoir, the more steam can be sent to the turbine generator, thereby increasing the amount of power generated by the turbine generator. With the goal.

[発明の構成コ (課題を解決するための手段) 本発明は前記目的を達成するため、蒸気溜めからの蒸気
を蒸気配管を介してタービン発電機に供給する蒸気供給
系と、 この蒸気供給系に並列に形成されたバイパス配管系と、 前記蒸気溜め内の圧力を検出する蒸気圧力計、この蒸気
圧力計で検出された圧力を圧力設定値に調節すべく操作
指令を出力する第1の圧力調節計、前記バイパス配管系
に設けられ、前記圧力調節計からの操作信号に応じて操
作されるバイパス操作弁からなる第1の制御系と、 前記蒸気配管内のタービン人口の圧力を検出するタービ
ン蒸気入口圧力計、前記蒸気配管内の測定値を基に所定
の演算式により圧力損失を演算する圧力損失演算器、こ
の圧力損失演算器で演算された圧力損失と前記蒸気溜め
の圧力設定値とから圧力目標値を求める演算器、前記蒸
気溜めタービン蒸気入口圧力計からの圧力検出値を入力
し、これを前記演算器からの圧力目標値に調節すべく操
作信号を出力する第2の圧力調節計、前記蒸気配管に設
けられ、前記第2の圧力調節計からの操作信号に応じて
操作される圧力調節弁からなる第2の制御系とを備えた
ものである。
[Configuration of the Invention (Means for Solving the Problems) In order to achieve the above object, the present invention provides a steam supply system that supplies steam from a steam reservoir to a turbine generator via steam piping, and a steam supply system that supplies steam from a steam reservoir to a turbine generator via steam piping. a bypass piping system formed in parallel with the steam reservoir, a steam pressure gauge that detects the pressure in the steam reservoir, and a first pressure that outputs an operation command to adjust the pressure detected by the steam pressure gauge to a pressure set value. a first control system comprising a regulator, a bypass operation valve provided in the bypass piping system and operated in response to an operation signal from the pressure regulator; and a turbine that detects the pressure of the turbine population in the steam piping. a steam inlet pressure gauge, a pressure loss calculator that calculates a pressure loss using a predetermined calculation formula based on the measured value in the steam piping, and a pressure loss calculated by the pressure loss calculator and a pressure setting value of the steam reservoir. a second pressure regulator that inputs the pressure detection value from the steam reservoir turbine steam inlet pressure gauge and outputs an operation signal to adjust it to the pressure target value from the computing unit; and a second control system comprising a pressure regulating valve provided in the steam piping and operated in response to an operation signal from the second pressure regulator.

(作用) 本発明によれば、所定の演算式で圧力損失を演算し、こ
の圧力損失と蒸気溜めの圧力設定値とから圧力目標値を
求め、この圧力目標値と蒸気タービン入口圧力検出値と
から操作信号を求め、この操作信号に応じて蒸気配管に
設けである圧力調節弁が操作されるので、圧力損失をで
きるだけ少くすることができ、蒸気を有効に利用でき、
蒸気溜めの蒸気圧力が高くなれば高い程、タービン発電
機側への蒸気量を多く送ることが可能となり、タービン
発電機の発電量が多くなる。
(Operation) According to the present invention, the pressure loss is calculated using a predetermined calculation formula, the pressure target value is determined from this pressure loss and the steam reservoir pressure setting value, and the pressure target value and the steam turbine inlet pressure detection value are combined. An operating signal is obtained from the steam generator, and the pressure regulating valve installed in the steam piping is operated in accordance with this operating signal, so pressure loss can be minimized and steam can be used effectively.
The higher the steam pressure in the steam reservoir, the more steam can be sent to the turbine generator, and the more power the turbine generator generates.

(実施例) 以下、本発明の実施例について図面を参照して説明する
。第1図は本発明の第1の実施例を示す系統図であり、
蒸気供給系と、バイパス配管系と、第1の制御系を備え
ている点は前述した従来の第3図と同一であり、第2の
制御系の構成のみが異なる。すなわち、蒸気供給系は、
ボイラーなどの蒸気溜め1からの蒸気を蒸気配管3を介
してタービン発電機2に供給するものである。バイパス
配管系は、蒸気供給系に並列に形成され、蒸気溜め1か
らの蒸気を、タービン発電機2の故障時のバックアップ
用として使用するものである。
(Example) Hereinafter, an example of the present invention will be described with reference to the drawings. FIG. 1 is a system diagram showing a first embodiment of the present invention,
It is the same as the conventional system shown in FIG. 3 described above in that it includes a steam supply system, a bypass piping system, and a first control system, and only the configuration of the second control system is different. In other words, the steam supply system is
Steam from a steam reservoir 1 such as a boiler is supplied to a turbine generator 2 via a steam pipe 3. The bypass piping system is formed in parallel with the steam supply system, and uses steam from the steam reservoir 1 as a backup in the event of a failure of the turbine generator 2.

j@1の制御系は、蒸気溜め1内の圧力を検出する蒸気
圧力計5と、この蒸気圧力計5で検出された圧力を蒸気
溜めの圧力設定値PSに調節し、これに対応する操作信
号MVを出力する第1の圧力調節計6と、バイパス配管
系の途中に設けられ、前記圧力調節計6からの操作信号
MVに応じて操作されるバイパス操作弁7とからなり、
閉ループを構成している。
The control system of j@1 includes a steam pressure gauge 5 that detects the pressure inside the steam reservoir 1, and adjusts the pressure detected by the steam pressure gauge 5 to the steam reservoir pressure set value PS, and performs corresponding operations. It consists of a first pressure regulator 6 that outputs a signal MV, and a bypass operation valve 7 that is provided in the middle of the bypass piping system and is operated according to the operation signal MV from the pressure regulator 6,
It forms a closed loop.

しかして、第2の制御系は、前記蒸気配管3内の蒸気流
量信号を検出する流量計12と、この流量計12で検出
された蒸気流量信号を人力し、例えば(1)式に基づき
蒸気配管3内の圧力損失DPを演算する圧力損失演算器
13と、この圧力損失演算器13で演算した圧力損失D
Pと前記蒸気溜めの圧力設定値PSとを人力して設定値
Svを求める加減算器14と、タービン発電機2の入口
の圧力を検出するタービン蒸気入口圧力計15と、この
タービン蒸気入口圧力計15で検出したタービン蒸気入
口圧力P2と前記加減算器14により求めた設定値SV
を入力し、操作開度を出力する第2の圧力調節弁17か
らなり、閉ループを構成している。
Therefore, the second control system includes a flow meter 12 that detects a steam flow rate signal in the steam pipe 3, and a steam flow rate signal detected by this flow meter 12, and uses, for example, the steam flow rate signal detected by the flow meter 12 to A pressure loss calculator 13 that calculates the pressure loss DP in the pipe 3 and a pressure loss D calculated by the pressure loss calculator 13.
an adder/subtractor 14 that manually calculates a set value Sv between P and the pressure set value PS of the steam reservoir; a turbine steam inlet pressure gauge 15 that detects the pressure at the inlet of the turbine generator 2; and this turbine steam inlet pressure gauge. Turbine steam inlet pressure P2 detected in step 15 and set value SV obtained by the adder/subtractor 14
The second pressure regulating valve 17 inputs and outputs the operating opening degree, forming a closed loop.

ここで、圧力損失DPは、タービン発電機2に流れる蒸
気流量Qと、定数K1.に2 (ただしに1は負)との
間に次の式が成立する。
Here, the pressure loss DP is determined by the steam flow rate Q flowing into the turbine generator 2 and the constant K1. The following equation holds true between and 2 (where 1 is negative).

DP−Kl  ・ Q+に2           ・
・・ (1)この(1)式をグラフに表すと、第2図の
ようになる。
DP-Kl ・2 to Q+ ・
... (1) If this equation (1) is expressed in a graph, it will look like Figure 2.

以上のように構成された本実施例の動作について説明す
る。タービン発電機2に供給される蒸気量Qに対する目
標値は、蒸気溜め1の目標値PSより、流量計12によ
って得られた蒸気流量信号を圧力損失演算器13に入力
し、ここで(1)式と第3図に基づいて圧力損失DPが
演算される。
The operation of this embodiment configured as above will be explained. The target value for the amount of steam Q supplied to the turbine generator 2 is determined by inputting the steam flow rate signal obtained by the flow meter 12 to the pressure loss calculator 13 based on the target value PS of the steam reservoir 1, and calculating the following equation (1). Pressure loss DP is calculated based on the formula and FIG.

そして、加減算器14において、蒸気溜め1の圧力目標
値PSから圧力損失DPを減じた目標値Svが求められ
る。この目標値Svが圧力調節計16に入力され、これ
とタービン蒸気入口圧力計15で検出されたタービン蒸
気入口圧力P2が入力され、ここで求められる操作信号
MVに応じて圧力調節弁17が操作され、これにより蒸
気入ロ圧カ一定制御が行われる。
Then, in the adder/subtractor 14, a target value Sv is obtained by subtracting the pressure loss DP from the pressure target value PS of the steam reservoir 1. This target value Sv is input to the pressure regulator 16, this and the turbine steam inlet pressure P2 detected by the turbine steam inlet pressure gauge 15 are input, and the pressure regulator valve 17 is operated according to the operation signal MV determined here. As a result, steam input pressure is controlled to be constant.

一方、第1の制御系については、従来装置と同様に、圧
力調節計6の操作信号MVによってバイパス操作弁7が
操作されることからバイパス配管系4に流れる蒸気量は
、蒸気溜め1の蒸気圧力か蒸気溜め圧力設定値PSとな
るように、蒸気圧カ一定制御が行われる。
On the other hand, regarding the first control system, as in the conventional device, the bypass operation valve 7 is operated by the operation signal MV of the pressure regulator 6, so the amount of steam flowing into the bypass piping system 4 is equal to the amount of steam in the steam reservoir 1. Steam pressure constant control is performed so that the pressure is equal to the steam reservoir pressure set value PS.

以上述べたように流量計12によって得られた蒸気流量
信号を圧力損失DPの関数としてとらえることができ、
蒸気圧力が高ければ高い程、タービン発電機2側へ蒸気
量を多く送る事が可能となり、タービン発電機2の発電
量が多くなる。
As described above, the steam flow rate signal obtained by the flow meter 12 can be taken as a function of pressure loss DP,
The higher the steam pressure, the more steam can be sent to the turbine generator 2 side, and the more the turbine generator 2 generates electricity.

前述実施例は、蒸気流量信号を圧力損失DPの関数とし
てとらえたが、これ以外に圧力損失を演算できればなん
でも良い。
In the above embodiment, the steam flow rate signal is taken as a function of the pressure loss DP, but any other method may be used as long as the pressure loss can be calculated.

[発明の効果] 本発明によれば、蒸気溜めの蒸気圧力が高くなれば高い
程、タービン発電機側への蒸気量を多く送ることが可能
となり、タービン発電機の発電量が多くなるタービン蒸
気圧力制御装置を提供すること−ができる。
[Effects of the Invention] According to the present invention, the higher the steam pressure in the steam reservoir, the more steam can be sent to the turbine generator, and the turbine generator generates more power. A pressure control device can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のタービン蒸気圧力制御装置の一実施例
を示す系統図、第2図は第1図の演算器の動作を説明す
るための圧力損失と蒸気流量の特性図、第3図は従来の
タービン蒸気圧力制御装置の一例を示す系統図である。 1・・・高圧蒸気溜め、2・・・タービン発電機、3・
・・蒸気配管、4・・・バイパス配管5・・・蒸気圧力
計、6・・・圧力調節計、7・・・圧力調節弁、12・
・・流量計、13・・・圧力演算器、14・・加減算器
、15・・・タービン蒸気入口圧力計、16・・・圧力
調節計、17・・・圧力調節弁。
Fig. 1 is a system diagram showing an embodiment of the turbine steam pressure control device of the present invention, Fig. 2 is a characteristic diagram of pressure loss and steam flow rate to explain the operation of the computing unit shown in Fig. 1, and Fig. 3 1 is a system diagram showing an example of a conventional turbine steam pressure control device. 1... High pressure steam reservoir, 2... Turbine generator, 3...
...Steam piping, 4...Bypass piping 5...Steam pressure gauge, 6...Pressure regulator, 7...Pressure control valve, 12...
...flow meter, 13...pressure calculator, 14...adder/subtractor, 15...turbine steam inlet pressure gauge, 16...pressure regulator, 17...pressure control valve.

Claims (1)

【特許請求の範囲】 蒸気溜めからの蒸気を蒸気配管を介してタービン発電機
に供給する蒸気供給系と、 この蒸気供給系に並列に形成されたバイパス配管系と、 前記蒸気溜め内の圧力を検出する蒸気圧力計、この蒸気
圧力計で検出された圧力を圧力設定値に調節すべく操作
指令を出力する第1の圧力調節計、前記バイパス配管系
に設けられ、前記圧力調節計からの操作信号に応じて操
作されるバイパス操作弁からなる第1の制御系と、 前記蒸気配管内のタービン入口の圧力を検出するタービ
ン蒸気入口圧力計、前記蒸気配管内の測定値を基に所定
の演算式により圧力損失を演算する圧力損失演算器、こ
の圧力損失演算器で演算された圧力損失と前記蒸気溜め
の圧力設定値とから圧力目標値を求める演算器、前記蒸
気溜めタービン蒸気入口圧力計からの圧力検出値を入力
し、これを前記演算器からの圧力目標値に調節すべく操
作信号を出力する第2の圧力調節計、前記蒸気配管に設
けられ、前記第2の圧力調節計からの操作信号に応じて
操作される圧力調節弁からなる第2の制御系とを備えた
タービン蒸気圧力制御装置。
[Scope of Claims] A steam supply system that supplies steam from a steam reservoir to a turbine generator via steam piping, a bypass piping system formed in parallel to this steam supply system, and a system that controls the pressure in the steam reservoir. a steam pressure gauge to detect; a first pressure regulator that outputs an operation command to adjust the pressure detected by the steam pressure gauge to a pressure set value; and a first pressure regulator installed in the bypass piping system and operated from the pressure regulator. a first control system consisting of a bypass operation valve that is operated in response to a signal; a turbine steam inlet pressure gauge that detects the pressure at the turbine inlet in the steam piping; and a predetermined calculation based on the measured value in the steam piping. a pressure loss calculator that calculates pressure loss using a formula; a calculator that calculates a pressure target value from the pressure loss calculated by the pressure loss calculator and a pressure setting value of the steam reservoir; and a pressure gauge from the steam reservoir turbine steam inlet pressure gauge. a second pressure regulator that inputs a detected pressure value and outputs an operation signal to adjust the detected pressure value to the pressure target value from the computing unit; A turbine steam pressure control device comprising: a second control system comprising a pressure regulating valve operated in response to an operation signal;
JP17860890A 1990-07-06 1990-07-06 Turbine steam pressure controller Pending JPH0467212A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17860890A JPH0467212A (en) 1990-07-06 1990-07-06 Turbine steam pressure controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17860890A JPH0467212A (en) 1990-07-06 1990-07-06 Turbine steam pressure controller

Publications (1)

Publication Number Publication Date
JPH0467212A true JPH0467212A (en) 1992-03-03

Family

ID=16051429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17860890A Pending JPH0467212A (en) 1990-07-06 1990-07-06 Turbine steam pressure controller

Country Status (1)

Country Link
JP (1) JPH0467212A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014088812A (en) * 2012-10-30 2014-05-15 Takuma Co Ltd Operational method for urban refuse incineration plant with steam turbine power generation device and calculation controller for adjusting steam pressure of steam turbine inlet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014088812A (en) * 2012-10-30 2014-05-15 Takuma Co Ltd Operational method for urban refuse incineration plant with steam turbine power generation device and calculation controller for adjusting steam pressure of steam turbine inlet

Similar Documents

Publication Publication Date Title
CN100422511C (en) Startup and control methods for an ORC bottoming plant
KR20080015730A (en) Methods and systems for gas turbine engine control
US20080147289A1 (en) Methods and apparatus to facilitate gas turbine fuel control
US20030167774A1 (en) Method for the primary control in a combined gas/steam turbine installation
JPS60243402A (en) Maximum efficiency steam temperature controller
JPH0467212A (en) Turbine steam pressure controller
Shekhar et al. Study of control strategies for a non-linear benchmark boiler
JPS6138300A (en) Liquefied gas vaporizer
JP3817851B2 (en) Fuel gas pressure control method and apparatus for gas fired boiler
JP2509612B2 (en) Bypass controller
JPH11223302A (en) Automatic control device and method of power generating plant
JP2005155349A (en) Boiler control method following up load variation
JP5848302B2 (en) Spray control device
JP2003269702A (en) Deaerator level controller
JPH0335922Y2 (en)
JPH06123203A (en) Turbine power generation control device
JP3374745B2 (en) Process control device and control method thereof
JPH04194502A (en) Generating plant and method and device for controlling water level
JPS59231111A (en) Pressure reducing device of steam
KR20010039185A (en) Apparatus controlling of steam temperature
JPH0571701A (en) Boiler output controller
JPH03199892A (en) Control of amount of supply gas for waste heat boiler
JP2965607B2 (en) Steam turbine controller
JPH03202601A (en) Governor valve controlling device of boiler
JPH06281106A (en) Water supplying control device of steam generating plant