JPH0783005A - Compound refuse power generation plant - Google Patents

Compound refuse power generation plant

Info

Publication number
JPH0783005A
JPH0783005A JP22614093A JP22614093A JPH0783005A JP H0783005 A JPH0783005 A JP H0783005A JP 22614093 A JP22614093 A JP 22614093A JP 22614093 A JP22614093 A JP 22614093A JP H0783005 A JPH0783005 A JP H0783005A
Authority
JP
Japan
Prior art keywords
steam
flow rate
superheater
gas turbine
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22614093A
Other languages
Japanese (ja)
Inventor
Motohiko Sue
元彦 須恵
Takahiro Toda
貴博 戸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP22614093A priority Critical patent/JPH0783005A/en
Publication of JPH0783005A publication Critical patent/JPH0783005A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • F01K23/103Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle with afterburner in exhaust boiler
    • F01K23/105Regulating means specially adapted therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/12Heat utilisation in combustion or incineration of waste
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Abstract

PURPOSE:To maintain a temperature and a steam flow quantity at constant levels for a power generation steam turbine. CONSTITUTION:A steam flow quantity to be generated from a gas turbine discharged heat recovering evaporator 23 is sought by calculation and estimation by detecting a steam flow quantity from the evaporator of a refuse incinerator 20 and detecting a pouring water flow quantity to be supplied to a pouring water temperature reducer 28 interposed between a first superheater 18 and a second superheater 19, thereby, the additional burning quantity of a combustion assisting burner 17 provided in the exhaust gas passage of a gas turbine 11 is controlled. Also, steam temperature from the first superheater 18 is detected, and the pouring water flow quantity is controlled so that this temperature may become constant.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ごみ焼却炉とガスター
ビンとを組合せて構成される複合ごみ発電プラントに関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a combined refuse power generation plant constructed by combining a refuse incinerator and a gas turbine.

【0002】[0002]

【従来の技術】ガスタービンと組合せた複合ごみ発電プ
ラントから発生する電力は、商業電力網に逆送し、売電
することが望まれる。この場合、電力変動が少ないほ
ど、良質電力となり、売電価格が高くなることが期待さ
れる。都市ごみなどのごみ焼却炉に設けられているごみ
排熱回収用蒸発器によって発生される蒸気流量は、ごみ
の有する発熱量によって常時、大きく変動し、たとえば
図6に示されるとおりとなり、ときには60〜100%
にも蒸気流量が変化することがある。このような蒸気を
そのまま蒸気タービンに供給して発電するとすれば、蒸
気タービンの出力は、部分負荷による効率低下とも兼ね
合って50%以上も変化する結果になる。またこのよう
な発生される電力の変動が大きいので、質の悪い電力が
得られることになり、商業電力網に逆送したとき、その
商業電力網に悪影響を与えることになる。
2. Description of the Related Art Electric power generated from a combined refuse power generation plant combined with a gas turbine is desired to be sent back to a commercial power grid for sale. In this case, it is expected that the smaller the power fluctuation, the higher the quality of the power and the higher the power selling price. The flow rate of steam generated by the waste heat recovery evaporator provided in a refuse incinerator for municipal waste, etc. constantly fluctuates greatly depending on the amount of heat generated by the refuse, for example, as shown in FIG. 6, and sometimes 60 ~ 100%
Also, the steam flow rate may change. If such steam is supplied to the steam turbine as it is to generate electric power, the output of the steam turbine changes by 50% or more in combination with the efficiency decrease due to the partial load. Further, since the fluctuation of the generated electric power is large, poor quality electric power is obtained, and when the electric power is sent back to the commercial electric power network, the commercial electric power network is adversely affected.

【0003】この問題を解決する或る先行技術では、ご
み焼却炉に設けられた蒸発器から送られてくる蒸気を、
所定の蒸気温度に過熱するに必要な容量のガスタービン
よりもかなり大きな容量のガスタービンを設け、このガ
スタービンからの排熱によって高圧蒸発器から一定の蒸
気量を得るようにすれば、ごみ焼却炉の蒸発器から送ら
れてくる蒸気の流量の変動を緩和することができる。こ
の先行技術では、上述のように大きな容量のガスタービ
ンを用いており、したがってごみの持つエネルギを最大
に引出す方法としては、良策とはいえない。
In one prior art solution to this problem, the steam coming from the evaporator in the refuse incinerator is
If a gas turbine with a capacity considerably larger than the capacity required to superheat to a prescribed steam temperature is installed and the exhaust heat from this gas turbine is used to obtain a constant amount of steam from the high-pressure evaporator, waste incineration will be achieved. It is possible to reduce fluctuations in the flow rate of steam sent from the evaporator of the furnace. This prior art uses a gas turbine with a large capacity as described above, and thus is not a good solution for maximizing the energy of waste.

【0004】図7は他の先行技術の複合ごみ発電プラン
トの系統図である。ガスタービン1からの排ガス通路を
形成するダクト内には過熱器2が設けられ、この過熱器
2には、ごみ焼却炉の排熱回収用蒸発器3からの蒸気が
供給され、過熱蒸気は蒸気タービン4に供給されて発電
が行われ、復水器5で復水される。ガスタービン1の排
ガス通路中には過熱器2の下流側で温水ボイラー6が配
置される。
FIG. 7 is a system diagram of another prior art combined refuse power generation plant. A superheater 2 is provided in a duct that forms an exhaust gas passage from the gas turbine 1. Steam from the exhaust heat recovery evaporator 3 of the refuse incinerator is supplied to the superheater 2, and the superheated steam is steam. It is supplied to the turbine 4 to generate electric power and is condensed in the condenser 5. A hot water boiler 6 is arranged downstream of the superheater 2 in the exhaust gas passage of the gas turbine 1.

【0005】図7に示される先行技術では、ごみ焼却炉
の蒸発器3から送られてくる蒸気が、ガスタービン1の
排ガスによって過熱器2で過熱されるのみであるので、
蒸気タービン4に入る蒸気流量は、ごみ焼却炉の蒸発器
3から送られてくる蒸気流量と同一であり、復水器5で
蒸気が復水されるときの潜熱量は、ガスタービン1を有
しない従来のごみ発電プラントのときと同じであり、リ
パワリング効果は、最も良い。この先行技術の問題点
は、ごみ焼却炉の蒸発器3の蒸気流量が前述の図6のよ
うに変動することによって、蒸気タービン4の出力がそ
の蒸気流量にほぼ比例して変動し、したがって発電機6
の発電量もまた図6と同様に大きく変動する結果にな
る。
In the prior art shown in FIG. 7, the steam sent from the evaporator 3 of the refuse incinerator is only superheated in the superheater 2 by the exhaust gas of the gas turbine 1,
The flow rate of steam entering the steam turbine 4 is the same as the flow rate of steam sent from the evaporator 3 of the refuse incinerator, and the latent heat amount when steam is condensed by the condenser 5 is the same as that of the gas turbine 1. Not the same as in the conventional refuse power plant, the repowering effect is the best. The problem with this prior art is that the output of the steam turbine 4 fluctuates almost in proportion to the steam flow rate of the evaporator 3 of the refuse incinerator as shown in FIG. Machine 6
As a result, the amount of power generated by the power supply fluctuates greatly as in FIG.

【0006】他の先行技術は図8に示される。この先行
技術において、前述の図7の先行技術に対応する部分に
は同一の参照符を付す。この先行技術では、過熱器2よ
りもガスタービン排ガス下流側に高圧蒸発器8を配置
し、その高圧蒸発器8から一定の蒸気流量を発生させ、
これによって蒸気タービン4の出力は、その分、増加
し、発電の変動割合は小さくなる。高圧蒸発器8の下流
側にはさらに温水ボイラ9を配置する。
Another prior art is shown in FIG. In this prior art, the same reference numerals are given to the portions corresponding to the above-mentioned prior art in FIG. In this prior art, a high-pressure evaporator 8 is arranged on the gas turbine exhaust gas downstream side of the superheater 2, and a constant vapor flow rate is generated from the high-pressure evaporator 8.
As a result, the output of the steam turbine 4 is correspondingly increased, and the fluctuation rate of power generation is reduced. A hot water boiler 9 is further arranged downstream of the high pressure evaporator 8.

【0007】図8に示される先行技術の新たな問題は、
高圧蒸発器8から発生した蒸気流量だけ、復水器5から
放出される熱量は低下し、したがって蒸気タービンプラ
ントの熱効率は低下する。つまりリパワリング効果が小
さくなってしまう。
The new problem of the prior art shown in FIG. 8 is that
The amount of heat released from the condenser 5 is reduced by the flow rate of the steam generated from the high-pressure evaporator 8, and thus the thermal efficiency of the steam turbine plant is decreased. That is, the repowering effect becomes small.

【0008】他の先行技術はたとえば特開平5−599
05に開示されている。この先行技術もまた、ごみ焼却
ボイラとガスタービンとを組合せた構成を有するけれど
も、発電機を駆動する蒸気タービンへの蒸気の温度と流
量とを一定に保つための工夫はなされておらず、上述の
先行技術と同様に、発電の変動割合が依然として大き
い。
Another prior art is, for example, Japanese Patent Laid-Open No. 5-599.
05. This prior art also has a configuration in which a refuse incineration boiler and a gas turbine are combined, but no measures have been taken to keep the temperature and flow rate of steam to the steam turbine driving the generator constant. As with the prior art, the rate of change in power generation is still large.

【0009】[0009]

【発明が解決しようとする課題】本発明の目的は、ごみ
焼却炉の蒸発器からの蒸発流量が大きく変動しても、発
電量の変動割合を小さくし、また熱効率の向上を図るこ
とができるようにした複合ごみ発電プラントを提供する
ことである。
SUMMARY OF THE INVENTION It is an object of the present invention to reduce the rate of change in the amount of power generation and improve thermal efficiency even if the evaporation flow rate from the evaporator of a refuse incinerator changes greatly. Is to provide a combined refuse power generation plant.

【0010】[0010]

【課題を解決するための手段】本発明は、ガスタービン
と、ガスタービンからの排ガス通路に設けられる助燃バ
ーナと、ガスタービンからの排ガス通路に、助燃バーナ
よりも下流側で設けられる第1過熱器と、ガスタービン
からの排ガス通路に、第1過熱器よりも下流側で設けら
れる第2過熱器と、ごみ排熱回収用蒸発器を有し、その
蒸気を第2過熱器に与えるごみ焼却炉と、ガスタービン
からの排ガス通路に、第2過熱器よりも下流側で設けら
れ、その蒸気を第2過熱器に与えるガスタービン排熱回
収用蒸発器と、第2過熱器からの蒸気に注水して第1過
熱器に与える注水減温器と、第1過熱器の蒸気が与えら
れる蒸気タービンと、蒸気タービンによって駆動される
発電機と、ごみ排熱回収用蒸発器からの蒸気の流量を検
出する蒸気流量検出手段と、注水減温器に水を供給する
注水流量制御弁と、注水減温器に供給される水の流量を
検出する注水流量検出手段と、蒸気流量検出手段と、注
水流量検出手段との各出力に応答し、それらの蒸気質量
流量と注水質量流量との和によってガスタービン排熱回
収用蒸発器からの蒸気の発生流量を推測し、第1過熱器
からの蒸気流量が予め定めるほぼ一定値になるように燃
料流量を制御して助燃バーナを働かせる制御手段と、第
1過熱器からの蒸気の温度を検出する温度検出手段と、
温度検出手段の出力に応答し、その検出される蒸気温度
が予め定める温度になるように注水流量制御弁の開度を
制御する制御手段とを含むことを特徴とする複合ごみ発
電プラントである。
The present invention is directed to a gas turbine, an auxiliary combustion burner provided in an exhaust gas passage from the gas turbine, and a first superheat provided in an exhaust gas passage from the gas turbine downstream of the auxiliary combustion burner. Incinerator, a second superheater provided in the exhaust gas passage from the gas turbine on the downstream side of the first superheater, and a waste heat recovery evaporator, and incinerates the waste by supplying the steam to the second superheater. A gas turbine exhaust heat recovery evaporator, which is provided in the exhaust gas passage from the furnace and the gas turbine, on the downstream side of the second superheater and supplies the steam to the second superheater, and the steam from the second superheater. Flow rate of steam from the water injection desuperheater, which supplies water to the first superheater, the steam turbine to which steam from the first superheater is applied, the generator driven by the steam turbine, and the waste heat recovery evaporator. Flow rate detection to detect Means, a water injection flow rate control valve for supplying water to the water injection desuperheater, a water injection flow rate detection means for detecting the flow rate of water supplied to the water injection desuperheater, a steam flow rate detection means, and a water injection flow rate detection means In response to each output, the steam flow rate from the gas turbine exhaust heat recovery evaporator is estimated by the sum of the steam mass flow rate and the water injection mass flow rate, and the steam flow rate from the first superheater is approximately constant. Control means for controlling the fuel flow rate so that the value becomes a value to operate the auxiliary burner, and temperature detection means for detecting the temperature of the steam from the first superheater,
A composite waste power generation plant comprising: a control unit that responds to the output of the temperature detection unit and controls the opening degree of the water injection flow control valve so that the detected steam temperature reaches a predetermined temperature.

【0011】また本発明は、ガスタービンと、ガスター
ビンからの排ガス通路に設けられる助燃バーナと、ガス
タービンからの排ガス通路に、助燃バーナよりも下流側
で設けられる第1過熱器と、ガスタービンからの排ガス
通路に、第1過熱器よりも下流側で設けられる第2過熱
器と、ごみ排熱回収用蒸発器を有し、その蒸気を第2過
熱器に与えるごみ焼却炉と、ガスタービンからの排ガス
通路に、第2過熱器よりも下流側で設けられ、その蒸気
を第2過熱器に与えるガスタービン排熱回収用蒸発器
と、第2過熱器からの蒸気に注水して第1過熱器に与え
る注水減温器と、第1過熱器の蒸気が与えられる蒸気タ
ービンと、蒸気タービンによって駆動される発電機と、
ごみ排熱回収用蒸発器からの蒸気の流量を検出する第1
蒸気流量検出手段と、注水減温器に水を供給する注水流
量制御弁と、注水減温器に供給される水の流量を検出す
る注水流量検出手段と、ガスタービン排熱回収用蒸発器
からの蒸気流量を検出する第2蒸気流量検出手段と、第
1および第2蒸気流量検出手段と、注水流量検出手段と
の各出力に応答し、それらの各蒸気質量流量と注水質量
流量との和による第1過熱器からの蒸気流量が予め定め
るほぼ一定値になるように燃料流量を制御して助燃バー
ナを働かせる制御手段と、第1過熱器からの蒸気の温度
を検出する温度検出手段と、温度検出手段の出力に応答
し、その検出される蒸気温度が予め定める温度になるよ
うに注水流量制御弁の開度を制御する制御手段とを含む
ことを特徴とする複合ごみ発電プラントである。
The present invention is also directed to a gas turbine, an auxiliary combustion burner provided in an exhaust gas passage from the gas turbine, a first superheater provided in the exhaust gas passage from the gas turbine downstream of the auxiliary combustion burner, and the gas turbine. In the exhaust gas passage from the first superheater, a second superheater provided downstream of the first superheater, and a waste heat recovery evaporator, and a waste incinerator for supplying the steam to the second superheater; and a gas turbine. In the exhaust gas passage from the second superheater, and the gas turbine exhaust heat recovery evaporator for supplying the steam to the second superheater and the steam from the second superheater are injected with the first A water injection desuperheater to be given to the superheater, a steam turbine to which the steam of the first superheater is given, a generator driven by the steam turbine,
First to detect the flow rate of steam from the waste heat recovery evaporator
From the steam flow rate detection means, the water injection flow rate control valve that supplies water to the water injection desuperheater, the water injection flow rate detection means that detects the flow rate of the water supplied to the water injection desuperheater, and the gas turbine exhaust heat recovery evaporator Of the second and second steam flow rate detecting means for detecting the steam flow rate of each of the first and second steam flow rate detecting means, and the water injection flow rate detecting means, and the sum of the respective steam mass flow rate and the water injection mass flow rate. The control means for controlling the fuel flow rate so that the steam flow from the first superheater becomes a predetermined substantially constant value to operate the auxiliary burner, and the temperature detecting means for detecting the temperature of the steam from the first superheater. A composite waste power generation plant comprising: a control unit that responds to the output of the temperature detection unit and controls the opening degree of the water injection flow control valve so that the detected steam temperature reaches a predetermined temperature.

【0012】[0012]

【作用】本発明に従えば、ごみ焼却炉に設けられたごみ
排熱回収用蒸発器からの蒸気流量を蒸気流量検出手段に
よって検出し、また第1および第2過熱器の間に介在さ
れる注水減温器に供給される注水流量検出手段によって
検出される水の流量とに基づいて、ガスタービン排熱回
収用蒸発器からの蒸気の発生流量を演算して推測して求
め、こうして第1過熱器から蒸気タービンに供給される
蒸気流量が予め定めるほぼ一定値になるように、助燃バ
ーナに供給する燃料流量を制御する。ガスタービンから
の排ガスは、その温度および流量が一定値に保たれる。
また蒸気タービンに供給される蒸気の温度が一定に保た
れるようにするために、その第1過熱器からの蒸気の温
度を温度検出手段によって検出し、この温度が予め定め
る温度になるように、注水減温器への水を供給する注水
流量制御弁の開度を制御する。
According to the present invention, the flow rate of steam from the waste heat recovery evaporator provided in the waste incinerator is detected by the steam flow rate detecting means, and is interposed between the first and second superheaters. Based on the flow rate of water detected by the water injection flow rate detecting means supplied to the water injection desuperheater, the flow rate of steam generated from the gas turbine exhaust heat recovery evaporator is calculated and estimated, thus obtaining the first flow rate. The flow rate of fuel supplied to the auxiliary combustion burner is controlled so that the flow rate of steam supplied from the superheater to the steam turbine becomes a substantially constant value set in advance. The temperature and flow rate of the exhaust gas from the gas turbine are kept constant.
Further, in order to keep the temperature of the steam supplied to the steam turbine constant, the temperature of the steam from the first superheater is detected by the temperature detecting means, and this temperature is set to a predetermined temperature. , Controls the opening of the water injection flow rate control valve that supplies water to the water injection desuperheater.

【0013】ガスタービン排熱回収用蒸発器からの蒸気
流量を実際に検出することによって、前述の演算による
そのガスタービン排熱回収用蒸発器からの蒸気流量の推
測は不要となり、助燃バーナの追焚き量を正確に求める
ことが可能である。
By actually detecting the steam flow rate from the gas turbine exhaust heat recovery evaporator, it is not necessary to estimate the steam flow rate from the gas turbine exhaust heat recovery evaporator by the above-mentioned calculation, and the auxiliary combustion burner is added. It is possible to accurately determine the amount of heating.

【0014】このようにしてごみ焼却炉に備えられてい
るごみ排熱回収用蒸発器から送られてくる蒸気流量が減
少したとき、ガスタービンに排熱を回収する第1過熱器
の前に設けた助燃バーナへの投入燃料流量を増大し、高
温ガスとし、第2過熱器の後に設けた高圧蒸発器である
ガスタービン排熱回収用蒸発器による発生蒸気流量を増
大する。また第1および第2過熱器の間に介在されてい
る注水減温器の注水量を増大することによって、第1過
熱器出口蒸気温度を一定に保つとともに、第1過熱器出
口蒸気流量を増加させ、ごみ排熱回収用蒸発器からの蒸
気流量の減少分を補うことができる。ガスタービン排熱
回収用蒸発器である高圧蒸発器から発生する蒸気流量
は、ごみ質が最高質で設定される最大発熱量時におい
て、第2過熱器にごみ焼却炉のごみ排熱回収用蒸発器か
ら送られてくる蒸気流量の約10%、最大限でも20%
の蒸気流量に留めるものとし、熱効率の向上を図り、リ
パワリング効果を高める。すなわち高質ごみ焼却時にお
いて、蒸気タービンからの蒸気の復水器からの放出熱量
の増加を極力減じ、つまりリパワリング効果を極力高め
て、しかも発電量の変動割合を小さくすることを可能に
する。
When the flow rate of steam sent from the waste heat recovery evaporator provided in the waste incinerator is reduced in this way, it is provided in front of the first superheater for recovering the waste heat to the gas turbine. Further, the flow rate of the fuel injected into the auxiliary combustion burner is increased to a high temperature gas, and the flow rate of steam generated by the gas turbine exhaust heat recovery evaporator which is a high pressure evaporator provided after the second superheater is increased. Further, by increasing the water injection amount of the water injection desuperheater interposed between the first and second superheaters, the first superheater outlet steam temperature is kept constant and the first superheater outlet steam flow rate is increased. This makes it possible to compensate for the decrease in the steam flow rate from the waste heat recovery evaporator. The steam flow generated from the high-pressure evaporator, which is an evaporator for recovering heat from the gas turbine, has a second superheater that evaporates waste heat from the waste incinerator at the maximum calorific value when the waste quality is set to the highest quality. About 10% of the flow rate of steam sent from the vessel, 20% at maximum
The steam flow rate shall be kept to improve the thermal efficiency and enhance the repowering effect. That is, when incinerating high-quality waste, it is possible to minimize the increase in the amount of heat released from the condenser of steam from the steam turbine, that is, to enhance the repowering effect as much as possible and to reduce the fluctuation rate of power generation.

【0015】[0015]

【実施例】図1は、本発明の全体の構成を示す系統図で
ある。ガスタービン11は、空気圧縮機12からの圧縮
空気に、燃料とともに燃焼器13に供給され、そのガス
によってタービン14を回し、発電機15を駆動する。
ガスタービン11からの排ガスは、その排ガス通路を形
成するダクト16を経て、導かれる。この排ガス通路に
は助燃バーナ17が配置され、それよりも下流側には第
1過熱器18と、さらに下流側に第2過熱器19が配置
される。ごみ焼却炉20は都市ごみを焼却し、そのごみ
排熱回収のための蒸発器21を有する。この蒸発器21
からの蒸気は管路22を経て第2過熱器19に導かれ
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a system diagram showing the overall construction of the present invention. The gas turbine 11 supplies the compressed air from the air compressor 12 together with the fuel to the combustor 13, and the gas turns the turbine 14 to drive the generator 15.
Exhaust gas from the gas turbine 11 is guided through a duct 16 that forms the exhaust gas passage. An auxiliary combustion burner 17 is arranged in this exhaust gas passage, a first superheater 18 is arranged downstream thereof, and a second superheater 19 is arranged further downstream thereof. The waste incinerator 20 has an evaporator 21 for incinerating municipal waste and recovering the waste heat of the waste. This evaporator 21
The steam from is led to the second superheater 19 via the line 22.

【0016】ガスタービン11からの排ガス通路には、
第2過熱器19よりも下流側にガスタービン排熱回収用
高圧蒸発器23が配置される。この蒸発器23は水ドラ
ム24と、蒸気ドラム25との間に多数の水管26が接
続された構成を有し、この蒸発器23で発生された蒸気
は管路27を経て、前述の蒸発器21からの蒸気ととも
に合流して第2過熱器19に与えられる。第2過熱器1
9と第1過熱器18との間には注水減温器28が介在さ
れ、第2過熱器19からの蒸気に管路29からの水が供
給される。
In the exhaust gas passage from the gas turbine 11,
A gas turbine exhaust heat recovery high-pressure evaporator 23 is disposed downstream of the second superheater 19. The evaporator 23 has a structure in which a large number of water pipes 26 are connected between a water drum 24 and a steam drum 25, and the steam generated in the evaporator 23 passes through a pipe line 27 and then the above-mentioned evaporator. It joins with the steam from 21 and is given to the 2nd superheater 19. Second superheater 1
A water injection desuperheater 28 is interposed between 9 and the first superheater 18, and the water from the pipe 29 is supplied to the steam from the second superheater 19.

【0017】第1過熱器18の蒸気は管路30を介して
蒸気タービン31に与えられ、この蒸気タービン31に
よって発電機32が駆動される。蒸気タービン31から
の蒸気は復水器33で復水される。
The steam of the first superheater 18 is given to a steam turbine 31 via a pipe 30, and the steam turbine 31 drives a generator 32. The steam from the steam turbine 31 is condensed in the condenser 33.

【0018】ごみ排熱回収用蒸発器21からの蒸気の質
量流量は蒸気流量検出手段34によって検出される。管
路29には注水減温器28に供給する水の流量を制御す
る注水流量制御弁35が介在され、その注水の質量流量
は注水流量検出手段36によって検出される。これらの
各検出手段34,36の検出出力信号は演算手段37に
与えられる。蒸気流量検出手段34によって検出される
蒸気の質量流量をF34とし、注水流量検出手段36に
よって検出される水の質量流量をF36とするとき、演
算手段37は、これらの質量流量の和(=F34+F3
6)に基づき、ガスタービン排ガス通路における蒸発器
23の入口の位置38における温度tg2を演算して推
測し、そのガス温度tg2から蒸発器23によって発生
されて管路27から供給される蒸気の質量流量F23を
演算して求める。この演算手段37にはメモリ39が設
けられる。
The mass flow rate of steam from the waste heat recovery evaporator 21 is detected by the steam flow rate detecting means 34. A water injection flow rate control valve 35 for controlling the flow rate of water supplied to the water injection desuperheater 28 is interposed in the pipeline 29, and the mass flow rate of the water injection is detected by the water injection flow rate detection means 36. The detection output signals of these detecting means 34 and 36 are given to the calculating means 37. When the mass flow rate of steam detected by the steam flow rate detecting means 34 is F34 and the mass flow rate of water detected by the water injection flow rate detecting means 36 is F36, the calculating means 37 is the sum of these mass flow rates (= F34 + F3).
Based on 6), the temperature tg2 at the inlet position 38 of the evaporator 23 in the gas turbine exhaust gas passage is calculated and estimated, and the mass of steam generated by the evaporator 23 and supplied from the pipeline 27 from the gas temperature tg2. The flow rate F23 is calculated and obtained. The calculation means 37 is provided with a memory 39.

【0019】このメモリ39には、図2に示されるよう
に、流量(=F34+F36)と蒸発器23の入口のガ
ス温度tg2とがテーブルとしてストアされており、こ
のガス温度tg2は、上述のように、蒸発器23から発
生される蒸気の質量流量F23に対応している。演算手
段37は、設定器40で設定された目標となる蒸気の質
量流量F0に応答し、式1が成立するときには、助燃バ
ーナ17に供給される燃料41の途中に介在されている
燃料流量を制御弁42の開度を制御して助燃バーナ17
に供給する燃料流量を調節して追焚き量を制御する。
As shown in FIG. 2, the memory 39 stores the flow rate (= F34 + F36) and the gas temperature tg2 at the inlet of the evaporator 23 as a table. The gas temperature tg2 is as described above. Corresponds to the mass flow rate F23 of the vapor generated from the evaporator 23. The calculation means 37 responds to the target vapor mass flow rate F0 set by the setter 40, and when the equation 1 is satisfied, the calculation means 37 determines the fuel flow rate intervening in the middle of the fuel 41 supplied to the auxiliary burner 17. The auxiliary burner 17 is controlled by controlling the opening degree of the control valve 42.
The refueling amount is controlled by adjusting the flow rate of fuel supplied to.

【0020】 (F34+F36+F23) < F0 …(1) こうして式1の左辺の蒸気の質量流量の和は(=F34
+F36+F23)が目標値F0となるように助燃バー
ナ17の追焚き量を調整する。これによって第1過熱器
18から管路30を経て蒸気タービン31に供給される
蒸気の質量流量を(=F34+F36+F23)が目標
値F0に保たれる。
(F34 + F36 + F23) <F0 (1) Thus, the sum of the mass flow rates of steam on the left side of the equation 1 is (= F34
The reheating amount of the auxiliary burner 17 is adjusted so that + F36 + F23) becomes the target value F0. As a result, the mass flow rate of steam supplied from the first superheater 18 to the steam turbine 31 via the pipe 30 is maintained at the target value F0 (= F34 + F36 + F23).

【0021】式1が成立しないときには、すなわち、 (F34+F36+F23) ≧ F0 …(2) であるときには、燃料流量制御弁42をごく小さい開度
とし、あるいはまた遮断したままに保つ。燃料流量制御
弁42の設定された開度によって供給される燃料の流量
は燃料流量検出手段43によって検出され、減算器44
に与えられ、負帰還制御が行われる。
When the expression 1 is not satisfied, that is, when (F34 + F36 + F23) ≧ F0 (2), the fuel flow rate control valve 42 is made to have a very small opening degree or is kept closed. The flow rate of fuel supplied according to the set opening degree of the fuel flow rate control valve 42 is detected by the fuel flow rate detecting means 43, and the subtractor 44
The negative feedback control is performed.

【0022】第1過熱器18から管路30に供給される
蒸気の温度は温度検出手段45によって検出され、この
検出温度が、温度設定器46で設定された目標温度ts
0となるように、減算手段47が動作して注水流量制御
弁35の開度が制御され、検出温度が低いときその開度
が小さく制御される。こうして蒸気タービン31に管路
30を経て供給される蒸気の温度が目標温度ts0に一
定に保たれる。
The temperature of the steam supplied from the first superheater 18 to the conduit 30 is detected by the temperature detecting means 45, and the detected temperature is set at the target temperature ts set by the temperature setting device 46.
The subtracting means 47 operates to control the opening degree of the water injection flow control valve 35 so as to be zero, and when the detected temperature is low, the opening degree is controlled to be small. In this way, the temperature of the steam supplied to the steam turbine 31 via the conduit 30 is kept constant at the target temperature ts0.

【0023】さらに説明を行うと、ごみ焼却炉20の蒸
発器21から送られてくる蒸気は、第2過熱器19に入
る。ガスタービン11からの排ガスは、排ガスダクト1
6を経て第1および第2過熱器18,19に入る。第1
および第2過熱器18,19の上流には、ダクト16中
に排ガスを過熱する助燃バーナ17が設けられ、燃料流
量制御弁42が助燃バーナ17の燃料入口側に設置され
ている。この助燃バーナ17には、常時、燃料が送られ
ている。ただしごみ焼却炉20の蒸発器21から送られ
てくる蒸気流量が最大の場合、その燃料流量は、非常に
少なく、本件発電プラントの熱効率を阻害するほどのも
のではない。助燃バーナ17のターンダウン比は、1/
100程度である。
To explain further, the steam sent from the evaporator 21 of the refuse incinerator 20 enters the second superheater 19. Exhaust gas from the gas turbine 11 is exhaust gas duct 1
After entering 6, the first and second superheaters 18, 19 are entered. First
An auxiliary combustion burner 17 that superheats exhaust gas is provided in the duct 16 upstream of the second superheaters 18 and 19, and a fuel flow rate control valve 42 is installed on the fuel inlet side of the auxiliary combustion burner 17. Fuel is constantly sent to the auxiliary burner 17. However, when the vapor flow rate sent from the evaporator 21 of the refuse incinerator 20 is the maximum, the fuel flow rate is very small and does not hinder the thermal efficiency of the power generation plant of the present case. The turndown ratio of the auxiliary burner 17 is 1 /
It is about 100.

【0024】第2過熱器19の下流には蒸発器23を設
け、ガスタービン排熱によって高圧飽和蒸気が発生し、
この飽和蒸気は、ごみ焼却炉20の蒸発器21からの蒸
気と合流して第2過熱器19に入る。この高圧飽和蒸気
流量は、ガスタービン容量とごみ焼却炉プラント規模に
よって異なる。ガスタービン11の容量は、ごみ焼却炉
プラントの蒸発器21から第1過熱器19に送られてく
る蒸気流量が最大のとき、蒸発器23からの高圧飽和蒸
気流量が極力少なくなるように選ばれる。この場合のガ
スの熱交換の状態を図3の実線のラインL1で示し、蒸
気の熱交換の状態を図3の実線のラインL2で示す。こ
の図3に関連して述べる説明では、助燃バーナ17の追
焚き量はごく僅かであり、あるいは零である。ガスター
ビン11の排ガス温度tg11は、たとえば550℃で
あり、一定値であり、またその排ガス流量は一定値であ
る。この温度tg11を有するガスは第1過熱器18か
ら入り、第2過熱器19の出口の温度はtg21とな
り、蒸発器23の出口ではガス温度tg31となる。温
度tg21は、たとえば430℃であり、温度tg31
はたとえば350℃である。一方、ごみ焼却炉20の蒸
発器21から送られてくる蒸気の質量流量Gr1(kg
/h)の蒸気は、蒸発器23からの蒸気と合流し、この
ときの温度はts11であり、注水減温弁28で一旦減
温され、第1過熱器18の出口では蒸気温度ts21と
なって蒸気タービン31に送られる。温度ts21は、
たとえば500℃である。蒸発器23からの蒸気は、圧
力Ps(ata)の飽和蒸気であり、ごみ焼却炉20プ
ラントの蒸発器21から送られてくる蒸気は同じ圧力p
s(ata)であるが、若干過熱されていることがあ
り、両者の温度は異なるときもあるが、ここでは説明の
便宜のために同一温度としてある。
An evaporator 23 is provided downstream of the second superheater 19, and high-pressure saturated steam is generated by the exhaust heat of the gas turbine,
This saturated steam merges with the steam from the evaporator 21 of the refuse incinerator 20 and enters the second superheater 19. This high-pressure saturated steam flow rate differs depending on the gas turbine capacity and the waste incinerator plant scale. The capacity of the gas turbine 11 is selected so that the flow rate of the high-pressure saturated steam from the evaporator 23 is minimized when the flow rate of the steam sent from the evaporator 21 of the refuse incinerator plant to the first superheater 19 is maximum. . The gas heat exchange state in this case is shown by the solid line L1 in FIG. 3, and the vapor heat exchange state is shown by the solid line L2 in FIG. In the description given with reference to FIG. 3, the auxiliary combustion burner 17 has an extremely small amount of reheating or is zero. The exhaust gas temperature tg11 of the gas turbine 11 is, for example, 550 ° C., which is a constant value, and the exhaust gas flow rate thereof is a constant value. The gas having this temperature tg11 enters from the first superheater 18, the outlet temperature of the second superheater 19 becomes tg21, and the outlet temperature of the evaporator 23 becomes gas temperature tg31. The temperature tg21 is, for example, 430 ° C., and the temperature tg31
Is 350 ° C., for example. On the other hand, the mass flow rate Gr1 (kg of the steam sent from the evaporator 21 of the refuse incinerator 20 (kg
/ H) steam merges with the steam from the evaporator 23, the temperature at this time is ts11, and the temperature is once reduced by the water injection cooling valve 28, and at the outlet of the first superheater 18, the steam temperature becomes ts21. Sent to the steam turbine 31. The temperature ts21 is
For example, it is 500 ° C. The steam from the evaporator 23 is saturated steam having a pressure Ps (ata), and the steam sent from the evaporator 21 of the waste incinerator 20 plant has the same pressure p.
Although it is s (ata), it may be slightly overheated and the temperatures of the two may be different, but the temperatures are the same here for convenience of description.

【0025】次にごみ焼却炉20のプラントの蒸発器2
1から送られてくる蒸気流量が、図3の破線L3で示さ
れるように質量流量Gr2(kg/h)に減少したとき
を想定する。このとき、第1過熱器18の入口のガス温
度が前述と同じくtg11であるとすれば、蒸気の熱交
換の状態は図3の破線のラインL4で示されるとおりで
ある。すなわち第1および第2過熱器18,19での収
熱量が減少し、第2過熱器19の出口でのガス温度はt
g21からtg22に上昇し、第1過熱器18の出口に
おける蒸気温度はts21に上昇する。一方、蒸発器2
3の入口ガス温度も、上述のようにtg22に上昇する
ので、その蒸発器23の蒸発流量は若干増加するが、ご
み焼却炉20プラントの蒸発器21から送られてくる蒸
気流量変動ΔGr( = Gr1 − Gr2)に比べる
と、無視し得る程度である。
Next, the evaporator 2 of the plant of the refuse incinerator 20
It is assumed that the flow rate of steam sent from No. 1 is reduced to the mass flow rate Gr2 (kg / h) as indicated by the broken line L3 in FIG. At this time, if the gas temperature at the inlet of the first superheater 18 is tg11 as described above, the state of heat exchange of steam is as shown by the broken line L4 in FIG. That is, the amount of heat collected in the first and second superheaters 18 and 19 is reduced, and the gas temperature at the outlet of the second superheater 19 is t.
It rises from g21 to tg22, and the steam temperature at the outlet of the first superheater 18 rises to ts21. On the other hand, the evaporator 2
Since the inlet gas temperature of No. 3 also rises to tg22 as described above, the evaporation flow rate of the evaporator 23 slightly increases, but the vapor flow rate fluctuation ΔGr (=) sent from the evaporator 21 of the refuse incinerator 20 plant. It is negligible as compared with Gr1-Gr2).

【0026】そこで助燃バーナ17の追焚き量を増やし
たときの熱交換の状態を、図4を参照しながら説明す
る。助燃バーナ17の追焚きをすることによって、第1
過熱器18の入口ガス温度がtg11からtg12にま
で上昇されると、1点鎖線のラインL5の状態となる。
蒸発器23の出口のガス温度は、図3に関連して述べた
ときと同じ温度tg31にまで下げることができる。蒸
発器23の水管26に接触するガスの温度をtsとする
とき、 tg3 = ts+Δt …(3) であり、蒸発器23の最少端末温度差Δtから、温度t
g31が最低温度となる。
Therefore, the state of heat exchange when the additional heating amount of the auxiliary burner 17 is increased will be described with reference to FIG. By burning the auxiliary combustion burner 17,
When the inlet gas temperature of the superheater 18 is increased from tg11 to tg12, the state of the one-dot chain line L5 is established.
The gas temperature at the outlet of the evaporator 23 can be reduced to the same temperature tg31 as described in connection with FIG. When the temperature of the gas contacting the water pipe 26 of the evaporator 23 is ts, tg3 = ts + Δt (3), and the temperature t is calculated from the minimum terminal temperature difference Δt of the evaporator 23.
g31 is the lowest temperature.

【0027】この場合、蒸発器23の入口ガス温度も当
然高くなり、したがって蒸発器23による蒸発流量は増
加する。もし、この蒸発流量が、ごみ焼却炉20のプラ
ントの蒸発器21から送られてくる蒸気流量変動差ΔG
r(=Gr1−Gr2)に等しくできれば、蒸気タービ
ン31に入る蒸気流量は常に一定となり、蒸気タービン
31は一定負荷となる。上述したようにごみ焼却炉20
のプラントの蒸発器21から送られてくる蒸気流量が、
Gr0(kg/h)のときを計画点と考え、このとき蒸
発器23の出口のガス温度をtg30(℃)とする。ご
み焼却炉20のプラントの蒸発器21から送られてくる
蒸気流量Gr(kg/h)のとき、第1過熱器18への
入口のガス温度tg11をどの程度にすれば、すなわち
助燃バーナ18に送る燃料流量をどの程度にすれば、蒸
発器27の出口ガス温度を予め定めるtg30[℃]に
するかは、予め求めることができる。ごみ焼却炉20の
蒸発器21から送られてくる蒸気流量を、蒸気流量検出
手段34で検出し、演算手段37では、その検出された
蒸気流量に見合う信号を送り、燃料流量検出手段43か
らの信号とつき合わせて燃料流量制御弁42に信号を送
り、設定燃料流量となるように燃料流量を制御する。こ
の場合、第1過熱器18の出口蒸気温度ts22は、図
4の1点鎖線のラインL6で示されるように高くなり、
このとき注水減温器28には注水されない。したがって
過熱器18,19を図1の実施例で示されるように2つ
に分割し、蒸気温度を蒸気温度検出手段45で検出し、
蒸気温度制御のための減算器47に送り、設定手段46
で設定された設定温度ts0とつき合わせ、偏差信号を
注水流量制御弁35に送ることによって、注水減温器2
8への注水流量を加減して第1過熱器18の出口の蒸気
温度を、設定値ts0になるように制御する。
In this case, the gas temperature at the inlet of the evaporator 23 naturally rises, so that the evaporation flow rate by the evaporator 23 increases. If this evaporation flow rate is the vapor flow rate variation difference ΔG sent from the evaporator 21 of the plant of the refuse incinerator 20.
If it can be made equal to r (= Gr1−Gr2), the steam flow rate entering the steam turbine 31 will always be constant, and the steam turbine 31 will have a constant load. Waste incinerator 20 as described above
The flow rate of steam sent from the evaporator 21 of the plant
The time of Gr0 (kg / h) is considered as the planned point, and the gas temperature at the outlet of the evaporator 23 is tg30 (° C) at this time. When the steam flow rate Gr (kg / h) is sent from the evaporator 21 of the plant of the refuse incinerator 20, what is the gas temperature tg11 at the inlet to the first superheater 18, that is, the auxiliary combustion burner 18? It is possible to previously determine how much the flow rate of the fuel to be sent should be set to the predetermined outlet gas temperature of the evaporator 27 to be tg30 [° C]. The steam flow rate sent from the evaporator 21 of the refuse incinerator 20 is detected by the steam flow rate detection means 34, and the calculation means 37 sends a signal commensurate with the detected steam flow rate. A signal is sent to the fuel flow rate control valve 42 together with the signal to control the fuel flow rate so that the set fuel flow rate is achieved. In this case, the outlet steam temperature ts22 of the first superheater 18 becomes high as shown by the one-dot chain line L6 in FIG.
At this time, no water is injected into the water injection desuperheater 28. Therefore, the superheaters 18 and 19 are divided into two as shown in the embodiment of FIG. 1, and the steam temperature is detected by the steam temperature detecting means 45.
Sending to a subtractor 47 for steam temperature control, setting means 46
The temperature of the water injection desuperheater 2 is adjusted by collating it with the set temperature ts0 set in step 3 and sending a deviation signal to the water injection flow control valve 35.
The flow rate of water injection into 8 is adjusted to control the steam temperature at the outlet of the first superheater 18 to be the set value ts0.

【0028】当然、注水流量制御弁35からの注水流量
Gw分が蒸発器23からの発生蒸気流量に加算されるの
で、助燃バーナ17に供給される燃料流量と蒸発器23
によって発生されて供給される供給蒸気流量との関係を
演算手段37のメモリ39に前述のようにストアしてお
き、注水流量を注水流量検出手段36で検出して、その
分、修正項として演算手段37の出力信号を送ることに
なる。
Of course, since the amount of the water injection flow rate Gw from the water injection flow rate control valve 35 is added to the generated steam flow rate from the evaporator 23, the fuel flow rate supplied to the auxiliary burner 17 and the evaporator 23.
The relationship with the supply steam flow rate generated and supplied by the above is stored in the memory 39 of the calculating means 37 as described above, the water injection flow rate is detected by the water injection flow rate detecting means 36, and the amount is calculated as a correction term. It will send the output signal of the means 37.

【0029】本件発明者の試算によれば、ごみ焼却炉2
0は500ton/1日であり、助燃バーナ17を設け
ないときには、蒸気タービン31による発電量の出力変
動幅は100%〜60%で大きかったけれども、本発明
によって助燃バーナ17を設けて上述のように構成する
ことによって、発電出力変動幅は100%〜80%に大
幅に減少することが可能となり、質のよい電力を供給す
ることができることが確認され、このとき助燃バーナ1
7に供給される燃料流量は0.6t/hであって殆ど問
題のない範囲であることが確認された。
According to a trial calculation by the present inventor, the waste incinerator 2
0 is 500 tons / day, and when the auxiliary combustion burner 17 is not provided, the output fluctuation range of the power generation amount by the steam turbine 31 is large at 100% to 60%, but the auxiliary combustion burner 17 is provided according to the present invention, as described above. With this configuration, the fluctuation range of the power generation output can be significantly reduced to 100% to 80%, and it is confirmed that high-quality power can be supplied. At this time, the auxiliary burner 1
It was confirmed that the flow rate of the fuel supplied to No. 7 was 0.6 t / h, which was within a range with almost no problem.

【0030】図5は本発明の他の実施例の系統図であ
る。この実施例は前述の実施例に類似し、対応する部分
には同一の参照符を付す。前述の実施例では、蒸発器2
3の蒸気流量は、演算手段37において演算して推測し
て求められたけれども、図5の実施例では管路27に蒸
気流量検出手段49を設けてその質量流量F23を実際
に検出して演算手段37に与える。これによってメモリ
39が省略される。燃料流量制御弁42の制御は、前述
の実施例と同様である。
FIG. 5 is a system diagram of another embodiment of the present invention. This embodiment is similar to the previous embodiment, and corresponding parts bear the same reference numerals. In the embodiment described above, the evaporator 2
The steam flow rate of No. 3 was calculated and estimated by the calculation means 37, but in the embodiment of FIG. 5, the steam flow rate detection means 49 is provided in the pipeline 27 to actually detect and calculate the mass flow rate F23. It is given to the means 37. As a result, the memory 39 is omitted. The control of the fuel flow rate control valve 42 is the same as that of the above-described embodiment.

【0031】[0031]

【発明の効果】以上のように本発明によれば、ごみ焼却
炉に備えられるごみ排熱回収用蒸発器からの蒸気流量
と、第2および第1過熱器の間に介在されている注水減
温器への注水流量とに基づいて、ガスタービン排熱回収
用蒸発器からの蒸気流量を演算して推測して求め、助燃
バーナの追焚き量を制御し、こうして蒸気タービンに第
1過熱器から供給される蒸気流量をほぼ一定に保つ。ま
た第1過熱器から蒸気タービンに供給される蒸気の温度
を検出して注水減温器に供給される注水流量を制御し、
これによって蒸気タービンに供給される蒸気の温度を一
定に保つ。またガスタービン排熱回収用蒸発器から発生
される蒸気流量を実際に検出して助燃バーナの追焚き量
を決定する。これによって熱力学的に適正であるガスタ
ービン容量、すなわち従来のごみ発電プラントの出力を
最も効率よく出力増加させるリパワリング効果を最大と
するガスタービンの容量から、あまり大きい容量を有す
るガスタービンを用いる必要がなく、熱効率が向上され
ることになる。
As described above, according to the present invention, the flow rate of steam from the waste heat recovery evaporator provided in the waste incinerator and the water injection reduction interposed between the second and first superheaters. The steam flow rate from the gas turbine exhaust heat recovery evaporator is calculated and estimated based on the flow rate of water injected into the warmer, and the additional heating amount of the auxiliary combustion burner is controlled, thus making the steam turbine the first superheater. The flow rate of steam supplied from is kept almost constant. In addition, the temperature of the steam supplied from the first superheater to the steam turbine is detected to control the flow rate of water injection to the water injection desuperheater,
This keeps the temperature of the steam supplied to the steam turbine constant. Further, the amount of steam to be reheated by the auxiliary combustion burner is determined by actually detecting the flow rate of steam generated from the gas turbine exhaust heat recovery evaporator. As a result, it is necessary to use a gas turbine having a very large capacity from the gas turbine capacity that is thermodynamically appropriate, that is, the capacity of the gas turbine that maximizes the repowering effect that increases the output of the conventional refuse power generation plant most efficiently. Therefore, the thermal efficiency will be improved.

【0032】また本発明によれば、ごみ焼却炉のごみ質
が低下し、ごみ焼却炉に備えられたごみ排熱回収用蒸発
器からの蒸発量が減少したときでも、蒸気タービンの出
力変動幅を、たとえば10%のオーダに低く抑えること
が可能であり、良質な電力を発生することが可能にな
る。
According to the present invention, the output fluctuation range of the steam turbine is reduced even when the quality of the waste in the waste incinerator is reduced and the amount of evaporation from the waste heat recovery evaporator provided in the waste incinerator is decreased. Can be kept low, for example, on the order of 10%, and high-quality power can be generated.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の系統図である。FIG. 1 is a system diagram of an embodiment of the present invention.

【図2】図1に示される実施例の演算手段37に設けら
れたメモリ39にストアされているテーブルを説明する
ための図である。
FIG. 2 is a diagram for explaining a table stored in a memory 39 provided in a calculation means 37 of the embodiment shown in FIG.

【図3】図1の実施例における助燃バーナ17の追焚き
量がごく僅かであり、または零であるときの熱交換の状
態を示す図である。
FIG. 3 is a diagram showing a state of heat exchange when the amount of additional heating of the auxiliary combustion burner 17 in the embodiment of FIG. 1 is very small or zero.

【図4】助燃バーナ17を動作させて本発明の動作を説
明するための熱交換状態を示す図である。
FIG. 4 is a diagram showing a heat exchange state for explaining the operation of the present invention by operating the auxiliary burner 17.

【図5】本発明の他の実施例の系統図である。FIG. 5 is a system diagram of another embodiment of the present invention.

【図6】ごみ焼却炉におけるごみ排熱回収用蒸発器によ
って発生される蒸気流量の時間変化を示すグラフであ
る。
FIG. 6 is a graph showing a change over time in the flow rate of steam generated by a waste heat recovery evaporator in a waste incinerator.

【図7】先行技術の系統図である。FIG. 7 is a prior art system diagram.

【図8】他の先行技術の系統図である。FIG. 8 is a system diagram of another prior art.

【符号の説明】[Explanation of symbols]

11 ガスタービン 16 排ガスダクト 17 助燃バーナ 18 第1過熱器 19 第2過熱器 20 ごみ焼却炉 21 ごみ排熱回収用蒸発器 23 ガスタービン排熱回収用蒸発器 28 注水減温器 31 蒸気タービン 32 発電機 34 蒸気流量検出手段 35 注水流量制御弁 36 注水流量検出手段 37 演算手段 39 メモリ 42 燃料流量制御弁 44 減算器 45 蒸気温度検出手段 46 温度設定器 47 減算器 11 Gas Turbine 16 Exhaust Duct 17 Auxiliary Burner 18 First Superheater 19 Second Superheater 20 Waste Incinerator 21 Waste Waste Heat Recovery Evaporator 23 Gas Turbine Waste Heat Recovery Evaporator 28 Water Injection Desuperheater 31 Steam Turbine 32 Power Generation Machine 34 Steam flow rate detection means 35 Water injection flow rate control valve 36 Water injection flow rate detection means 37 Calculation means 39 Memory 42 Fuel flow rate control valve 44 Subtractor 45 Steam temperature detection means 46 Temperature setter 47 Subtractor

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ガスタービンと、 ガスタービンからの排ガス通路に設けられる助燃バーナ
と、 ガスタービンからの排ガス通路に、助燃バーナよりも下
流側で設けられる第1過熱器と、 ガスタービンからの排ガス通路に、第1過熱器よりも下
流側で設けられる第2過熱器と、 ごみ排熱回収用蒸発器を有し、その蒸気を第2過熱器に
与えるごみ焼却炉と、 ガスタービンからの排ガス通路に、第2過熱器よりも下
流側で設けられ、その蒸気を第2過熱器に与えるガスタ
ービン排熱回収用蒸発器と、 第2過熱器からの蒸気に注水して第1過熱器に与える注
水減温器と、 第1過熱器の蒸気が与えられる蒸気タービンと、 蒸気タービンによって駆動される発電機と、 ごみ排熱回収用蒸発器からの蒸気の流量を検出する蒸気
流量検出手段と、 注水減温器に水を供給する注水流量制御弁と、 注水減温器に供給される水の流量を検出する注水流量検
出手段と、 蒸気流量検出手段と、注水流量検出手段との各出力に応
答し、それらの蒸気質量流量と注水質量流量との和によ
ってガスタービン排熱回収用蒸発器からの蒸気の発生流
量を推測し、第1過熱器からの蒸気流量が予め定めるほ
ぼ一定値になるように燃料流量を制御して助燃バーナを
働かせる制御手段と、 第1過熱器からの蒸気の温度を検出する温度検出手段
と、 温度検出手段の出力に応答し、その検出される蒸気温度
が予め定める温度になるように注水流量制御弁の開度を
制御する制御手段とを含むことを特徴とする複合ごみ発
電プラント。
1. A gas turbine, an auxiliary combustion burner provided in an exhaust gas passage from the gas turbine, a first superheater provided in the exhaust gas passage from the gas turbine downstream of the auxiliary combustion burner, and an exhaust gas from the gas turbine. In the passage, there is a second superheater provided on the downstream side of the first superheater, a waste heat recovery evaporator, and a waste incinerator that supplies the steam to the second superheater, and exhaust gas from the gas turbine. A gas turbine exhaust heat recovery evaporator, which is provided in the passage downstream of the second superheater and supplies the steam to the second superheater, and the steam from the second superheater is injected into the first superheater. A water injection desuperheater to be given, a steam turbine to which the steam of the first superheater is given, a generator driven by the steam turbine, and a steam flow rate detection means for detecting the flow rate of steam from the waste heat recovery evaporator. , Water cooling In response to each output of the water injection flow rate control valve that supplies water to the The steam flow rate from the gas turbine exhaust heat recovery evaporator is estimated by the sum of the steam mass flow rate and the water injection mass flow rate, and the fuel flow rate is adjusted so that the steam flow rate from the first superheater becomes a predetermined constant value. Control means for controlling the burner burner to operate the auxiliary combustion burner, temperature detecting means for detecting the temperature of the steam from the first superheater, and the detected steam temperature in response to the output of the temperature detecting means reaches a predetermined temperature. And a control means for controlling the opening degree of the water injection flow control valve.
【請求項2】 ガスタービンと、 ガスタービンからの排ガス通路に設けられる助燃バーナ
と、 ガスタービンからの排ガス通路に、助燃バーナよりも下
流側で設けられる第1過熱器と、 ガスタービンからの排ガス通路に、第1過熱器よりも下
流側で設けられる第2過熱器と、 ごみ排熱回収用蒸発器を有し、その蒸気を第2過熱器に
与えるごみ焼却炉と、 ガスタービンからの排ガス通路に、第2過熱器よりも下
流側で設けられ、その蒸気を第2過熱器に与えるガスタ
ービン排熱回収用蒸発器と、 第2過熱器からの蒸気に注水して第1過熱器に与える注
水減温器と、 第1過熱器の蒸気が与えられる蒸気タービンと、 蒸気タービンによって駆動される発電機と、 ごみ排熱回収用蒸発器からの蒸気の流量を検出する第1
蒸気流量検出手段と、 注水減温器に水を供給する注水流量制御弁と、 注水減温器に供給される水の流量を検出する注水流量検
出手段と、 ガスタービン排熱回収用蒸発器からの蒸気流量を検出す
る第2蒸気流量検出手段と、 第1および第2蒸気流量検出手段と、注水流量検出手段
との各出力に応答し、それらの各蒸気質量流量と注水質
量流量との和による第1過熱器からの蒸気流量が予め定
めるほぼ一定値になるように燃料流量を制御して助燃バ
ーナを働かせる制御手段と、 第1過熱器からの蒸気の温度を検出する温度検出手段
と、 温度検出手段の出力に応答し、その検出される蒸気温度
が予め定める温度になるように注水流量制御弁の開度を
制御する制御手段とを含むことを特徴とする複合ごみ発
電プラント。
2. A gas turbine, an auxiliary combustion burner provided in an exhaust gas passage from the gas turbine, a first superheater provided in the exhaust gas passage from the gas turbine downstream of the auxiliary combustion burner, and exhaust gas from the gas turbine. In the passage, there is a second superheater provided on the downstream side of the first superheater, a waste heat recovery evaporator, and a waste incinerator that supplies the steam to the second superheater, and exhaust gas from the gas turbine. A gas turbine exhaust heat recovery evaporator, which is provided in the passage downstream of the second superheater and supplies the steam to the second superheater, and the steam from the second superheater is injected into the first superheater. The water injection desuperheater to be given, the steam turbine to which the steam of the first superheater is given, the generator driven by the steam turbine, and the flow rate of steam from the waste heat recovery evaporator
From the steam flow rate detection means, the water injection flow rate control valve that supplies water to the water injection desuperheater, the water injection flow rate detection means that detects the flow rate of the water supplied to the water injection desuperheater, and the gas turbine exhaust heat recovery evaporator In response to the outputs of the second steam flow rate detecting means for detecting the steam flow rate, the first and second steam flow rate detecting means, and the water injection flow rate detecting means, and the sum of the respective steam mass flow rate and water injection mass flow rate. Control means for controlling the fuel flow rate to operate the auxiliary burner so that the steam flow rate from the first superheater becomes a predetermined substantially constant value, and temperature detection means for detecting the temperature of the steam from the first superheater, A composite refuse power generation plant comprising: a control unit that responds to the output of the temperature detection unit and controls the opening degree of the water injection flow control valve so that the detected steam temperature becomes a predetermined temperature.
JP22614093A 1993-09-10 1993-09-10 Compound refuse power generation plant Pending JPH0783005A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22614093A JPH0783005A (en) 1993-09-10 1993-09-10 Compound refuse power generation plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22614093A JPH0783005A (en) 1993-09-10 1993-09-10 Compound refuse power generation plant

Publications (1)

Publication Number Publication Date
JPH0783005A true JPH0783005A (en) 1995-03-28

Family

ID=16840485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22614093A Pending JPH0783005A (en) 1993-09-10 1993-09-10 Compound refuse power generation plant

Country Status (1)

Country Link
JP (1) JPH0783005A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08177410A (en) * 1994-12-26 1996-07-09 Ishikawajima Harima Heavy Ind Co Ltd Plant control device of exhaust burning-up type combined cycle plant
JPH08246814A (en) * 1995-03-07 1996-09-24 Toshiba Corp Combined cycle generation plant using refuse incinerator
JPH1122419A (en) * 1997-07-02 1999-01-26 Mitsubishi Heavy Ind Ltd Combined cycle power plant
EP1355109A1 (en) * 2002-04-16 2003-10-22 SWE Strom und Fernwärme GmbH Method for generating power from refuse
WO2014056772A1 (en) * 2012-10-11 2014-04-17 Siemens Aktiengesellschaft Method for flexibly operating a nuclear power plant
US11274600B2 (en) 2018-11-12 2022-03-15 Mitsubishi Power, Ltd. Combined cycle plant, control device thereof, and operation method thereof

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08177410A (en) * 1994-12-26 1996-07-09 Ishikawajima Harima Heavy Ind Co Ltd Plant control device of exhaust burning-up type combined cycle plant
JPH08246814A (en) * 1995-03-07 1996-09-24 Toshiba Corp Combined cycle generation plant using refuse incinerator
JPH1122419A (en) * 1997-07-02 1999-01-26 Mitsubishi Heavy Ind Ltd Combined cycle power plant
EP1355109A1 (en) * 2002-04-16 2003-10-22 SWE Strom und Fernwärme GmbH Method for generating power from refuse
WO2014056772A1 (en) * 2012-10-11 2014-04-17 Siemens Aktiengesellschaft Method for flexibly operating a nuclear power plant
KR20150067185A (en) * 2012-10-11 2015-06-17 지멘스 악티엔게젤샤프트 Method for flexibly operating a nuclear power plant
CN104968897A (en) * 2012-10-11 2015-10-07 西门子公司 Method for flexibly operating a nuclear power plant
JP2015534633A (en) * 2012-10-11 2015-12-03 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft Flexible operation of power plants
CN104968897B (en) * 2012-10-11 2017-10-10 西门子公司 Method for neatly running power station plant
US10487696B2 (en) 2012-10-11 2019-11-26 Siemens Aktiengesellschaft Method for the flexible operation of a power plant
US11274600B2 (en) 2018-11-12 2022-03-15 Mitsubishi Power, Ltd. Combined cycle plant, control device thereof, and operation method thereof

Similar Documents

Publication Publication Date Title
US8104283B2 (en) Steam temperature control in a boiler system using reheater variables
WO2014131272A1 (en) Boiler provided with external steam heater
JP2012202611A (en) Exhaust heat recovery boiler and power plant
JPH0783005A (en) Compound refuse power generation plant
JP2011027036A (en) Combined power generation plant and method for controlling the same
JP4166420B2 (en) Combined cycle power plant
JP2595046B2 (en) Steam temperature control system for reheat type combined plant
JP2001342848A (en) Waste heat recovering method in gas turbine power generation system
JP2004264002A (en) Reheat steam temperature control method and apparatus for boiler
JP3755910B2 (en) Water injection control device for reheat steam desuperheater
JPH07109905A (en) Method and apparatus for controlling steam temperature in composite power generation plant
JP2007285220A (en) Combined cycle power generation facility
JP2750784B2 (en) Waste heat recovery method
JP2839668B2 (en) Output control device of cogeneration plant
JP3068972B2 (en) Combined cycle power plant
WO1999015765A1 (en) Cooling steam control method for combined cycle power generation plants
EP3203149B1 (en) Combined-cycle co-generation process and installation
JP2003083501A (en) Fluidized bed boiler
JP3820636B2 (en) Method and apparatus for controlling feed water temperature in exhaust recombustion combined cycle plant
JP2725143B2 (en) Combustion superheater
JPH1122420A (en) Control method for preventing low-temperature corrosion of refuse incinerating power plant
JP2004019963A (en) Once-through waste-heat boiler
JPH07119414A (en) Method of controlling operation of refuse incinerator waste heat utilizing combined plant
JPH10141089A (en) Gas turbine power generating system
JPH0735311A (en) Combustion type superheater