JP2014088812A - Operational method for urban refuse incineration plant with steam turbine power generation device and calculation controller for adjusting steam pressure of steam turbine inlet - Google Patents

Operational method for urban refuse incineration plant with steam turbine power generation device and calculation controller for adjusting steam pressure of steam turbine inlet Download PDF

Info

Publication number
JP2014088812A
JP2014088812A JP2012238965A JP2012238965A JP2014088812A JP 2014088812 A JP2014088812 A JP 2014088812A JP 2012238965 A JP2012238965 A JP 2012238965A JP 2012238965 A JP2012238965 A JP 2012238965A JP 2014088812 A JP2014088812 A JP 2014088812A
Authority
JP
Japan
Prior art keywords
steam
pressure
turbine
steam pressure
inlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012238965A
Other languages
Japanese (ja)
Other versions
JP5967652B2 (en
Inventor
Makoto Fukazawa
真 深澤
Yutaka Fukusato
福里  豊
Takahiro Masuda
孝弘 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takuma Co Ltd
Original Assignee
Takuma Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takuma Co Ltd filed Critical Takuma Co Ltd
Priority to JP2012238965A priority Critical patent/JP5967652B2/en
Publication of JP2014088812A publication Critical patent/JP2014088812A/en
Application granted granted Critical
Publication of JP5967652B2 publication Critical patent/JP5967652B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/12Heat utilisation in combustion or incineration of waste
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Abstract

PROBLEM TO BE SOLVED: To constantly keep steam pressure at an outlet of a steam superheater at a set value, increase generating efficiency and increase power generation and the annual total power generation amount in an urban refuse incineration plant with a steam turbine power generation device even if a steam evaporating amount of a waste heat recovery boiler varies due to a change in refuse quality of urban refuse to be incinerated.SOLUTION: This invention discloses a constitution in which urban refuse of desired refuse quality is incinerated; an inlet steam pressure Pof a preceding pressure controlling type steam turbine is increased by a decremental amount ΔPof a steam pressure loss ΔP in a main steam pipe passage to attain a steam pressure of P+ ΔP, to keep an outlet steam pressure Pof the steam superheater at a specified pressure, and to operate the steam turbine with a turbine inlet steam pressure of P+ ΔP, in the case that a steam evaporation amount Q is decreased during operation of the urban refuse incineration plant and the steam pressure loss ΔP in the main steam pipe passage is decreased under conditions of the steam evaporation amount Q of the waste heat recovery boiler, an outlet steam pressure Pof the steam superheater and the turbine inlet steam pressure P.

Description

本発明は、蒸気タービン発電装置を備えた都市ごみ焼却プラントの運転方法と、これに
用いるタービン入口蒸気圧調整用の演算制御器の改良に係り、廃熱回収ボイラを備えた都
市ごみ焼却炉の自動燃焼制御システムとタービン入口側蒸気圧の前圧制御システムとを連
携させ、自動燃焼制御システムによるボイラの蒸気蒸発量に基づいてタービンの前圧(入
口側蒸気圧)を調整することにより、ごみ質等が変動した場合でもボイラの蒸気過熱器の
出口蒸気圧力を一定に保持し、これにより、都市ごみ焼却プラントの運転時の負荷状態と
関係なしに、年間を通して高発電効率及び最大発電電力量が得られるようにした、蒸気タービン発電装置付都市ごみ焼却プラントの運転方法及びこれに用いる蒸気タービン入口蒸気圧調整用の演算制御器に関するものである。
The present invention relates to an operation method of a municipal waste incineration plant equipped with a steam turbine power generator and an improvement of a calculation controller for adjusting the steam pressure at the turbine inlet used for the operation, and a municipal waste incinerator equipped with a waste heat recovery boiler. By linking the automatic combustion control system with the pre-pressure control system for the steam pressure at the inlet of the turbine, and adjusting the pre-pressure (inlet-side steam pressure) of the turbine based on the amount of steam vaporization of the boiler by the automatic combustion control system, Even if the quality etc. fluctuates, the steam pressure at the outlet of the boiler's steam superheater is kept constant, which ensures high power generation efficiency and maximum power generation throughout the year, regardless of the load conditions during operation of the municipal waste incineration plant. The present invention relates to a method for operating a municipal waste incineration plant with a steam turbine power generation device and a calculation controller for adjusting steam pressure at the inlet of a steam turbine used therefor. It is intended.

従前から、都市ごみ焼却プラントに於いては、ごみ焼却より発生した熱エネルギーをボイラやエコノマイザで回収し、回収熱により発生せしめた蒸気を利用してタービン発電機を駆動させて発電することが行なわれている。殊に、近年は電力供給事情の変化により、小規模な都市ごみ焼却プラントにおいても廃熱回収によるごみ発電が求められており、更に、ごみ焼却プラントの大小を問わず、廃熱回収率の向上や発電効率の向上、年間総発電電力量の増加等が強く求められている。   Traditionally, in municipal waste incineration plants, heat energy generated from waste incineration is recovered by a boiler or economizer, and steam generated by the recovered heat is used to drive a turbine generator to generate electricity. It is. In particular, due to changes in the power supply situation in recent years, even small-scale municipal waste incineration plants have been required to generate waste by using waste heat recovery. Furthermore, regardless of the size of the waste incineration plant, the waste heat recovery rate has been improved. In addition, there is a strong demand for improvements in power generation efficiency and annual total power generation.

図4は、従前のこの種都市ごみ焼却プラントに設けた蒸気タービン発電装置の蒸気系統の一例を示すものであり、廃熱回収ボイラ1で発生した蒸気を蒸気過熱器2で過熱し、高温・高圧の加熱蒸気を主蒸気配管路3を通して前圧制御式の蒸気タービン4へ供給することにより、発電機4aが回転駆動される。   FIG. 4 shows an example of a steam system of a steam turbine power generator installed in a conventional municipal waste incineration plant. Steam generated in the waste heat recovery boiler 1 is superheated with a steam superheater 2 and heated at a high temperature. By supplying high-pressure heated steam to the pre-pressure controlled steam turbine 4 through the main steam pipe 3, the generator 4a is rotationally driven.

尚、図4において、5は復水器、6は復水タンク、7は脱気器給水ポンプ、8は脱気器9はボイラ給水ポンプ、10はエコノマイザ、11は蒸気式空気予熱器、12は熱利用機器、13は給水処理装置、14は主蒸気加減弁、15・16は圧力検出器である。   In FIG. 4, 5 is a condenser, 6 is a condensate tank, 7 is a deaerator feed pump, 8 is a deaerator 9 is a boiler feed pump, 10 is an economizer, 11 is a steam air preheater, 12 Is a heat utilization device, 13 is a water supply treatment device, 14 is a main steam control valve, and 15 and 16 are pressure detectors.

また、前記蒸気タービン4には、一般に、主蒸気加減弁14によりタービン入口蒸気圧力Pを予め定めた設定圧に調整するようにした前圧制御型の蒸気タービン4が使用されている(特許文献1等)。
尚、上記図4に示した蒸気タービン発電装置そのものは公知であるため、ここではその詳細な説明を省略する。
Further, the steam turbine 4 are generally the main steam control valve 14 by a turbine inlet steam pressure P 2 a predetermined set pressure control type steam turbine ago so as to adjust the pressure of 4 is used (Patent Literature 1 etc.).
Note that the steam turbine power generator itself shown in FIG. 4 is well known, and a detailed description thereof is omitted here.

而して、蒸気タービン発電機により高効率発電をおこなうには、廃熱回収ボイラ1からの蒸気の高温・高圧化や供給する蒸気流量の安定化、蒸気タービン4の容量に適応したタービン入口蒸気圧力Pの確保等が必須の要件となり、これ等の要件を整える為に従前から各種の技術が開発され且つ実用に供されている。 Thus, in order to perform high-efficiency power generation with the steam turbine generator, the steam at the inlet of the turbine adapted to the high temperature and high pressure of the steam from the waste heat recovery boiler 1, stabilization of the flow rate of the supplied steam, and the capacity of the steam turbine 4. Ensuring the pressure P 2 is an essential requirement, and various techniques have been developed and put into practical use in order to meet these requirements.

例えば、蒸気の高温・高圧化については、都市ごみの燃焼排ガスによる蒸気過熱器2の伝熱管腐食の問題をクリアーして、廃熱回収ボイラ1からの蒸気を圧力4.00MPa(G)、温度400(℃)以上の過熱蒸気にし得る蒸気過熱器2が開発され、実用に供されている(特許文献2、特許文献3等)。   For example, regarding the high temperature and high pressure of steam, the problem of corrosion of the heat transfer tube of the steam superheater 2 due to the combustion exhaust gas of municipal waste is cleared, and the steam from the waste heat recovery boiler 1 is pressure 4.00MPa (G), temperature 400 A steam superheater 2 that can produce superheated steam at (° C.) or higher has been developed and put into practical use (Patent Document 2, Patent Document 3, etc.).

また、供給蒸気流量(蒸気蒸発量)についても、都市ごみ焼却プラントを自動燃焼装置によって、燃焼量即ちボイラの蒸気蒸発量を一定に制御することにより、蒸気タービン4への蒸気供給量の安定化が図られている(特許文献4等)。   Also, regarding the supply steam flow rate (steam evaporation amount), the municipal waste incineration plant is controlled by the automatic combustion device so that the combustion amount, that is, the steam evaporation amount of the boiler is controlled to be constant, thereby stabilizing the steam supply amount to the steam turbine 4. (Patent Document 4 etc.).

その結果、前記図4の従前の蒸気タービン発電装置においても、都市ごみ焼却プラントへ供給されてくるごみのごみ質が略一定で且つ焼却炉の燃焼状態が安定している場合には、廃熱回収ボイラ1の蒸気蒸発量Qや蒸気過熱器2の出口蒸気圧力P1、主蒸気配管路3での蒸気圧力損失ΔP及び蒸気タービン4のタービン入口蒸気圧力P等は、夫々予め定めた設定値に調整制御され、これにより、蒸気タービン4は設定したタービン入口蒸気圧力Pの下で高効率運転されることになる。 As a result, also in the conventional steam turbine power generation device of FIG. 4, when the waste quality supplied to the municipal waste incineration plant is substantially constant and the combustion state of the incinerator is stable, the waste heat The steam evaporation amount Q of the recovery boiler 1, the outlet steam pressure P 1 of the steam superheater 2, the steam pressure loss ΔP in the main steam pipe 3, the turbine inlet steam pressure P 2 of the steam turbine 4, etc. are set in advance, respectively. It is adjusted controlled to a value, thereby, the steam turbine 4 will be highly efficient operation under a turbine inlet steam pressure P 2 is set.

しかし、上記従前の蒸気タービン発電装置では、一般に、蒸気タービン4側の負荷制御を行うことによってタービン入口蒸気圧力Pを調整することはせずに、タービン入口蒸気圧力Pを常に一定の設定値に保持した状態で運転を行っており、その結果、廃熱回収ボイラ1で発生した蒸気からプロセス用蒸気を除いた残余の蒸気全量が、蒸気タービン4へ供給される構成となっている。
そのため、例えば、都市ごみの燃焼状態の変動や都市ごみのごみ質の変化によって主蒸気配管路3を流通する蒸気流量が減少すると、主蒸気配管路3での蒸気圧力損失ΔPも蒸気流量の減少に応じて小さくなり、タービン入口蒸気圧力Pを常に一定の設定値に保持するためには蒸気過熱器2の出口蒸気圧力P1が必然的に減少することとなる。即ち、蒸気過熱器2の出口蒸気圧力P1が、所謂蒸気発生量(蒸気流量)による成り行きの圧力値になることになり、蒸気蒸発量Qの低下によって蒸気過熱器2の出口蒸気圧力P1が低下して発電効率の悪化を来たすと云う問題がある。
However, in the above-described conventional steam turbine power plant, sets generally, without the adjusting the turbine inlet steam pressure P 2 by performing load control of the steam turbine 4 side, always constant turbine inlet steam pressure P 2 The operation is performed in a state where the value is maintained, and as a result, the remaining steam total amount obtained by removing the process steam from the steam generated in the waste heat recovery boiler 1 is supplied to the steam turbine 4.
Therefore, for example, if the flow rate of steam flowing through the main steam pipeline 3 is reduced due to changes in the combustion state of municipal waste or changes in the quality of municipal waste, the steam pressure loss ΔP in the main steam pipeline 3 also decreases. Accordingly, the outlet steam pressure P 1 of the steam superheater 2 inevitably decreases in order to keep the turbine inlet steam pressure P 2 at a constant set value. That is, the outlet steam pressure P 1 of the steam superheater 2 becomes a so-called pressure value due to the so-called steam generation amount (steam flow rate), and the outlet steam pressure P 1 of the steam superheater 2 is reduced by the decrease of the steam evaporation amount Q. There is a problem that the power generation efficiency deteriorates due to a decrease in power generation.

一般に、蒸気タービン発電装置付都市ごみ焼却プラントの計画及び設計は、都市ごみとして低質ごみ、基準ごみ及び高質ごみの三種を想定して行なわれる。そして、蒸気過熱器2と蒸気タービン4間を連結する主蒸気配管路3は、発生蒸気量Qが最大となる高質ごみの焼却処理時の蒸気発生量を基準として設計される。即ち、当該基準蒸気流量に基づいて主蒸気配管路3での蒸気圧力損失ΔPが決定され、この蒸気圧力損失ΔPをベースにして蒸気タービン4のタービン入口蒸気圧力Pが決定される。また、蒸気タービン4のタービン入口蒸気圧力Pが予め決められている場合には、このタービン入口蒸気圧力Pと蒸気圧力損失ΔPとから、蒸気過熱器2の出口蒸気圧力P1を決定することもある。 In general, the planning and design of a municipal waste incineration plant with a steam turbine power generator is performed assuming three types of municipal waste: low quality waste, standard waste, and high quality waste. And the main steam piping 3 which connects between the steam superheater 2 and the steam turbine 4 is designed on the basis of the steam generation amount at the time of the incineration processing of the high quality waste in which the generated steam amount Q becomes the maximum. That is, the steam pressure loss ΔP in the main steam pipe passage 3 based on the reference vapor flow rate is determined, the turbine inlet steam pressure P 2 of the steam turbine 4 is determined by the steam pressure loss ΔP based. When the turbine inlet steam pressure P 2 of the steam turbine 4 is determined in advance, the outlet steam pressure P 1 of the steam superheater 2 is determined from the turbine inlet steam pressure P 2 and the steam pressure loss ΔP. Sometimes.

都市ごみ焼却プラントの運転中にごみ質が低下し、これにより蒸気発生量(蒸気流量)が減少すると、主蒸気配管路3での蒸気圧力損失ΔPも減少する。しかし、蒸気タービン4のタービン入口蒸気圧力Pは、高質ごみを基準として決定された圧力値を保持するように制御されるため、蒸気過熱器2の出口蒸気圧力P1が蒸気圧力損失ΔPの低下分ΔPcだけ低下することになる。 When the waste quality is reduced during the operation of the municipal waste incineration plant, and the steam generation amount (steam flow rate) is reduced, the steam pressure loss ΔP in the main steam pipe line 3 is also reduced. However, turbine inlet steam pressure P 2 of the steam turbine 4 is to be controlled to maintain a pressure value determined based on the Koshitsu dust, steam superheater 2 the outlet steam pressure P 1 vapor pressure loss ΔP The amount of decrease is reduced by ΔPc.

また、都市ごみ焼却プラントにおけるごみ質の変動は大きいため、ごみ質に応じた蒸気発生量の設定が必要であり、常に蒸気発生量Qが最大となる状態で運転を継続できる訳ではない。
勿論、ごみ質が変化して蒸気発生量が減少すると、自動燃焼制御装置によりごみの燃焼量等が調整され、最終的には蒸気発生量が設定値に修正されることになる。しかし、自動燃焼制御には応答遅れが不可避であり、そのために蒸気発生量の減少した状態が一定時間継続することになる。
Moreover, since the variation of the waste quality in the municipal waste incineration plant is large, it is necessary to set the steam generation amount according to the waste quality, and the operation cannot always be continued in a state where the steam generation amount Q is maximized.
Of course, when the waste quality changes and the steam generation amount decreases, the combustion amount of the waste is adjusted by the automatic combustion control device, and the steam generation amount is finally corrected to the set value. However, a response delay is inevitable in the automatic combustion control, and therefore, the state in which the amount of generated steam is reduced continues for a certain period of time.

例えば、高質ごみ燃焼時の基準設計値が、蒸気過熱器2の出口蒸気圧力P=4.00MPa(G)、主蒸気配管路3の蒸気圧力損失ΔP=0.20MPa(G)、蒸気タービン4のタービン入口蒸気圧力P=3.80MPa(G)であり、且つ、ごみ質やごみ燃焼量に関係なくタービン入口蒸気圧力Pを一定値(3.80MPa(G))に保持する制御方式の都市ごみ焼却プラントの運転中に、ごみ質が高質ごみから基準ごみ質に変化して蒸気流量が減少し、蒸気圧力損失ΔPがΔP=0.15MPa(G)に減少したとする。そうすると、タービン入口蒸気圧力Pが一定値P=3.80MPa(G)に制御されているため、蒸気過熱器2の出口蒸気圧力P1は4.00MPa(G)から3.95MPa(G)に低下して、ボイラ蒸気過熱器2の性能(4.00MPa(G))を十分発揮させることの無い状態の運転となり、その結果、蒸気タービン発電装置の発電効率が低下することになる。
尚、現実の都市ごみ焼却プラントに於いては、年間を通して最も処理量の多いごみ質は基準ごみであり、そのため蒸気過熱器2の出口蒸気圧力P1が、設計値よりも低い圧力値になっているのが常態である。
For example, the standard design values for high-quality waste combustion are the steam pressure P 1 = 4.00 MPa (G) at the steam superheater 2, the steam pressure loss ΔP = 0.20 MPa (G) at the main steam line 3, and the steam turbine 4 Turbine inlet steam pressure P 2 = 3.80 MPa (G), and a city of control system that maintains the turbine inlet steam pressure P 2 at a constant value (3.80 MPa (G)) regardless of the waste quality and the amount of waste combustion Assume that during the operation of the waste incineration plant, the waste quality changes from high-quality waste to the standard waste quality, the steam flow rate decreases, and the steam pressure loss ΔP decreases to ΔP = 0.15 MPa (G). Then, since the turbine inlet steam pressure P 2 is controlled to a constant value P 2 = 3.80 MPa (G), the outlet steam pressure P 1 of the steam superheater 2 decreases from 4.00 MPa (G) to 3.95 MPa (G). Thus, the operation of the boiler steam superheater 2 (4.00 MPa (G)) is not performed sufficiently, and as a result, the power generation efficiency of the steam turbine power generator is reduced.
In an actual municipal waste incineration plant, the most treated waste throughout the year is standard waste, so the outlet steam pressure P 1 of the steam superheater 2 is lower than the design value. It is normal.

表1は、タービン入口蒸気圧力Pを3.80MPa(G)の一定値に制御した場合の、ごみ質が変化した時の蒸気過熱器2の出口蒸気圧力P1及び主蒸気配管路3の蒸気圧力損失ΔPを示すものである。 Table 1 shows the steam pressure at the outlet steam pressure P 1 of the steam superheater 2 and the steam at the main steam pipe line 3 when the waste quality changes when the turbine inlet steam pressure P 2 is controlled to a constant value of 3.80 MPa (G). This shows the pressure loss ΔP.

Figure 2014088812
Figure 2014088812

また、本願出願人は先に、蒸気タービン発電装置付都市ごみ焼却プラントを複数の焼却炉を備えたプラントとし、当該プラントを構成する複数の焼却炉の焼却負荷を下げてその同時運転日数を増加させることにより、年間の総発電電力量を増大させることを可能にしたプラントの運転方法を開発し、これを公開している(特許文献5)。
上記特許文献5に記載の蒸気タービン発電装置付都市ごみ焼却プラントにおいても、各都市ごみ焼却炉の蒸気過熱器2の出口蒸気圧力P1は、発生蒸気量の減少により低下するため、都市ごみ焼却炉が一基の都市ごみ焼却プラントの場合と同様に、発電効率の低下の問題が生じることになる。
In addition, the applicant of the present application first sets a municipal waste incineration plant with a steam turbine power generator as a plant equipped with a plurality of incinerators, and lowers the incineration load of the plurality of incinerators constituting the plant to increase the number of simultaneous operation days By doing so, a plant operation method has been developed that makes it possible to increase the total amount of generated power annually, and this is disclosed (Patent Document 5).
Also in the municipal waste incineration plant with a steam turbine power generator described in Patent Document 5, the outlet steam pressure P 1 of the steam superheater 2 of each municipal waste incinerator decreases due to a decrease in the amount of generated steam. As in the case of a municipal waste incineration plant with a single furnace, the problem of reduced power generation efficiency arises.

特開2003−343208号公報JP 2003-343208 A 特開平09−184609号公報JP 09-184609 A 特開平09−256817号公報JP 09-256817 A 特開平09−296921号公報Japanese Patent Laid-Open No. 09-296921 特開2009−162452号公報JP 2009-162452 A

本願発明は、従前の蒸気タービン発電装置付都市ごみ焼却プラントに於ける上述の如き問題、即ち、イ、ごみ質が低下すると、廃熱回収ボイラ1の蒸気発生量Q(蒸気流量)が減少し、主蒸気配管路3に於ける蒸気圧力損失ΔPも減少するが、蒸気タービン4のタービン入口蒸気圧力Pが高質ごみの焼却処理時の設定圧に常に保持されるため、蒸気過熱器2の出口蒸気圧力P1が蒸気圧力損失ΔPの低下分ΔPcだけ減少し、蒸気タービン発電機の発電効率が低下すること、及び、ロ、複数の焼却炉を備えたプラント構成とし、複数の焼却炉の同時運転日数を増加することにより年間の総発電電力量を増大させるようにしたプラントに於いても、年間を通して処理量の最も多いごみ質が、高質ごみよりもごみ質の低い基準ごみであるため、上記と同様に蒸気過熱器2の出口蒸気圧力P1が設計値より低圧となり、年間総発電電力量の増大が図れないこと、等の問題を解決せんとするものであり、ごみ質の変化により廃熱回収ボイラ1の蒸気蒸発量に変動があっても、蒸気過熱器2の出口蒸気圧力P1を常に所定の一定値に保持することにより、高い発電効率が得られると共に年間総発電電力量の増加を可能とした、蒸気タービン発電装置付都市ごみ焼却プラント及びこれに用いるタービン入口蒸気圧力調整用の演算制御器を提供することを発明の主目的とするものである。 In the present invention, when the above-mentioned problem in the municipal waste incineration plant with a steam turbine power generation device, i.e., waste quality is reduced, the steam generation amount Q (steam flow rate) of the waste heat recovery boiler 1 is reduced. Although the steam pressure loss ΔP in the main steam line 3 is also reduced, the steam inlet steam pressure P 2 of the steam turbine 4 is always maintained at the set pressure during the incineration of high quality waste, so that the steam superheater 2 outlet steam pressure P 1 is decreased by decrease amount ΔPc of steam pressure loss ΔP of the reduced power generation efficiency of the steam turbine generator, and, then b, with the plant structure having a plurality of incinerators, a plurality of incinerators Even in plants that increase the total amount of power generated annually by increasing the number of days that can be operated simultaneously, the waste that has the highest throughput throughout the year is the standard waste that is lower than the high-quality waste. Because, as above Becomes lower pressure than the design value outlet steam pressure P 1 of the steam superheater 2, it can not be ensured increase total annual power generation amount is to solve cents problems such waste heat recovery boiler by a change in waste matter Even if there is a fluctuation in the amount of steam vaporized in 1, the outlet steam pressure P 1 of the steam superheater 2 is always maintained at a predetermined constant value, so that high power generation efficiency can be obtained and the total annual power generation can be increased. It is a main object of the present invention to provide a municipal waste incineration plant with a steam turbine power generator and an arithmetic controller for adjusting the steam pressure at the turbine inlet used therefor.

本願請求項1の蒸気タービン発電装置付都市ごみ焼却プラントの運転方法に係る発明は、都市ごみ焼却炉プラントの廃熱回収ボイラ1で生じた蒸気を蒸気過熱器2で過熱し、当該過熱蒸気を主蒸気配管路3を通して前圧制御式蒸気タービン4へ供給することにより発電する構成の蒸気タービン発電装置付都市ごみ焼却プラントに於いて、所望のごみ質の都市ごみを燃焼させることにより、蒸気過熱器2の出口蒸気圧力P1及びタービン入口蒸気圧力Pの下で都市ごみごみ焼却プラントを運転中に主蒸気配管路3の蒸気圧力損失ΔPが減少すると、前記前圧制御式蒸気タービン4の入口蒸気圧力Pを、主蒸気管路3の蒸気圧力損失ΔPの減少分ΔPCだけ高めてP2+ΔPCの蒸気圧力とすることにより、前記蒸気過熱器2の出口蒸気圧力P1を一定圧力状態に保持すると共に、前記P2+ΔPCの入口蒸気圧力でもって蒸気タービン4を運転することにより発電電力量の増加を図るようにしたことを発明の基本構成とするものである。 In the invention relating to the operation method of the municipal waste incineration plant with a steam turbine power generator according to claim 1 of the present application, the steam generated in the waste heat recovery boiler 1 of the municipal waste incinerator plant is superheated by the steam superheater 2, and the superheated steam is In a municipal waste incineration plant with a steam turbine power generator configured to generate electricity by supplying it to the pre-pressure controlled steam turbine 4 through the main steam pipeline 3, steam superheat is generated by burning municipal waste with a desired waste quality. When the steam pressure loss ΔP of the main steam line 3 decreases during operation of the municipal waste incineration plant under the outlet steam pressure P 1 and the turbine inlet steam pressure P 2 , the inlet of the pre-pressure controlled steam turbine 4 the steam pressure P 2, by the vapor pressure of P 2 + [Delta] P C is increased by decrease [Delta] P C of the steam pressure loss [Delta] P of the main steam line 3, constant outlet steam pressure P 1 of the steam superheater 2 Pressure state Holds the one in which the basic configuration of the invention that it has to achieve an increase in the generated power by the with an inlet steam pressure P 2 + ΔP C to operate the steam turbine 4.

請求項2の発明は、都市ごみ焼却炉プラントの廃熱回収ボイラで生じた蒸気を蒸気過熱器で過熱し、当該過熱蒸気を主蒸気配管路を通して前圧制御式蒸気タービンへ供給することにより発電する構成の蒸気タービン発電装置付都市ごみ焼却プラントに於いて、所望のごみ質の都市ごみを燃焼させることにより、廃熱回収ボイラの蒸気蒸発量Q、蒸気過熱器の出口蒸気圧力P1及びタービン入口蒸気圧力Pの下で都市ごみごみ焼却プラントを運転中に、蒸気蒸発量Qが減少して主蒸気配管路の蒸気圧力損失ΔPが減少すると、前記蒸気タービンの入口蒸気圧力Pを、主蒸気管路の蒸気圧力損失ΔPの減少分ΔPCだけ高めてP2+ΔPCの蒸気圧力とすることにより前記蒸気過熱器の出口蒸気圧力P1を一定圧力に保持すると共に、前記P2+ΔPCの入口蒸気圧力でもって蒸気タービンを運転することにより発電効率を高めるようにしたことを発明の基本構成とするものである。 In the invention of claim 2, steam generated in a waste heat recovery boiler of a municipal waste incinerator plant is superheated by a steam superheater, and the superheated steam is supplied to a pre-pressure controlled steam turbine through a main steam pipe. In a municipal waste incineration plant with a steam turbine power generation device configured to burn municipal waste of desired waste quality, the steam evaporation amount Q of the waste heat recovery boiler, the steam pressure P 1 at the outlet of the steam superheater, and the turbine during operation the urban warren incineration plants under the inlet steam pressure P 2, the steam evaporation amount Q is decreased steam pressure loss ΔP of the main steam pipe passage is reduced, the inlet steam pressure P 2 of the steam turbine, the main holds the outlet steam pressure P 1 of the steam superheater constant pressure by the steam pressure P 2 + [Delta] P C is increased by decrease [Delta] P C of the steam pressure loss [Delta] P of the steam line, the P 2 + in the inlet steam pressure [Delta] P C Thus, the basic configuration of the invention is to increase the power generation efficiency by operating the steam turbine.

請求項3の発明は、請求項2の発明において、蒸気蒸発量Qの減少を主蒸気配管路3内の蒸気流量QSから検出し、当該検出した蒸気流量QSの変動分から蒸気圧力損失ΔPの減少分ΔPCを検出するようにしたものである。 According to a third aspect of the present invention, in the second aspect of the invention, a decrease in the amount of vapor evaporation Q is detected from the steam flow rate Q S in the main steam pipe 3, and the steam pressure loss ΔP is determined from the detected variation in the steam flow rate Q S. it is obtained to detect the decrease [Delta] P C of.

請求項4の発明は、請求項2の発明において、蒸気蒸発量Qの減少を都市ごみ焼却炉の運転制御装置のボイラ蒸発量及び又はごみ焼却量QWより検出し、当該検出した運転制御装置のボイラ蒸発量及び又はごみ焼却量QWの変動分から蒸気圧力損失ΔPの減少分ΔPCを検出するようにしたものである。 According to a fourth aspect of the invention, in the invention of the second aspect, the decrease in the vapor evaporation amount Q is detected from the boiler evaporation amount and / or the waste incineration amount Q W of the operation control device of the municipal waste incinerator, and the detected operation control device in which boiler the amount of evaporation and or from variation in the waste incineration Q W was to detect the decrease [Delta] P C of the steam pressure loss [Delta] P.

請求項5の発明は、請求項2の発明において、都市ごみ焼却炉プラントを、複数基の焼却炉を具備すると共に当該複数基の焼却炉を部分負荷状態で運転する方式の都市ごみ焼却炉プラントしたものである。   A fifth aspect of the present invention is the municipal waste incinerator plant according to the second aspect of the present invention, wherein the municipal waste incinerator plant comprises a plurality of incinerators and operates the plurality of incinerators in a partial load state. It is a thing.

請求項6の蒸気タービン入口蒸気圧調整用の演算制御器に係る発明は、蒸気過熱器2と、蒸気過熱器2から主蒸気配管路3を通して過熱蒸気を供給する前圧制御式蒸気タービン4と、前圧制御式蒸気タービン4の蒸気入口近傍に設けた前圧制御弁18と、蒸気過熱器2の出口に設けた圧力検出器15と、蒸気タービン4の蒸気入口近傍に設けた圧力検出器16とを備えた自動運転制御方式の蒸気タービン発電装置付都市ごみ焼却プラントに用いられ、前記圧力検出器15の出口蒸気圧力P1と圧力検出器16のタービン入口蒸気圧力P2とが入力されると共に、予め記憶された蒸気蒸発量と主蒸気配管路3の蒸気圧力損失ΔPとの関係曲線から蒸気流量変動時の蒸気圧力損失ΔPの減少量ΔPCを演算し、当該演算した減少量ΔPCに比例する圧力制御信号SCを前記前圧制御弁18へ出力してタービン入口蒸気圧力P2を前記減少量ΔPCだけ増加させ、タービン入口蒸気圧力P2を調整することにより蒸気過熱器2の出口蒸気圧力P1を常時一定値に保持する構成としたことを発明の基本構成とするものである。 The invention relating to the calculation controller for steam turbine inlet steam pressure adjustment according to claim 6 includes a steam superheater 2, a pre-pressure controlled steam turbine 4 for supplying superheated steam from the steam superheater 2 through the main steam pipe line 3, and A pre-pressure control valve 18 provided in the vicinity of the steam inlet of the pre-pressure controlled steam turbine 4, a pressure detector 15 provided in the outlet of the steam superheater 2, and a pressure detector provided in the vicinity of the steam inlet of the steam turbine 4. 16 is used for a municipal waste incineration plant with an automatic operation control system with a steam turbine power generator, and an outlet steam pressure P 1 of the pressure detector 15 and a turbine inlet steam pressure P 2 of the pressure detector 16 are inputted. At the same time, a reduction amount ΔP C of the steam pressure loss ΔP when the steam flow rate fluctuates is calculated from a relationship curve between the steam evaporation amount stored in advance and the steam pressure loss ΔP of the main steam pipe line 3, and the calculated reduction amount ΔP Pressure control signal proportional to C S C is output to the pre-pressure control valve 18 to increase the turbine inlet steam pressure P 2 by the decrease ΔP C and adjust the turbine inlet steam pressure P 2 to adjust the outlet steam pressure P 1 of the steam superheater 2. The basic configuration of the present invention is to always maintain a constant value.

請求項7の発明は、蒸気過熱器2と、蒸気過熱器2から主蒸気配管路3を通して過熱蒸気を供給する前圧制御式蒸気タービン4と、前圧制御式蒸気タービン4の蒸気入口近傍に設けた前圧制御弁18と、蒸気過熱器2の出口に設けた圧力検出器15と、蒸気タービン4の蒸気入口近傍に設けた圧力検出器16と、廃熱回収ボイラ1の蒸発量検出機構を備えた自動運転制御方式の蒸気タービン発電装置付都市ごみ焼却プラントに用いられ、前記圧力検出器15の出口蒸気圧力P1と圧力検出器16のタービン入口蒸気圧力P2と蒸発量検出機構の蒸気蒸発量Qとが入力されると共に、予め記憶された蒸気蒸発量Qと主蒸気配管路3の蒸気圧力損失ΔPとの関係曲線から蒸気蒸発量Qの減少時の蒸気圧力損失ΔPの減少量ΔPCを演算し、当該演算した減少量ΔPCに比例する圧力制御信号SCを前記前圧制御弁18へ出力してタービン入口蒸気圧力P2を前記減少量ΔPCだけ増加させ、蒸気蒸発量Qの変動時にタービン入口蒸気圧力P2を調整することにより蒸気過熱器2の出口蒸気圧力P1を常時一定値に保持する構成としたことを発明の基本構成とするものである。 The invention of claim 7 includes a steam superheater 2, a pre-pressure controlled steam turbine 4 that supplies superheated steam from the steam superheater 2 through the main steam piping 3, and a steam inlet near the pre-pressure controlled steam turbine 4. The provided pre-pressure control valve 18, the pressure detector 15 provided at the outlet of the steam superheater 2, the pressure detector 16 provided near the steam inlet of the steam turbine 4, and the evaporation amount detection mechanism of the waste heat recovery boiler 1 Of an automatic operation control type municipal waste incineration plant equipped with a steam turbine power generator equipped with an outlet steam pressure P 1 of the pressure detector 15, a turbine inlet steam pressure P 2 of the pressure detector 16, and an evaporation amount detection mechanism. The steam evaporation amount Q is inputted, and the decrease amount of the steam pressure loss ΔP when the steam evaporation amount Q decreases from the relationship curve between the steam evaporation amount Q stored in advance and the steam pressure loss ΔP of the main steam pipe 3 Calculate ΔP C and the calculated decrease ΔP C The pressure control signal S C that is proportional to output the previous control valve 18 a turbine inlet steam pressure P 2 is increased by the decrease amount [Delta] P C, adjusting the turbine inlet steam pressure P 2 at the time of change of the vapor evaporation Q Thus, the basic configuration of the invention is that the outlet steam pressure P 1 of the steam superheater 2 is always maintained at a constant value.

請求項8の発明は、請求項7の発明において、蒸発量検出機構を主蒸気配管路3に設けた蒸気流量検出器17とするようにしたものである。   The invention according to claim 8 is the invention according to claim 7, wherein the evaporation amount detecting mechanism is a steam flow rate detector 17 provided in the main steam line 3.

請求項9の発明は、請求項7の発明において、蒸発量検出機構を都市ごみ焼却炉の運転制御装置のボイラ蒸発量及び又はごみ焼却量の検出機構とするようにしたものである。   The invention according to claim 9 is the invention according to claim 7, wherein the evaporation amount detection mechanism is a detection mechanism for the boiler evaporation amount and / or the waste incineration amount of the operation control device of the municipal waste incinerator.

本願方法発明に於いては、廃熱回収ボイラ1の蒸気蒸発量Q、過熱器2の出口蒸気圧力P1及びタービン入口蒸気圧力Pの下でプラントを運転中に、前記蒸発量Qが減少して主蒸気配管路3の蒸気圧力損失ΔPが減少した際に、蒸気タービンの入口蒸気圧力Pを主蒸気管路3の蒸気圧力損失ΔPの減少分ΔPCだけ上昇させてP2+ΔPCの蒸気圧力とすることにより、前記過熱器2の出口蒸気圧力P1を一定圧力値に保持する構成としている。
その結果、ごみ質やごみ燃焼状態の変動により蒸気蒸発量Qが低下しても、蒸気過熱器2の出口蒸気圧力P1が一定の設定値に保持されることになり、高い発電効率が得られる。
In the present process invention, vapor evaporation amount of the waste heat recovery boiler 1 Q, the plant under superheater outlet steam pressure P 1 of 2 and the turbine inlet steam pressure P 2 during operation, the evaporation amount Q is reduced When the steam pressure loss ΔP in the main steam line 3 decreases, the steam pressure P 2 at the inlet of the steam turbine is increased by the decrease ΔP C of the steam pressure loss ΔP in the main steam line 3 to increase P 2 + ΔP By setting the steam pressure to C , the outlet steam pressure P 1 of the superheater 2 is held at a constant pressure value.
As a result, even if the vapor evaporation amount Q decreases due to fluctuations in waste quality and waste combustion conditions, the outlet steam pressure P 1 of the steam superheater 2 is maintained at a constant set value, and high power generation efficiency is obtained. It is done.

また、本願装置発明に於いては、圧力検出器15の出口蒸気圧力P1と圧力検出器16のタービン入口蒸気圧力P2と蒸発量検出機構の蒸気蒸発量Qとから、予め記憶された蒸気蒸発量Qと主蒸気配管路3の蒸気圧力損失ΔPとの関係曲線を用いて蒸気蒸発量Qが減少した時の蒸気圧力損失ΔPの減少量ΔPCを演算し、当該演算した減少量ΔPCに比例する圧力制御信号SCを前圧制御弁18へ出力することにより、タービン入口蒸気圧力P2を前記演算した減少量ΔPCだけ増加させる構成としている。
その結果、タービン入口蒸気圧力P2の調整により蒸気過熱器2の出口蒸気圧力P1が一定値に保持されることになり、牽いては発電効率を向上させることが出来る。
In the present invention, the steam stored in advance from the outlet steam pressure P 1 of the pressure detector 15, the turbine inlet steam pressure P 2 of the pressure detector 16, and the steam evaporation amount Q of the evaporation amount detection mechanism. Using the relationship curve between the evaporation amount Q and the steam pressure loss ΔP of the main steam line 3, the decrease amount ΔP C of the steam pressure loss ΔP when the vapor evaporation amount Q decreases is calculated, and the calculated decrease amount ΔP C by outputting a pressure control signal S C that is proportional to the previous pressure control valve 18 has a configuration which is increased by decreasing the amount [Delta] P C of the turbine inlet steam pressure P 2 and the arithmetic.
As a result, by adjusting the turbine inlet steam pressure P 2 , the outlet steam pressure P 1 of the steam superheater 2 is maintained at a constant value, and the power generation efficiency can be improved.

本発明の実施に係る蒸気タービン発電装置付都市ごみ焼却プラントの蒸気系統概要図である。It is a steam system schematic diagram of a municipal waste incineration plant with a steam turbine power generator concerning the implementation of the present invention. 蒸発量と蒸気圧力損失ΔPの関係を示す特性曲線である。It is a characteristic curve showing the relationship between the evaporation amount and the steam pressure loss ΔP. 本発明を適用した蒸気タービン発電装置付都市ごみ焼却プラントの自動燃焼制御装置の構成概要図である。It is a structure schematic diagram of the automatic combustion control apparatus of the municipal waste incineration plant with a steam turbine power generator to which the present invention is applied. 従前の蒸気タービン発電装置付都市ごみ焼却プラントの蒸気系統概要図である。It is a steam system schematic diagram of the conventional municipal waste incineration plant with a steam turbine power generation device.

以下、図面に基づいて本発明の実施形態を説明する。
図1は、本発明の実施に係る蒸気タービン発電装置付都市ごみ焼却プラントの蒸気系統概要図であり、図1において、1は廃熱回収ボイラ、2は蒸気過熱器、3は主蒸気配管路、4は蒸気タービン、4aは発電機、5は復水器、6は復水タンク、7は脱気器給水ポンプ7、8は脱気器、9はボイラ給水ポンプ、10は廃熱回収ボイラ、11は蒸気式空気予熱器、12は熱利用機器、13は給水処理装置、15,16は圧力検出器、17は蒸気流量検出器、18は前圧制御弁、19は演算制御器である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic diagram of a steam system of a municipal waste incineration plant with a steam turbine power generator according to the present invention. In FIG. 1, 1 is a waste heat recovery boiler, 2 is a steam superheater, and 3 is a main steam pipe line. 4 is a steam turbine, 4a is a generator, 5 is a condenser, 6 is a condensate tank, 7 is a deaerator feed pump 7, 8 is a deaerator, 9 is a boiler feed pump, and 10 is a waste heat recovery boiler. , 11 is a steam type air preheater, 12 is a heat utilization device, 13 is a water supply treatment device, 15 and 16 are pressure detectors, 17 is a steam flow rate detector, 18 is a pre-pressure control valve, and 19 is an arithmetic controller. .

即ち、蒸気過熱器2と蒸気タービン4間を連結する主蒸気配管路3に蒸気流量検出器17と前圧制御弁18を設けた点、タービン入口蒸気圧力調整用の演算制御器19を設けた点、及び演算制御器19からの制御信号Scにより前圧制御弁18の開度調整をし、タービン入口蒸気圧力Pを調整するようにした点を除いて、その他の構成は、前記図4に示した従前の蒸気系統概要図の場合とほぼ同一である。 That is, a steam flow rate detector 17 and a pre-pressure control valve 18 are provided in the main steam pipe line 3 connecting the steam superheater 2 and the steam turbine 4, and an arithmetic controller 19 for adjusting the turbine inlet steam pressure is provided. points, and the adjustment of the opening degree of the pre-control valve 18 by the control signal Sc from the operation control unit 19, except that to adjust the turbine inlet steam pressure P 2, the other configuration, FIG. 4 It is almost the same as the case of the previous schematic diagram of the steam system.

前記演算制御器19へは、圧力検出器15で検出した出口蒸気圧力P1と、圧力検出器16で検出したタービン入口蒸気圧力Pと、蒸気流量検出器17で検出した蒸気流量Qsが入力されると共に、制御信号Scが前圧制御弁18へ出力される。 The arithmetic controller 19 receives the outlet steam pressure P 1 detected by the pressure detector 15, the turbine inlet steam pressure P 2 detected by the pressure detector 16, and the steam flow rate Qs detected by the steam flow detector 17. At the same time, the control signal Sc is output to the pre-pressure control valve 18.

当該演算制御器19には、予め廃熱回収ボイラ1の蒸気蒸発量Qと主蒸気配管路3に於ける蒸気圧力損失ΔPとの関係を示すデータ、例えば図2の如き特性曲線データが記憶されており、この特性曲線データに、記蒸気流量検出器17で検出した蒸気流量Qsと予め知られている燃焼ごみ質と蒸気蒸発量Qの関係を適用することにより、燃焼ごみ質が変化した時の蒸気蒸発量Qの変化から蒸気圧力損失ΔPの減少量ΔPcを演算する。   The arithmetic controller 19 stores in advance data indicating the relationship between the steam evaporation amount Q of the waste heat recovery boiler 1 and the steam pressure loss ΔP in the main steam pipe line 3, for example, characteristic curve data as shown in FIG. By applying the relationship between the steam flow rate Qs detected by the steam flow rate detector 17 and the previously known combustion waste quality and the vapor evaporation amount Q to the characteristic curve data, The amount of decrease ΔPc in the steam pressure loss ΔP is calculated from the change in the amount of steam evaporation Q.

そして、前記蒸気圧力損失ΔPの減少量ΔPcが演算されると、出口蒸気圧力P1を蒸気蒸発量Qが変動する前と同一の値に保持する為に必要なタービン入口蒸気圧力P20=P+ΔPc(蒸気蒸発量Qの変動前のタービン入口蒸気圧力P+蒸気圧力損失ΔPの減少量ΔPc)が演算され、前記タービン入口蒸気圧力Pを蒸気圧力損失ΔPの減少量ΔPcだけ増加させるための圧力制御信号Scが、前圧制御弁18へ出力される。
即ち、タービン入口蒸気圧力Pを蒸気圧力損失ΔPの減少分ΔPcだけ増加させることにより、蒸気過熱器2の出口蒸気圧力P1が、蒸気蒸発量Qの変動後も、当初の一定値に保持される。
When the decrease amount ΔPc of the steam pressure loss ΔP is calculated, the turbine inlet steam pressure P 20 = P required to maintain the outlet steam pressure P 1 at the same value as before the steam evaporation amount Q fluctuates. 2 + Delta] Pc (decrease Delta] Pc of the previous variation of the vapor evaporation Q turbine inlet steam pressure P 2 + steam pressure loss [Delta] P) is calculated, increasing the turbine inlet steam pressure P 2 by reduction Delta] Pc of the steam pressure loss [Delta] P A pressure control signal Sc for generating the pressure is output to the pre-pressure control valve 18.
That is, by increasing the turbine inlet steam pressure P 2 by the decrease ΔPc of the steam pressure loss ΔP, the outlet steam pressure P 1 of the steam superheater 2 is maintained at the initial constant value even after the fluctuation of the steam evaporation amount Q. Is done.

いま、処理すべき都市ごみを高質ごみとし、これを基準にして計画、設計された蒸気過熱器2の出口蒸気圧力P1=4.00MPa(G)、廃熱回収ボイラ1の蒸気蒸発量Q=Q(T/H)、主蒸気配管路3の蒸気圧力損失ΔP=0.20MPa(G)、タービン入口蒸気圧力P=3.80MPa(G)のプラントの運転中に、都市ごみの発熱量が低下して(基準ごみ)蒸気蒸発量QがQ’に減少し、主蒸気配管路3の蒸気圧力損失ΔPが0.15MPa(G)に低下した場合、前記演算制御器19では、ごみ質の変動により減少した蒸気蒸発量Q’に対応する蒸気圧力損失ΔP’=0.15MPa(G)が演算されると共に、蒸気圧力損失ΔPの減少量ΔPc=ΔP―ΔP’=0.05MPa(G)が演算される。 The municipal waste to be treated is high-quality waste, and the steam pressure P 1 = 4.00MPa (G) of the steam superheater 2 planned and designed on the basis of this, and the steam evaporation Q of the waste heat recovery boiler 1 = Q (T / H), Steam pressure loss in main steam line 3 ΔP = 0.20MPa (G), Turbine inlet steam pressure P 2 = 3.80MPa (G) When the vapor evaporation amount Q decreases to Q ′ and the steam pressure loss ΔP in the main steam pipe line 3 decreases to 0.15 MPa (G), the arithmetic controller 19 changes the waste quality. The steam pressure loss ΔP '= 0.15MPa (G) corresponding to the steam evaporation amount Q' reduced by the above is calculated, and the decrease amount of steam pressure loss ΔP ΔPc = ΔP-ΔP '= 0.05MPa (G) is calculated. The

そして、このΔPc=0.05MPa(G)に相当する圧力制御信号Scが前圧制御弁18へ出力され、前圧制御弁18が閉鎖方向へ作動されることによりタービン入口蒸気圧力P20がP2+ΔPc=3.80+0.05=3.85MPa(G)に増加されることになる。これにより、蒸気過熱器2の出口蒸気圧力P1は蒸気蒸発量Qが蒸発量Q’に変化した場合でも、設定値P1=4.00MPa(G)に保持される。 Then, this Delta] Pc = 0.05 MPa pressure control signal Sc corresponding to (G) is output to the front control valve 18, a turbine by previous pressure control valve 18 is actuated in the closing direction the inlet steam pressure P 20 is P 2 + ΔPc = 3.80 + 0.05 = 3.85 MPa (G). As a result, the outlet steam pressure P 1 of the steam superheater 2 is maintained at the set value P 1 = 4.00 MPa (G) even when the steam evaporation amount Q changes to the evaporation amount Q ′.

即ち、本願発明に於いては、蒸気過熱器2の蒸気条件、主蒸気配管路3の管径など機器設計に係る事項については、従来と変わらない。そして、先ず、蒸気蒸発量Q(発生量)に応じて蒸気圧力損失ΔPを導出し、これに基づいてタービン入口蒸気圧力Pを操作することにより、蒸気過熱器2の出口蒸気圧力P1が一定(4. 00MPa(G))となるようにして運転をする。
また、前記蒸気圧力損失ΔPの演算及びタービン入口蒸気圧力Pの制御にあたっては、演算制御器19に予め記憶せしめた蒸気蒸発量Qと蒸気圧力損失ΔP間の特性曲線を用いて、前圧制御弁18へ出力する圧力制御信号Scを演算し、出力する。
That is, in the present invention, the matters relating to the device design such as the steam condition of the steam superheater 2 and the pipe diameter of the main steam pipe 3 are not different from the conventional ones. First, the steam pressure loss ΔP is derived in accordance with the steam evaporation amount Q (generated amount), and the turbine inlet steam pressure P 2 is operated based on this, whereby the outlet steam pressure P 1 of the steam superheater 2 is Operate at a constant (4.00 MPa (G)).
In calculating the steam pressure loss ΔP and controlling the turbine inlet steam pressure P 2 , the pre-pressure control is performed using a characteristic curve between the steam evaporation amount Q and the steam pressure loss ΔP stored in advance in the arithmetic controller 19. The pressure control signal Sc to be output to the valve 18 is calculated and output.

尚、上記蒸気蒸発量Qとしては、自動制御装置の設定値や現実の測定値を直接に使用しても良いし、或いは、自動制御装置の設定値と現実の測定値との偏差量を基にして演算した値を用いることも可能である。
また、上記蒸気圧力損失ΔPの算出は、廃熱回収ボイラ1の蒸気蒸発量Qだけでなく、それに代る指標、例えば、焼却炉のごみ燃焼に用いる指標である運転炉数、ごみ質、ごみ焼却量等Qw を蒸気蒸発量Qの代替として用いても良い。
As the vapor evaporation amount Q, the setting value of the automatic control device or the actual measurement value may be used directly, or the deviation amount between the setting value of the automatic control device and the actual measurement value may be used. It is also possible to use the value calculated in this way.
In addition, the calculation of the steam pressure loss ΔP is not limited to the steam evaporation amount Q of the waste heat recovery boiler 1, but an alternative index, for example, the number of operating furnaces, waste quality, waste, which are indices used for incinerator waste combustion. The incineration amount Qw may be used as an alternative to the vapor evaporation amount Q.

図3は、本発明で使用する廃熱回収ボイラ1の自動燃焼制御装置の構成概要図であり、当該自動燃焼制御の主要部は、一般に燃焼量制御(蒸発量一定制御)部と炉出口酸素濃度制御部等から形成されているが、この燃焼量制御(蒸発量一定制御)部中の制御要素の一つとして、タービン入口蒸気圧力Pの制御を加えたものが、本願発明で使用する自動燃焼制御装置に対応するものである。 FIG. 3 is a schematic configuration diagram of the automatic combustion control device of the waste heat recovery boiler 1 used in the present invention. The main parts of the automatic combustion control are generally a combustion amount control (constant evaporation control) unit and a furnace outlet oxygen. are formed from the density control unit or the like, as one of the combustion amount control control element in (evaporation amount constant control) unit, is plus control of turbine inlet steam pressure P 2, for use in the present invention It corresponds to an automatic combustion control device.

蒸気タービン発電機4aによる発電では、一般にタービン入口蒸気圧力Pの高い方が高効率発電となる。従って、タービン入口蒸気圧力Pをごみ質、ごみ量に関らず一定とした運転方法でなしに、本発明のように蒸気蒸発量やその他指標をもとに主蒸気配管路3の蒸気圧力損失ΔPを導出し、それに応じてタービン入口蒸気圧力Pを設定、制御することで、最も出現頻度の高い基準ごみ時においても、蒸気過熱器2の出口蒸気圧力P1を高く保つことができ、タービン入口蒸気圧力Pを高くして発電効率の向上を図ることが出来る。 In power generation by the steam turbine generator 4a, generally higher turbine inlet steam pressure P 2 is high-efficiency power generation. Therefore, the turbine inlet steam pressure P 2 garbage quality, pear in regardless constant and the operation method in waste volume, steam evaporation and other vapor pressure of the main steam pipe passage 3 indicator based on as in the present invention By deriving the loss ΔP and setting and controlling the turbine inlet steam pressure P 2 accordingly, the outlet steam pressure P 1 of the steam superheater 2 can be kept high even in the case of standard waste with the highest frequency of appearance. , it is possible to improve the high to the power generation efficiency turbine inlet steam pressure P 2.

(実施例1)
例えば、ごみ焼却量が約170T/日の炉を2基(蒸発量40t/h)設置し、高質ごみ時の設計条件を、蒸気過熱器2の出口蒸気圧力P1=4.00MPa(G)、蒸気圧力損失ΔP=0.20MPa(G)、タービン入口蒸気圧力P=3.80MPa(G)とした場合、ごみ質が高質ごみから基準ごみに変わることにより2炉運転に於ける廃熱回収ボイラ1の蒸気蒸発量Qが設計条件時より減少し、蒸気蒸発量Qから算出された蒸気圧力損失ΔPが0.15MPa(G)となる場合には、出口蒸気圧力P1=4.00MPa(G)、及びタービン入口蒸気圧力P=3.85MPa(G)として運転することができる。また、このときの発電電力(kW)は、1炉運転時又は2炉運転時のいずれに於いても10(kW)増加する。
今、2炉運転日数を150日及び1炉運転日数を205日とすると、発電電力(kW)及び年間発電量(MWh)は表2のようになり、蒸気タービン発電装置付都市ごみ焼却プラントに大きな改良を加えることなしに発電電力及び発電電力量の増加を図ることが出来る。
Example 1
For example, two furnaces with a waste incineration rate of about 170 T / day (evaporation amount 40 t / h) are installed, and the design conditions for high-quality waste are the same as the steam pressure at the outlet of the steam superheater P 1 = 4.00 MPa (G) , steam pressure loss ΔP = 0.20MPa (G), when the turbine inlet steam pressure P 2 = 3.80MPa (G), in the waste heat recovery in the waste matter is 2 furnace operation by changing the reference debris from high quality dust When the steam evaporation amount Q of the boiler 1 decreases from the design condition and the steam pressure loss ΔP calculated from the steam evaporation amount Q is 0.15 MPa (G), the outlet steam pressure P 1 = 4.00 MPa (G) , And turbine inlet steam pressure P 2 = 3.85 MPa (G). Further, the generated power (kW) at this time increases by 10 (kW) in either one furnace operation or two furnace operation.
Now, assuming that 2 furnace operation days are 150 days and 1 furnace operation day is 205 days, the generated power (kW) and annual power generation (MWh) are as shown in Table 2. It is possible to increase the generated power and the amount of generated power without greatly improving.

Figure 2014088812
Figure 2014088812

(実施例2)
また、年間の総発電量を増加させるために、2炉を部分負荷状態で運転すると共にその2炉運転日数を延ばす運転方法が開発されている(特開2009−162452・特許文献5)。この様な運転方法の場合においても、本発明を適用することにより、蒸気タービン発電装置付都市ごみ焼却プラントに大きな改良を加えることなしに発電電力及び発電電力量の増加を図ることが出来る。
例えば、実施例1の場合と同じ設計条件のプラントに於いて、年間で最も発生頻度の高い基準ごみを、2炉運転時には各焼却炉を90%負荷にて、及び、1炉運転時には100%負荷にて焼却する運転計画を立てた場合、蒸気蒸発量Qより算出される蒸気圧力損失ΔPが0.15MPa(G)となる場合には、発電電力(kW)及び年間発電量(MKh)は表3のようになり、何れも増加することに成る。
(Example 2)
In addition, in order to increase the total amount of power generation per year, an operation method has been developed in which two furnaces are operated in a partial load state and the number of days for operating the two furnaces is extended (Japanese Patent Laid-Open No. 2009-16242, Patent Document 5). Even in the case of such an operation method, by applying the present invention, it is possible to increase the generated power and the generated power amount without greatly improving the municipal waste incineration plant with a steam turbine power generator.
For example, in a plant with the same design conditions as in Example 1, the most frequently generated standard waste per year is 90% load for each incinerator when operating in two furnaces, and 100% when operating in one furnace. When an operation plan for incineration with a load is made, if the steam pressure loss ΔP calculated from the steam evaporation Q is 0.15 MPa (G), the generated power (kW) and annual generated power (MKh) are 3 and both increase.

Figure 2014088812
Figure 2014088812

なお、本発明に係る運転方法では、ごみ質や焼却負荷等によって変動してい
た従前の蒸気過熱器2の出口蒸気圧力P1を、常時一定圧力4.00MPa(G)に保持するようにしているため、蒸気過熱器2や蒸気タービン4の維持管理が容易となる。
また、本発明に係る運転方法は、従来のボイラ設計条件内で都市ごみ焼却プラントを運転するものであるため、ボイラ設計条件等を従来の設計条件をより高仕様とする必要は、全くない。
更に、本発明においては、蒸気圧力損失ΔPの導出及びタービン入口蒸気圧力Pの設定にあたり、廃熱回収ボイラ1の蒸気蒸発量Q又はそれに代わる焼却炉運転指標(都市ごみ燃焼量)を用いた構成としているが、運転員によってタービン入口蒸気圧力Pを手動制御することによっても、同様の効果が得られることは勿論である。
In the operation method according to the present invention, the outlet steam pressure P 1 of the conventional steam superheater 2 that has fluctuated depending on the waste quality, the incineration load, etc. is always maintained at a constant pressure of 4.00 MPa (G). Therefore, maintenance management of the steam superheater 2 and the steam turbine 4 becomes easy.
Further, since the operation method according to the present invention operates the municipal waste incineration plant within the conventional boiler design conditions, there is no need to make the conventional design conditions higher than the conventional boiler design conditions.
Further, in the present invention, when deriving and setting the turbine inlet steam pressure P 2 of the steam pressure loss [Delta] P, using the waste heat steam evaporation amount of recovery boiler 1 Q or incinerator operating indicators in place of it (municipal waste combustion quantity) Although a configuration, also by manually controlling the turbine inlet steam pressure P 2 by the operator, it is a matter of course that the same effect can be obtained.

本発明は、都市ごみの焼却プラントのみならず、産業廃棄物や汚泥の焼却プラントや製鋼等に於ける発生炉ガスを熱源とする燃焼炉等へも適用できるものである。   The present invention can be applied not only to an incineration plant for municipal waste but also to a combustion furnace using a generated gas in an industrial waste or sludge incineration plant, steel making, or the like as a heat source.

Q 蒸気蒸発量
P1 出口蒸気圧力
Pタービン入口蒸気圧力
ΔP 蒸気圧力損
ΔPc 蒸気圧力損の減少量
Qs 主蒸気配管路の蒸気流量
Qw 焼却炉運転制御装置及び又は都市ごみ焼却量
Sc 圧力制御信号
1 廃熱回収ボイラ
2 蒸気過熱器
3 主蒸気配管路
4 蒸気タービン
4a 発電機
5 復水器
6 復水タンク
7 脱気器給水ポンプ
8 脱気器
9 ボイラ給水ポンプ
10 エコノマイザ
11 蒸気式空気予熱器
12 熱利用機器
13 給水処理装置
14 主蒸気加減弁
15 圧力検出器
16 圧力検出器
17 蒸気流量検出器
18 前圧制御弁
19 演算制御器
Q Vapor evaporation
P 1 outlet steam pressure
P 2 Turbine inlet steam pressure ΔP Steam pressure loss ΔPc Decrease in steam pressure loss
Qs Steam flow rate of main steam pipeline
Qw Incinerator operation control device and / or municipal waste incineration amount
Sc Pressure control signal 1 Waste heat recovery boiler 2 Steam superheater 3 Main steam pipeline 4 Steam turbine 4a Generator 5 Condenser 6 Condensate tank 7 Deaerator feed pump 8 Deaerator 9 Boiler feed pump 10 Economizer 11 Steam Type air preheater 12 heat utilization device 13 water supply treatment device 14 main steam control valve 15 pressure detector 16 pressure detector 17 steam flow rate detector 18 pre-pressure control valve 19 arithmetic controller

Claims (9)

都市ごみ焼却炉プラントの廃熱回収ボイラで生じた蒸気を蒸気過熱器で過熱し、当該過熱蒸気を主蒸気配管路を通して前圧制御式蒸気タービンへ供給することにより発電する構成の蒸気タービン発電装置付都市ごみ焼却プラントに於いて、所望のごみ質の都市ごみを燃焼させることにより、蒸気過熱器の出口蒸気圧力P1及びタービン入口蒸気圧力Pの下で都市ごみごみ焼却プラントを運転中に主蒸気配管路の蒸気圧力損失ΔPが減少すると、前記蒸気タービンの入口蒸気圧力Pを、主蒸気管路の蒸気圧力損失ΔPの減少分ΔPCだけ高めてP2+ΔPCの蒸気圧力とすることにより前記蒸気過熱器の出口蒸気圧力P1を一定圧力に保持すると共に、前記P2+ΔPCの入口蒸気圧力でもって蒸気タービンを運転することにより発電効率を高める構成としたことを特徴とする蒸気タービン発電装置付都市ごみ焼却プラントの運転方法。 Steam turbine generator configured to generate electricity by heating the steam generated in the waste heat recovery boiler of a municipal waste incinerator plant with a steam superheater and supplying the superheated steam to the pre-pressure controlled steam turbine through the main steam line in urging municipal waste incineration plants, by burning municipal waste of the desired waste matter, the main cities warren incineration plant during operation under the outlet steam pressure P 1 and the turbine inlet steam pressure P 2 of the steam superheater When the steam pressure loss [Delta] P of the steam pipe passage is reduced, the inlet steam pressure P 2 of the steam turbine, the steam pressure P 2 + [Delta] P C is increased by decrease [Delta] P C of the steam pressure loss [Delta] P of the main steam line wherein the outlet steam pressure P 1 of the steam superheater and holds constant pressure, it has a structure to improve the power generation efficiency by operating a steam turbine with an inlet steam pressure of the P 2 + [Delta] P C by The method of operating a steam turbine power generation system with municipal waste incineration plants, characterized. 都市ごみ焼却炉プラントの廃熱回収ボイラで生じた蒸気を蒸気過熱器で過熱し、当該過熱蒸気を主蒸気配管路を通して前圧制御式蒸気タービンへ供給することにより発電する構成の蒸気タービン発電装置付都市ごみ焼却プラントに於いて、所望のごみ質の都市ごみを燃焼させることにより、廃熱回収ボイラの蒸気蒸発量Q、蒸気過熱器の出口蒸気圧力P1及びタービン入口蒸気圧力Pの下で都市ごみごみ焼却プラントを運転中に、蒸気蒸発量Qが減少して主蒸気配管路の蒸気圧力損失ΔPが減少すると、前記蒸気タービンの入口蒸気圧力Pを、主蒸気管路の蒸気圧力損失ΔPの減少分ΔPCだけ高めてP2+ΔPCの蒸気圧力とすることにより前記蒸気過熱器の出口蒸気圧力P1を一定圧力に保持すると共に、前記P2+ΔPCの入口蒸気圧力でもって蒸気タービンを運転することにより発電効率を高める構成としたことを特徴とする蒸気タービン発電装置付都市ごみ焼却プラントの運転方法。 Steam turbine generator configured to generate electricity by heating the steam generated in the waste heat recovery boiler of a municipal waste incinerator plant with a steam superheater and supplying the superheated steam to the pre-pressure controlled steam turbine through the main steam line In the municipal waste incineration plant, the municipal waste of the desired waste quality is burned to reduce the steam evaporation amount Q of the waste heat recovery boiler, the outlet steam pressure P 1 of the steam superheater, and the steam pressure P 2 of the turbine inlet in urban warren incineration plant during operation, the steam evaporation amount Q is decreased steam pressure loss ΔP of the main steam pipe passage is reduced, the inlet steam pressure P 2 of the steam turbine, the steam pressure loss in the main steam line It holds the outlet steam pressure P 1 of the steam superheater constant pressure by the steam pressure P 2 + [Delta] P C is increased by decrease [Delta] P C of [Delta] P, at the inlet steam pressure of the P 2 + ΔP C With steam turbine A method for operating a municipal waste incineration plant with a steam turbine power generator, characterized in that the power generation efficiency is increased by operating the power plant. 蒸気蒸発量Qの減少を、主蒸気配管路内の蒸気流量QSから検出し、当該検出した蒸気流量QSの変動分から蒸気圧力損失ΔPの減少分ΔPCを検出するようにした請求項2に記載の蒸気タービン発電装置付都市ごみ焼却プラントの運転方法。 The decrease in the vapor evaporation amount Q is detected from the steam flow rate Q S in the main steam pipe line, and the decrease ΔP C in the steam pressure loss ΔP is detected from the detected variation in the steam flow rate Q S. The operation method of the municipal waste incineration plant with a steam turbine power generator described in 1. 蒸気蒸発量Qの減少を、都市ごみ焼却炉の運転制御装置のボイラ蒸発量及び又はごみ焼却量QWの値より検出し、当該検出した運転制御装置のボイラ蒸発量及び又はごみ焼却量QWの変動分から蒸気圧力損失ΔPの減少分ΔPCを検出するようにした請求項2に記載の蒸気タービン発電装置付都市ごみ焼却プラントの運転方法。 The reduction of the vapor evaporation amount Q, municipal waste boiler evaporation amount of incinerator operation control device and or detected from the value of waste incineration Q W, boiler evaporation amount and or waste incineration Q W of the detected operation controller the method of operating a steam turbine power generation system with municipal waste incineration plant according to claim 2, the fluctuation was to detect the decrease [Delta] P C of the steam pressure loss [Delta] P of. 都市ごみ焼却炉プラントを、複数基の焼却炉を具備すると共に当該複数基の焼却炉を部分負荷状態で運転する方式の都市ごみ焼却炉プラントとした請求項2に記載の蒸気タービン発電装置付都市ごみ焼却プラントの運転方法。   The city with a steam turbine power generator according to claim 2, wherein the municipal waste incinerator plant is a municipal waste incinerator plant having a plurality of incinerators and operating the plurality of incinerators in a partial load state. Operation method of garbage incineration plant. 蒸気過熱器と、蒸気過熱器から主蒸気配管路を通して過熱蒸気を供給する前圧制御式蒸気タービンと、蒸気タービンの蒸気入口近傍に設けた前圧制御弁と、蒸気過熱器の出口に設けた圧力検出器と、蒸気タービンの蒸気入口近傍に設けた圧力検出器とを備えた自動運転制御方式の蒸気タービン発電装置付都市ごみ焼却プラントに用いられ、前記圧力検出器の出口蒸気圧力P1と圧力検出器のタービン入口蒸気圧力P2とが入力されると共に、予め記憶された蒸気流量と主蒸気配管路の蒸気圧力損失ΔPとの関係曲線から蒸気流量変動時の蒸気圧力損失ΔPの減少量ΔPCを演算し、当該演算した減少量ΔPCに比例する圧力制御信号SCを前記前圧制御弁18へ出力してタービン入口蒸気圧力P2を前記減少量ΔPCだけ増加させ、タービン入口蒸気圧力P2を調整することにより蒸気過熱器2の出口蒸気圧力P1を常時一定値に保持する構成としたことを特徴とする蒸気タービン入口蒸気圧調整用の演算制御器。 A steam superheater, a prepressure-controlled steam turbine that supplies superheated steam from the steam superheater through the main steam pipeline, a prepressure control valve provided near the steam inlet of the steam turbine, and a steam superheater provided at the outlet Used in a municipal waste incineration plant with an automatic operation control system steam turbine generator equipped with a pressure detector and a pressure detector provided in the vicinity of the steam inlet of the steam turbine, and an outlet steam pressure P 1 of the pressure detector together and a turbine inlet steam pressure P 2 of the pressure detector is inputted, the amount of decrease in pre-stored steam pressure loss ΔP during steam flow variation from the relationship curve between the steam pressure loss ΔP of the steam flow rate and the main steam pipe passage calculates the [Delta] P C, causes the pressure control signal S C that is proportional to the amount of decrease [Delta] P C which is the operation and outputs the previous control valve 18 to increase the turbine inlet steam pressure P 2 by the decrease amount [Delta] P C, the turbine inlet adjusting the steam pressure P 2 Calculation control unit for adjusting the steam turbine inlet steam pressure, characterized in that it has a structure that holds the outlet steam pressure P 1 of the steam superheater 2 always a constant value by Rukoto. 蒸気過熱器と、蒸気過熱器から主蒸気配管路を通して過熱蒸気を供給する前圧制御式蒸気タービンと、蒸気タービンの蒸気入口近傍に設けた前圧制御弁と、蒸気過熱器の出口に設けた圧力検出器と、蒸気タービンの蒸気入口近傍に設けた圧力検出器と、廃熱回収ボイラの蒸発量検出機構を備えた自動運転制御方式の蒸気タービン発電装置付都市ごみ焼却プラントに用いられ、前記圧力検出器の出口蒸気圧力P1と圧力検出器のタービン入口蒸気圧力P2と蒸発量検出機構の蒸気蒸発量Qとが入力されると共に、予め記憶された蒸気蒸発量Qと主蒸気配管路の蒸気圧力損失ΔPとの関係曲線から蒸気蒸発量Qの減少時の蒸気圧力損失ΔPの減少量ΔPCを演算し、当該演算した減少量ΔPCに比例する圧力制御信号SCを前記前圧制御弁18へ出力してタービン入口蒸気圧力P2を前記減少量ΔPCだけ増加させ、蒸気蒸発量Qの変動時にタービン入口蒸気圧力P2を調整することにより蒸気過熱器2の出口蒸気圧力P1を常時一定値に保持する構成としたことを特徴とする蒸気タービン入口蒸気圧調整用の演算制御器。 A steam superheater, a prepressure-controlled steam turbine that supplies superheated steam from the steam superheater through the main steam pipeline, a prepressure control valve provided near the steam inlet of the steam turbine, and a steam superheater provided at the outlet A pressure detector, a pressure detector provided in the vicinity of a steam inlet of a steam turbine, and a municipal waste incineration plant with a steam turbine power generator of an automatic operation control system equipped with an evaporation amount detection mechanism of a waste heat recovery boiler, The pressure detector outlet steam pressure P 1 , the pressure detector turbine inlet steam pressure P 2, and the steam evaporation amount Q of the evaporation amount detection mechanism are inputted, and the previously stored steam evaporation amount Q and the main steam pipe line decrease amount [Delta] P C is calculated, the pressure control signal S C to the front pressure proportional to the amount of decrease [Delta] P C that the operation of the steam pressure loss [Delta] P at the time of reduction of the relationship curve from the steam evaporation amount Q of the steam pressure loss [Delta] P of Output to control valve 18 and turbine inlet The steam pressure P 2 is increased by the decrease amount [Delta] P C, maintained at all times a constant value of the outlet steam pressure P 1 of the steam superheater 2 by adjusting the turbine inlet steam pressure P 2 at the time of change of the vapor evaporation Q Configuration An arithmetic controller for adjusting the steam pressure at the inlet of the steam turbine, characterized in that 蒸発量検出機構を、主蒸気配管路に設けた蒸気流量検出器とするようにした請求項7に記載の蒸気タービン入口蒸気圧調整用の演算制御器。   The operation controller for steam turbine inlet steam pressure adjustment according to claim 7, wherein the evaporation amount detection mechanism is a steam flow rate detector provided in the main steam pipe line. 蒸発量検出機構を、都市ごみ焼却炉の運転制御装置のボイラ蒸発量及び又はごみ焼却量の検出機構とするようにした請求項7に記載の蒸気タービン入口蒸気圧調整用の演算制御器。   The operation controller for steam turbine inlet steam pressure adjustment according to claim 7, wherein the evaporation amount detection mechanism is a detection mechanism of a boiler evaporation amount and / or a waste incineration amount of an operation control device of a municipal waste incinerator.
JP2012238965A 2012-10-30 2012-10-30 Operation method of municipal waste incineration plant with steam turbine generator and arithmetic controller for adjusting steam pressure at the inlet of the steam turbine used therefor Active JP5967652B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012238965A JP5967652B2 (en) 2012-10-30 2012-10-30 Operation method of municipal waste incineration plant with steam turbine generator and arithmetic controller for adjusting steam pressure at the inlet of the steam turbine used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012238965A JP5967652B2 (en) 2012-10-30 2012-10-30 Operation method of municipal waste incineration plant with steam turbine generator and arithmetic controller for adjusting steam pressure at the inlet of the steam turbine used therefor

Publications (2)

Publication Number Publication Date
JP2014088812A true JP2014088812A (en) 2014-05-15
JP5967652B2 JP5967652B2 (en) 2016-08-10

Family

ID=50790897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012238965A Active JP5967652B2 (en) 2012-10-30 2012-10-30 Operation method of municipal waste incineration plant with steam turbine generator and arithmetic controller for adjusting steam pressure at the inlet of the steam turbine used therefor

Country Status (1)

Country Link
JP (1) JP5967652B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017138059A (en) * 2016-02-03 2017-08-10 三井造船環境エンジニアリング株式会社 Garbage incineration facility and power generation system
CN113374539A (en) * 2021-06-09 2021-09-10 攀钢集团攀枝花钢钒有限公司 Steam inlet control system of double-cylinder double-pressure waste heat generating set and steam supplementing control method thereof
CN113901382A (en) * 2021-11-19 2022-01-07 西安热工研究院有限公司 Method for calculating real-time waste incineration amount of three-furnace two-machine household waste incineration power generation project
CN113901381A (en) * 2021-11-17 2022-01-07 西安热工研究院有限公司 Real-time calculation method for garbage incineration amount of two-furnace one-machine household garbage incineration power plant
CN114060113A (en) * 2021-11-19 2022-02-18 浙江大学 Garbage power plant flow optimization method and device based on comprehensive performance quantitative characterization

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0467212A (en) * 1990-07-06 1992-03-03 Toshiba Corp Turbine steam pressure controller
JPH0798108A (en) * 1993-09-30 1995-04-11 Mitsubishi Heavy Ind Ltd Combustion controller for incinerator
JPH07145923A (en) * 1993-11-24 1995-06-06 Kubota Corp Refuse incinerator
JPH08246814A (en) * 1995-03-07 1996-09-24 Toshiba Corp Combined cycle generation plant using refuse incinerator
JP2000145410A (en) * 1998-11-12 2000-05-26 Ishikawajima Harima Heavy Ind Co Ltd Operation control method of waste incinerating multi- generator facility
JP2003343208A (en) * 2002-05-23 2003-12-03 Hitachi Ltd Preceding pressure control steam turbine plant
JP2005155349A (en) * 2003-11-21 2005-06-16 Nippon Steel & Sumikin Stainless Steel Corp Boiler control method following up load variation
JP2008069702A (en) * 2006-09-13 2008-03-27 Kawasaki Heavy Ind Ltd Operation control method of steam turbine and generating set of waste disposal plant
JP2009162452A (en) * 2008-01-09 2009-07-23 Takuma Co Ltd Operating method for waste disposal facility with power generation facility

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0467212A (en) * 1990-07-06 1992-03-03 Toshiba Corp Turbine steam pressure controller
JPH0798108A (en) * 1993-09-30 1995-04-11 Mitsubishi Heavy Ind Ltd Combustion controller for incinerator
JPH07145923A (en) * 1993-11-24 1995-06-06 Kubota Corp Refuse incinerator
JPH08246814A (en) * 1995-03-07 1996-09-24 Toshiba Corp Combined cycle generation plant using refuse incinerator
JP2000145410A (en) * 1998-11-12 2000-05-26 Ishikawajima Harima Heavy Ind Co Ltd Operation control method of waste incinerating multi- generator facility
JP2003343208A (en) * 2002-05-23 2003-12-03 Hitachi Ltd Preceding pressure control steam turbine plant
JP2005155349A (en) * 2003-11-21 2005-06-16 Nippon Steel & Sumikin Stainless Steel Corp Boiler control method following up load variation
JP2008069702A (en) * 2006-09-13 2008-03-27 Kawasaki Heavy Ind Ltd Operation control method of steam turbine and generating set of waste disposal plant
JP2009162452A (en) * 2008-01-09 2009-07-23 Takuma Co Ltd Operating method for waste disposal facility with power generation facility

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017138059A (en) * 2016-02-03 2017-08-10 三井造船環境エンジニアリング株式会社 Garbage incineration facility and power generation system
CN113374539A (en) * 2021-06-09 2021-09-10 攀钢集团攀枝花钢钒有限公司 Steam inlet control system of double-cylinder double-pressure waste heat generating set and steam supplementing control method thereof
CN113901381A (en) * 2021-11-17 2022-01-07 西安热工研究院有限公司 Real-time calculation method for garbage incineration amount of two-furnace one-machine household garbage incineration power plant
CN113901381B (en) * 2021-11-17 2024-03-12 西安热工研究院有限公司 Real-time calculation method for garbage incineration amount of two-furnace one-machine household garbage incineration power plant
CN113901382A (en) * 2021-11-19 2022-01-07 西安热工研究院有限公司 Method for calculating real-time waste incineration amount of three-furnace two-machine household waste incineration power generation project
CN114060113A (en) * 2021-11-19 2022-02-18 浙江大学 Garbage power plant flow optimization method and device based on comprehensive performance quantitative characterization
CN114060113B (en) * 2021-11-19 2022-07-22 浙江大学 Garbage power plant flow optimization method and device based on comprehensive performance quantitative characterization
CN113901382B (en) * 2021-11-19 2024-03-26 西安热工研究院有限公司 Method for calculating real-time garbage incineration amount of three-furnace two-machine household garbage incineration power generation project

Also Published As

Publication number Publication date
JP5967652B2 (en) 2016-08-10

Similar Documents

Publication Publication Date Title
JP5967652B2 (en) Operation method of municipal waste incineration plant with steam turbine generator and arithmetic controller for adjusting steam pressure at the inlet of the steam turbine used therefor
US8887747B2 (en) System and method for drum level control
JPH02104906A (en) Exhaust heat recovering boiler system and its operation
CA2868093C (en) Steam temperature control using model-based temperature balancing
JP5659973B2 (en) Steam supply system, control method therefor, and steam supply method
JP2011127786A (en) Combined cycle power generation facility and feed-water heating method thereof
JP5783458B2 (en) Increased output operation method in steam power plant
JP2016205678A (en) Boiler system
JP4898409B2 (en) Steam supply equipment
JP6701577B2 (en) Waste incineration system
KR101960554B1 (en) Method for operating a once-through steam generator and steam generator designed for carrying out the method
JP4905941B2 (en) Waste heat recovery boiler and its steam pressure control method
JP2007239685A (en) Power generation plant operating device and method
JP2010121559A (en) Combined power generation plant and exhaust heat recovery boiler
CN103387292B (en) Boiler supply water oxygenation process
JP2008292119A (en) Power generator
WO2020133501A1 (en) High parameter steam drum intermediate reheating system for waste incineration power generation
JP5804748B2 (en) Steam supply system and steam supply method
JPH0783005A (en) Compound refuse power generation plant
JP4823998B2 (en) Waste power generation method
JP2021050660A (en) Steam turbine plant and control device, and water quality management method for steam turbine plant
CN217978756U (en) Supercritical gas boiler and gas supply pipeline thereof
CN214468571U (en) System for preventing cavitation of high-pressure water feed pump
CN217978755U (en) Gas supply system of supercritical gas boiler
JP6975058B2 (en) Pressure drain recovery system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160427

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160629

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160629

R150 Certificate of patent or registration of utility model

Ref document number: 5967652

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250